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Abstract

We present some recent progresses on Heun functions, gathering results from classi-
cal analysis up to elliptic functions. We describe Picard’s generalization of Floquet’s
theory for differential equations with doubly periodic coefficients and give the de-
tailed forms of the level one Heun functions in terms of Jacobi theta functions. The
finite-gap solutions give an interesting alternative integral representation which, at
level one, is shown to be equivalent to their elliptic form.

1 Introduction

Heun functions [9] are defined as a natural generalization of the hypergeometric function,
to be the solutions of the Fuchsian differential equation

&r v ) ek? dF (s + afBk*w)
dw?

Yy+d+te=a+p+1,

F=0,

w 1l-w 1-kw/)dv wl-w)l-kw) (1)

with four regular singularities 0, 1, 1/k% oo. In [3] the fourth singularity is @ = 1/k? and
the auxiliary parameter s is taken as ¢ = —s/k* We will follow the notation

Hn(k? s;a, 3,7, 6;w), k? € [0,1]. (2)

In [3] one can find a lot of information on these functions and in the remaining chapters
of [21] are gathered many results on their confluent limits. Due to limitation of space
the former section misses several important items, particularly the relation between Heun
functions and elliptic function theory. These last years this field has received new inter-
esting developments from workers in condensed matter physics [5] and integrable systems
[15]. Interesting accounts have been given by Smirnov [23] and by Takemura [24].



Our aim is to gather, for the community dedicated to the study of special functions
and orthogonal polynomials, these new progresses relating Heun and elliptic functions.

As a preliminary step we will give one further motivation for the study of Heun func-
tions, coming from orthogonal polynomials and birth and death processes.

2 From orthogonal polynomials to Heun functions
Let us consider the three terms recurrence [1]

xPn:bn_an_1+anPn+ann+1, nZ 1. (3)

We will denote by P, and @, two linearly independent solutions of this recurrence with
initial conditions

Re) =1, A= QW@ =0.  Q@)=p. @
The corresponding Jacobi matrix is
a by 0 0 0
bo a; b 0 O
0 by ax by 0 --- (5)

If the b, > 0 and a, € R the P, (resp. the @,) will be orthogonal with respect to a
positive probabilistic measure 1 (resp ™))

/ Pp(x) Po(z) dip(x) = 6n,s / Qm () Qn() d@b(l)(x) = Omn, (6)

with the moments

Sp = /x" dy(x), n>1, so=1 (7)

When considering applications to birth and death processes with killing [14], it is
sufficient to consider the special case where

ap = )\n_‘_,un_l"}/na bn =\ )\n,un-‘rla n > 07
Ao - Ay

To=1  m,=_rmnml o>,
Haph2 = fhn

It is convenient to introduce new polynomials F,,(x) by




The positivity constraints
An >0, fini1 >0 n >0, (9)
will be assumed. From (3) we deduce

_an = ,un—l—an—l—l - ()\n + Hn + fYn)Fn + )\n—an—la

(10)
F_l(l’) = 0, FQ(ZL’) =1.
The orthogonality relation (6) becomes
/ Fo.(z) By () dip(z) = Tn0mn- (11)

The particular case where \,, u, are quadratic is connected with Heun functions in
the following way. Let us take

A = k2 (n+a)(n+ B), fn =n(n+vy—1), Yo =K' 260
(12)
a>0,3>0~v>0, k*>€(0,1), E?2=1-k

and consider the generating function

Flaiw) = 3 Fu(k, w0, 8,7, 000" = Hn(K, si0, 8,7, 6:w), s =a —afk®  (13)

n>0

Routine computations show that F'(x;w) is the solution, analytic in a neighbourhood of
w =01, of Heun’s differential equation (1). Quite remarkably, the most general quadratic
birth and death process with linear killing produces, for its generating function, the most
general Fuchsian equation with four regular singularities.

Let us conclude with the proof of:

Proposition 1 The Hamburger (hence the Stieltjes) moment problem corresponding to
the polynomials F, (x) with recurrence coefficients (12) is determinate.

Proof :
A theorem by Hamburger [1][p. 84] states that if the series ¢, = P,(0)? is divergent then
the Hamburger moment problem is determinate, i. e. the measure ¢ defined in (6) is
unique. From relation (8) we can write

Cnt1 _ Hn+1 Fn+1(0 2 1 (n + )(n+7) Fn+1(0>2

1
cn Ao Fo(0)2 K2 (n4a)(n+ ) Fo(0)%°

Now the generating function F'(x;w), introduced in (13), is analytic for |w| < 1: hence
its radius of convergence is one. It follows that, for n — oo the previous ratio has for limit
1/k? > 1 and the series {c,} diverges. O

To have a clear view of the problems encountered in the construction of solutions of
Heun’s equation, we will introduce some terminology: we will call “generic” solutions the
solutions valid for arbitrary values of the auxiliary parameter s and “non-generic” solutions

n [21] this function is called “local” Heun. Notice that we have for normalization Hn(---;0) = 1.



those which require particular values of s. Let us begin with some results on non-generic
solutions.

Non-generic solutions

1 Special hypergeometric cases

The reason for the restriction k? € (0, 1) is that in the two limiting cases k? = 0 (notice
that the positivity conditions (9) require k* > 0) and k% = 1 the four singular points
reduce to three and therefore Heun functions degenerate into hypergeometric functions.
Indeed we have:

1. For k? = 0 the parameters (a, 3) become irrelevant and we have:

H?’L(O, S; (a,ﬁ),%é;w) = 2F1 < T+:y,r_ 7w) )

(14)
1
re=pEVp+s, p:§(7+5—1)-
This case, which would correspond to a — oo, is missing in [3].
2. For k? = 1 we have the relation:
Hn(1, s;0, 8,7, 6;w) = (1 —w)" 21 ( o+ ;w) ,

Y
. (15)

r=p=vpt-af-s  p=gy-a-p)
This case is considered in [3] but only with the extra constraint s = —af3, i. e. for r = 0.

2 The “trivial” solution

This solution corresponds to the special values s = a6 = 0. In this case Heun’s differential
operator is factorized as

(LDw+MH> Dy F =0,

with obvious L and M. This factorization leads to

dw
F=1 F= [ eV™q = / : 1
1 2 / € w, U(’UJ) w“*(l . 'LU)6(1 . k’2'LU)E ( 6)
Starting from these solutions we can use the change of function
F—F:  Fw) =uw(l—-w)(l-kw Fw) (17)

which transforms, for special values of the parameters p, o, 7, a Heun function into another
Heun function, up to changes in the parameters [3][p.18]. In such a way one generates 7
more Heun functions starting from (16). For all these solutions Heun’s differential operator
remains obviously factorized and, as shown in [22], this happens only for these cases.



3 Derivatives of Heun functions

In general the derivative of a Heun function cannot be expressed in terms of some Heun
function with different parameters. However, as shown in [11], this happens in 4 cases:

Hi'(k,0; 0, 8,7, 6 w) = ——2_ k2w Hn(k?, o' a+ 2, 0+ 2,7 + 2,6 + L;w),
v+2 (18)

—s'=y+0+1+4+(y+e+ 1)K
Hn'(k?, —afk?; 5w) = 2P
n( ) O{/B 70476777 7w> ’y+1
—s' =7+ 5+ 1+ (y+ e+ af)k?

Hn/(k27_aﬁ;a7ﬁa7a6;w) = aﬂ
¥+

(1 —w) Hn(k*,s';a+ 2,3+ 2,7+ 1,6 + 2;w),

(19)
1(1 — E*w)Hn(k* s';a+2,8+2,v+ 1,0 + 1;w),

—s'=y+d5+af+ (y+e+ 1)k
(20)

Hn'(K, 5,0, 8,7, 6;w) = —— Hn(k?, 8,2, 8+ 1,7+ 1,6 + L;w),
v+1 (21)

s=s—7—0—(v+ ek

Notice that, from (13), the functions Hn(---;w) are analytic around w = 0.

4 Reduction to hypergeometric functions

For non-generic solutions it was realized some time ago the possibility for Heun functions
to reduce to hypergeometric functions. Some relations, using Weierstrass elliptic functions
are given in [13]. Later on Kuiken [16] has observed some reductions to hypergeometric
functions of some particular rational variable R(w). This may happen only for polynomial
R(w), with the following list :

Hn (—1,0;2a,2b,2c — 1,1+ a+b—cw) = o F} ( a,cb ;w2>,

Hn (1/2,—2ab;2a,2b,¢,1+2(a+b—c);w) = oF} ( a,cb ;w(2 — w)) , (22)

Hn (2, —4ab; 2a,2b, ¢, c;w) = oF) ( a,cb sdw(l — w)) )

Notice that in all these cases R(w) is a second degree polynomial with 3 free parameters.
These results have been completed recently by Maier [17], who discovered new cases ? with
cubic and quartic polynomials R(w) and 2 free parameters:

Hn (1/4, —9ab/4; 3a,3b,1/2,2(a+ b);w) = »F} < ;L/g cw(3— w)2/4> :

Hn (1/2, —8ab; 4a,4b,a + b+ 1/2,2(a + b); w) = (23)

2We have omitted the cases involving complex values of k2.




These results are not the whole story, since Heun functions may reduce to the product of
some function f(w) by some hypergeometric function with variable R(w), not necessary
polynomial. A result of this kind was obtained in [12] by Joyce :

Hn (1/4, ~1/8:1/2,1/2,1,1/2w) = | VI— w0 — VI = ws < 1/2’11/2 ;R(w)), (24)
with

R(w):%(Q—w\/4—w—(2—w)\/1—w), w e [0,1].

Let us turn ourselves to the generic solutions of Heun’s equation.

(Generic solutions

1 The 192 solutions of Heun’s equation

As Heun himself observed [9] there is a set of 24 substitutions of the variable w which
produce a transformation of Heun’s equation into another Heun’s equation with differ-
ent parameters. This leads to a complete list of 192 solutions. This list has been fully
worked out recently by Maier in [18]. We will just quote the generalizations of the Euler
transformation of the hypergeometric function:

Hn(k?, s;a, 857,60, 6;w) =
(25)
=(1—-w)'°Hn(k* —s -~y —1);a—6+1,8—0+1;v,2 — 6 w),
and of the Pfaff transformation

Hn(k? s; 0, 357, 6, 6;w) =

= (1 —w) " Hn(=k*/K'?, =R /K *(s + av);a,a = 6 + L,y,a = B+ Ljw/(w — 1)).

(26)
2 An integral transform
An integral transform was given in [26]:
Hn(k? 530, 8,7, 6;w) =
27)
I'(v) /1 -1 —a—1 2 (
= (1 —t)7 " Hn(k?, s;v, B, a,0 + v — a; wt) dt,
D@l —a) Jp G700 )

valid for Rey > Rea > 0 and w € C\ [1, oo].
Let us use orthogonal polynomials to prove this relation [27]. To this end we define
the monic polynomials M,, by

My=Fy=1, My (P;x) =y pn (P 2) = nl (y)n Fn(Psx), n>1,



where P denotes the set of parameters k2, a, 3, 7, 6. These monic polynomials satisfy the
recurrence relation:

(A + i + Y — )My, = My + Apapon My, n >0,
M_y(x) =0, My(z)=1.
If we define the new set of parameters
P =0 d=~03=08=ad=6+7—a), v =s+d [k

it is easy to check the invariance relation M,,(P’; ') = M, (P;x). This induces

r =5+ afk? F,(P;x) = (@) F,(P';2"), ¥ =s+dFk% (28)

For Rey > Rea > 0 we can write

(@)n I'(v) ' nta-1/1 _ p\y—a—1
o ‘r<a>r<v—a>/o e T

then multiplying both sides of this relation by (28) and summing for n > 0 gives (27) for
|lw| < 1. Analytic continuation extends it to w € C\ [1, co].

Remarks :

1. This is not an integral equation, since the parameters of the Heun function are
changed in the transformation. Notice that several integral equations are known [3].

2. For k* — 0 we recover Bateman’s integral relation

2 F < a’cb ;w) = % /01 1=t R ( “’Ab ;wt) dt, (29)

valid for Rec > Re A > 0. Notice that now A is a free parameter, and this enables one to
deduce Euler’s integral representation. This does not work for Heun functions because the
parameter « is not free.

3. For k? = 1 we get the relation

(1—w)T2F1(T+a’7T+6 ;w) =

:%/01 ta_l(l—t)”’_o‘_l(l—wt)FgFl<f+%7:+/5 ;wt) " (30)

L(a)l(y o
with

r=p-VF a5, p=gli—a-B), F=p-F- 15 p=-ylr—ath)

This relation does not appear in the extensive list of hypergeometric integrals given in [7],
so it could be new.



3 Carlitz solutions

In his analysis of some orthogonal polynomials of Stieltjes, Carlitz [4] discovered the follow-
ing remarkable result: the linearly independent Heun functions with parameters (k?,s #
0;0,1/2,1/2,1/2) are given by

exp (£2iv52(w),  z(w) = /Ow N _‘Z;(l —= (31)

To check most simply this result we note that by the inversion theorem of elliptic functions
we can write

5y " du = sn?(z, k?
z(w,k)—/o >l = w1 = ) —  w=sn"(zk).

This conformal transformation maps the singular points as

1
l ! ! ! !
z 0 K K+ iK' 1K'

where K = K (k?) and K’ = K(k'?) are the complete elliptic integrals of first kind. Using
z as new variable and setting F'(w) = y(z), Heun’s equation becomes

d?y cn zdn 2 snzdn z
— 2y —1)——Z — (20 —1)——= — (2e — 1)k?
dz? @ -1 sn z ( ) cn z (2e—1) dnz | dz (32)

snzcnz| dy

+4(s + af k*sn?z)y = 0.

At the very symmetric point where aff =0 and v = § = € = 1/2, it reduces to

2
% +4sy =0,
which proves (31).

Using then the transformation (17) we can generate a full set of 8 generic solutions (see
[26]) where the detailed list is given). So we realize that Heun’s equation, in the elliptic
functions setting, lies in the field of differential equations with doubly periodic coefficients.
It happens that Floquet’s theory for differential equations with periodic coefficients does
generalize to the case of doubly periodic coefficients and was derived by Picard. This will

be discussed in the next subsection.

4 Elliptic functions of second kind and Picard’s the-
orem

Since this theorem is not easily available in the standard textbooks [2],[28], we will present
some background material. Let us just recall the definition and a few basic results from
elliptic function theory :



Definition 1 A function ®(z) is elliptic if it is meromorphic and it has two linearly
independent periods

P(z 4 2w) = D(2), Pz + 2w') = D(2).

These two periods define therefore a non-degenerate period parallelogram (usually w =
K, ' =iK').

We will need also
Proposition 2 An elliptic function:

1. Has as many poles as zeroes in a period parallelogram.

2. Can be written

H(z—0by)---H(z—by,)

(2) :AH(z—al)---H(z—an)’

a1+ +ap =by + -+ by, (33)

where H(z) is one of Jacobi’s theta function defined as

1 . Tz _K
H(Z) = 22(_1)nq(7ﬁ‘2)2 sin <(2n + 1)%) ’ g=¢e¢ K.
n>0

3. Must have at least a pole of multiplicity 2 in a period parallelogram otherwise it
18 a constant.

4. With poles of multiplicity n at z = a can be expanded as:

o(z) =Y aglz—a) tag(z—a)+-a g™z -a),  g(z)=F (34)

where the sum is extended to all the poles.

To state Picard’s theorem we need the definition

Definition 2 A function ®(z) is a an elliptic function of second kind (or a function with
constant multipliers) if it is meromorphic and that there exists two non-vanishing constants
woand p' such that

O(z +2w) = e P(2) (24 2') = e B(2),

where 2w and 2w' are two linearly independent periods. The constants p and p' are called
the multipliers.

Obviously for e# = e* = 1 we recover elliptic functions. We will have to discuss
separately the two cases:

1. Generic multipliers for which wu' — W'y # 0,

2. Special multipliers for which wy’ — w'pu = 0.



4.1 Theorems for generic multipliers

Let us consider the function

(35)

where a is not homologous to zero. One can check that it is elliptic of second kind with
generic multipliers

a
— 92\K, =g <2AK’ . m_) .
1 [ T
Let us prove:
Proposition 3 An elliptic function of second kind with generic multipliers:
1. Admits as many zeroes as poles in a period parallelogram.

2. Must have at least a simple pole in a period parallelogram, otherwise it vanishes.

3. Can be expanded, using f(z) defined in (35), as

D(2) = Zcof(z —a)+taf(z—a)+---+caf™(z—a), (36)

where the sum extends to all poles z = a of multiplicity n of ®.

Proof :

Notice that for any elliptic function of second kind ®(z) with given generic multipliers
(p, ') it is always possible to find A and @ in (35) such that f has the same multipliers.
It follows that ®(z)/f(z) is elliptic. Using (33) we get the most general structure

H(z—=0by)---H(z—by)

@(Z) :Af(Z) H(z_al).nH(z—an)’

a1+ ---+a,=by+---+b,,

which proves the first assertion.

For the second assertion, let it be supposed that ® has no pole: it cannot have any
zero and therefore ®(z) reduces to Ae**, but in this case the multipliers are not generic,
contradicting our hypothesis, hence A = 0.

For the third assertion, let us consider a pole z = a of multiplicity n. Near to z = a we
have the Laurent expansion

f®(2) = (2’—5% + holomorphic,

so we can find coefficients {cx, k = 0...n} such that

B(z) =Y (cof(z—a) +euf'(z—a)+ -+ cuf"(z = a))

has no poles in a period parallelogram, so it must vanish. O



4.2 Theorems for special multipliers

This time let us define
H/
fle) = ) (37)

One can check that it is elliptic of second kind with special multipliers. We have now

Proposition 4 Any elliptic function of second kind with special multipliers can be ex-
panded as

B(z) = CeM + Z (cof(z —a)+ef(z—a)+ - cn fM(z - a)) , (38)

with the constraint
D e (ot At A) =0, (39)

where the sums extend to all poles of ®(z).
Proof:
—Az

In this case wy' — ' = 0. So we can find a value of A such that F(z) = ®(z)e " is
elliptic. Let us consider a pole z = a of order n of ®. We have for Laurent’s series

G 1 . nle, )
é(z) - s —a - (Z — &)2 + -+ (—1) m + holomorphlc.
hence we can write
Qo ay n n! (07% .
F(Z) = s —a - (z—a)2 ++(—1) m—l—holomorphlc,

where the new residue is
ag =€ (co+ Ay + -+ N'¢,).

Using the expansion theorem for elliptic functions (34) we have

/

P()e M =C+ Y e [ao %(z —a)+a D, (%(z _ a)) 4.

oz (B0

Inserting e** into the right-hand side, and expanding the derivatives according to Leibnitz
rule gives (38). The constraint (39) comes from the fact that the sum of the residues in a
period parallelogram vanishes for an elliptic function. O

4.3 Picard’s theorem

Now we can state Picard’s theorem [19]



Proposition 5 Let us consider the differential equation

d"F a ( )d”_lF
dz" e dzn1

with doubly periodic coefficients
ai(z + 2w) = a(2), ar(z +20') = a;(2), [=1,2,...,n,

Any meromorphic solution F(z) is a linear combination of elliptic functions of the second
kind.

Proof :
To shorten, and in view of application to Heun’s case, we will consider a differential

equation of second order:

d*F dF

— — F=0 40

TP ez F =0, (10)
with doubly periodic coefficients p and ¢. Let us consider a solution F'(z) which is not
elliptic of second kind: then the ratio F'(z+2w)/F'(z) cannot be a constant. The periodicity
of the coefficients implies that the functions F'(z + 2w) and F'(z + 4w) are also solutions,

so we must have a linear relation of the form
F(z+4w) = AF(2) + BF(z + 2w).

Let us now consider the non-vanishing function ¢(z) = F(z + 2w) + pF(z). If we take for
p a root of p? + Bp — A = 0 it is easy to check that ¢(z + 2w) = (B + p)é(2).

A similar argument works with respect ot the period 2w’. So we have proved that we
can construct a first solution ¢(z) which is elliptic of the second kind.

We have now to prove that a second linearly independent and meromorphic solution,
which can be written as

is also elliptic of second kind.
The Wronskian

¢¢,—¢,¢:C€_P> 07&07
and the meromorphy of ¢ and 1 imply that e~ is meromorphic. Since p is doubly periodic,
e~P is elliptic of second kind. So G is a meromorphic elliptic function of second kind.
Let it be supposed first that G has generic multipliers. Using the expansion theorem
(36) we can write

G =Y | f—a)++afP—a),  flz) =

where the sum includes all the poles of multiplicity n of G(z). Since the integral has to be
meromorphic all the coefficients ¢y must vanish and we get

G(z) = /G(z) dz = Z [cl flz—a)+--+cp f("_l)(z—a)] ,



and from (36) it follows that G(z) and ¢ (z) are elliptic of second kind.
Let us now consider the case where GG has special multipliers. The expansion theorem
(38) gives

/
)\ZH

G)=Ce*+ Y [af—a)+ - +e fOl-a)|, ()= F (),

with the constraint
Z (co +ch+---+ cnh"> e =0. (41)

If A # 0 the meromorphy of G requires that all coefficients ¢y vanish, so we can write

6(2) = e+ Y e fe—a) 4ot fO 0 —a)]

This relation and the constraint (41), with coefficients ¢y all vanishing, implies that G(z)
is elliptic of second kind with special multipliers, hence 1 is again elliptic of second kind.
If h =0 we have

Gg(z2) :Cz+z [clf(z—a)—|—~-~+cnf("_1)(z—a)] : Z co = 0.

This implies
G(z+2w)=G(2)+ D, G(z+2)=G(z)+ D'

and so, if (A1, A\2) are the multipliers of ¢ we can write

(2 +2w) = M\ ¥(2) + M D ¢(2), P(z 4 2w") = A h(2) + N D' ¢(2),

so we can subtract from 1 a suitable term linear in ¢ for which ) will be elliptic of second
kind. O

5 The meromorphic solutions
So let us look for the necessary conditions on the parameters to get meromorphic solutions

in the variable z. The computation of the exponents at the singularities of (32) is quite
simple and gives

2=0 (sn z)% 0,7—1)
z=K (cn z)?2 (0,6 — 1)
(42)
z =K+ 1K' (dn z)2rs (0,e—1)
z=iK' (sn z) 28 (a, B)
So the necessary conditions for meromorphy are
’}/:%—ml, (5:%—7”2, EI%—mg, M:m1+m2+m3,
(43)

a:—%(m(ﬁ—M), ﬁ:%(mo—M—l—l), N =my+ M,



with the vector N = (mg, my, ma, m3) € Z*. That these conditions are also sufficient is
proved in [8]. From Picard’s Theorem the solutions will be elliptic functions of the second
kind. The differential equation becomes

( )

dz? sn z cnz dn z
+(45 + N(N —2mg — 1) k*sn?z)y = 0,

and for N = (n, 0, 0, 0) we are back to Lamé’s equation.

It is possible, extracting from y suitable factors of w, to relate the negative and positive
values of the parameters m; as summarized in [23][p. 296], so from now on we will consider
N e N%

It is interesting to get rid of the derivative in (44) by the change of function

¥y

y(z) = (snz)™ (cnz)™ (dnz)™ Y (z) rEs

=(V(z) —A)Y  (45)
with

V(z):%ylurmz(mﬁl)dnzz ‘l—mg(mg‘l—l)kzcnzz +m0(m0+1) k2sn2z

sn2z cn?z dnZ2z

(46)
A=4s + (m1 + m2)2 + k2(m1 + m3)2.

This equation has been considered by Darboux [6]. In this short article (3 pages) he
claims:

e that the product of two solutions is a polynomial, which we denote by ¥, y(o;w)
of degree N in w = sn?z and of degree g in o = 4s. The knowledge of this polynomial is of
paramount importance as we will see later. Let us quote Darboux: “Une fois le polynome
U déterminé, I'intégration s’acheve, comme on sait, sans aucune difficulté.”

e that for half-integer values of mj, mg, ms this equation can be integrated (for
arbitrary A i. e. for what we call generic solutions). But neither detailed proofs nor the
explicit forms of the solutions (even for the simpler case of integer m;) were given.

We would like to point out that even for Lamé’s equation with half-integer values of n
only non-generic solutions, due to Halphen and Brioschi, are known, so that the claim of
Darboux seems questionable.

To come back to Lamé equation, let us mention that its solutions are meromorphic for
integer n, and their general form, due to Halphen and Hermite, is given for instance in
[28][p. 570-575]. However, since one has to solve a set of n linear equations, only for low
values of n everything can be made explicit.

Interestingly enough, this differential equation has also appeared in the quite different
field of integrable models, particularly KdV equation. Then relation (45) can be inter-
preted as a Schrodinger eigenvalue problem, with eigenvalue A (equivalent to the auxiliary
parameter s) and potential V'(z) given by (46).

The solutions corresponding to m; € Z are called “finite-gap” solutions and sometimes
V(z) is called a Treibich-Verdier potential [25], after their work on the subject. The name
“finite-gap” refers to the appearance of a finite number of energy bands in the Bloch
spectrum, a phenomenon discovered a long time ago by Ince [10].



6 Elliptic level one solutions

Proposition 6 The level one (N = 1) solutions, with o = 4s, are given by:

parameter  solution y(z) constraint U (o, w)

mo =1 eZZ(“)% dn?w=0—k? o+ kw—1—Fk

mp =1 eZZ(“’)% dn?w=0+1 cw+1 (47)
my =1 eZZ(“)% dn’w=0+1-k o(l—w)+1—Fk

ms =1 eZZ(“)% dn?w =0 o(l—kw)—1+k?

/
with Z(z) = %(z)
Proof:
We will give the detailed proof for m; = 1, the other cases being analyzed similarly. So

we start with
d*>y _cnzdnzdy

LA bttt =0 48
dz? snz dz Toy=9 (48)
H(s —
and we look for a solution y = e“z%. Taking derivatives we get
z
y/ H (oY% y// y/ 2 1 s
== —((z—p) — = —=(=) —-———+k :
Let us define the auxiliary function
N 2 /
d 1
x(z) = L) o228 + k*sn?z + o,
Y snz y sn?(z—p)

so that proving that y vanishes identically is equivalent to proving that y is indeed a
solution of (48).
For z = —iK’ one can check that the poles in y cancel automatically. Imposing that
!

the pole at z = 0 is absent gives u = —(p). The absence of the pole at z = p is easily
H

checked. So we know that y is bounded in a period parallelogram and since it is doubly
periodic, it is bounded in all the complex plane: by Liouville theorem it is a constant.
Imposing that y vanishes for z = K fixes the value of p by the equation sn?p = —1/0.
Then we switch to the new parameter w = p + iK' and we express the solution in terms
of w using the transformation theory of theta functions.

We can now determine the spectral polynomial W(o; z) defined, up to an overall con-
stant factor, by the product of the two solutions of Heun’s equation. Let us do it first for
mg = 1. The product of the two solutions is computed, using the transformation theory of
theta functions, to the identity

H(z—w)H(z 4+ w)
02(2)0%(w)02(0)

= k*sn?z — k% sn?w, (49)




which is a first degree polynomial with respect to w = sn?z and to ¢ = 1 + k? —
k2sn %w. O

Remarks:
1. Notice that a is uniquely defined up to congruence.
2. All the solutions have genus g = 1.
3. The other linearly solution is obtained, for generic s # 0 by the change z — —z.

4. The solution for my = 1 is due to Hermite [28][p.573] and the solution for ms = 1
is due to Picard [20].

5. The first two formulas for ¥(o;w) agree with the results given in [23].

6. For special values of o, or equivalently of a, we may fail to get two linearly indepen-
dent solutions. In this case factoring out the solution y given previously gives the second
solution via a quadrature. Let us give some examples for the solution with mgy = 1:

H' E-K
— 2 -
co=1+k Asnz—l—Bsnz(H(z)—l— 7 z)
2
o=1 Acnz+ Bcenz (%(z)jL%z) (50)
! E
o= k? Adnz+ Bdnz <8—1(2)+?2)

7. The general structure of the elliptic solutions, for arbitrary level, are given in [8].
They suffer from the same defect as the general solution of Lamé’s equation: they lead to
really explicit expressions only for low values of the level NN.

7 Finite-gap solutions

In [23], the following facts were used:

1. Let us call ¥(o = 4s;w) the product of two solutions of Heun’s equation and let
us define p (resp. q) as the coefficient of the derivative (resp. of the function) in (1). Then
W must be a solution of the third order differential equation

U+ 3p0” + (p' + 2p° + 4q) V' + 2(¢' + 2pq)¥ = 0. (51)
For the meromorphic solutions of Heun’s equations, with parameters
y=3-my, d=Li-my, e=1-m3,  M=mi+my+ms,
a=—1(my+M), B=2i(m—M+1), N=mo+M,

the product ¥, y(o;w) is a polynomial of degree N with respect to the variable w:

U, n(o,w) = ag(o) w" + ay (o) w4+ +an(o), (52)



and a polynomial of degree g in the parameter o:
Wy (0.0) = bo(w) 09 + by (w) 07~ + -+ + by (w). (53)

The leading term b, is given by a first order differential equation due to the fact that o
appears linearly only in the coefficients of W' and ¥ of equation (51). We have taken for
normalization

bo(w) = w™ (1 —w)™(1 — k*w)™s,
as can be checked from (47).

2. Then, following a method due to Lindemann and Stieltjes [28][p. 420] adapted to
Heun’s case, one looks for a solution of the form

Flw) = \Ifexp< N“’ )

(w)
Inserting this ansatz into Heun’s equation gives on the one hand

N/__ w _wm1(1_ )m2(1—k‘2 )mg
o = A= T )

(recall that all the m; are positive) and on the other hand:

200 — U2 4+ 2pU W + 4q b2
N2 ’

V(o) = (54)

showing that 12 is of degree 2g + 1 in 0. The fact that v is a constant is easily checked by
differentiating relation (54) and using the differential equation (51).

So we conclude that Heun’s functions (the so-called “finite-gap” solutions), with the pa-
rameters given above, have for integral representation:

o) ex Z_V()\) w™ (w —1)"2(1 — k*w)™ dw
L) exp <j: 2 /\Ifg,N(A;w)\/w(w -1H(1 - l{:zw)> . (55)

For the level one solutions already considered the polynomial (o) is given by

mo =1 (0 —1)(oc — k(o —1—k?)
my =1 o(oc+1)(c + k?)
(56)
my =1 o(loc—k*)(oc+1—k?
ms =1 o(c—1)(c—1+k?)

A partial list of the finite-gap solutions, up to level N =5, has been given in [23].

These results show that there do exist integral representations for Heun functions, but
they are not “cheap”. Furthermore, as we will show now on a particular example, these
integral representations are just a different dressing of the elliptic solutions: they are a
kind of “algebraization” of the elliptic solutions, but are exactly the same analytic objects.



8 Finite-gap versus elliptic solutions

We will show, for the level one finite-gap integral representation with m; = 1, that it
does coincide with its corresponding elliptic solution given by (47). The other cases can
be relateded using completely similar arguments. For this identification it is sufficient to
consider w € [0, 1]. We start from the data

o= —k*sn’w, V(o) =o(o+1)(o +k?), U(o,w)=ocw+ 1.
So the factor appearing in the exponential of relation (55) is

il / k% snwenwdnw wdw
2 (1+ow)/w(l —w)(l - kw)

Under the change of variable w = sn?z, with z € [0, K], it becomes an elliptic integral of
the third kind, computed in [28][p. 523]:

2 2 -
n /k snwenwdnwsn?zdz :il 1HM+2Z(W) ‘
O(z+w)

1 —Fk%sn?wsn?z 2
So, keeping the plus sign, we get for the exponential term in (55)

2 7822 ; Z; (57)

And we need to multiply this by the square root of
U ocl— k*sn?wsn?z = sn’w <k2 sn?(w—iK') — k* sn2z) :
and upon use of the identity (49) we are first left with
H(-w+z+iK')H(—w — z +iK')
02(2) ’
and after use of the transformation theory for the theta functions we end up with
O(z4+w)O(z —w)
©2(2) '
Gathering (57) and (58) we conclude that the finite-gap solution (55) reduces to

U

U (58)

ezZ(w) @(Z B w)
O(z)

which is nothing that the elliptic solution given in (47).

9 Conclusion

The finite-gap solutions or their elliptic counterparts solve Heun’s equation for all cases
where these solutions are meromorphic functions of the variable z. It is interesting to notice
that these progresses have been evolving in relation with integrability considerations. It
is quite difficult to say what new ideas will require the generalization of these results to
cover the non-meromorphic solutions. These much more difficult problems are left for the
future.
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