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CHARACTERISATION OF BRANCHED

SURFACES FULLY CARRYING A

LAMINATION

Skander ZANNAD

Abstract
We give a necessary and sufficient condition for a branched
surface in a closed orientable 3-manifold to fully carry
a lamination. This answers D. Gabai’s problem 3.4 of
[GO] (which is also problem 2.1 of [Ga]).
The last part is devoted to contact structures carried by
branched surfaces. An application of the result of the
previous part is given.

1 Introduction

Branched surfaces are combinatoric objects which have been proven useful
to study laminations, in particular essential laminations. Maybe one of the
most striking topological result is theorem 6.1 of [GO] :

Theorem 1.1 ([GO]) If a compact orientable 3-manifold contains an essen-
tial lamination (or equivalently, according to [Li], a laminar branched surface),
then its universal cover is homeomorphic to R3.

Our goal is to link the theory of branched surfaces with the theory of con-
tact structures, and to use this link to prove topological results. This leads
to the notion of contact structure carried by a branched surface. Such a way
has already been taken by U. Oertel and J. Światkowski in [OS1] and [OS2],
where they have obtained numerous correspondences between the properties of
contact structures and the properties of branched surfaces. However, we use in
this paper a more general definition of contact structure carried by a branched
surface (see section 8), which can be linked to the definition of a pair formed
by a contact structure and a Reeb vector field adjusted to a sutured hierarchy
(see [HKM] and [CH] for instance). The starting point of this paper was the
following question : if a branched surface carries a positive contact structure
and a negative one, does it fully carry a lamination ? By studying which prop-
erties must have such a branched surface, theorem 4.6 emerged :
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Theorem 4.6 Let B be a branched surface in M having no twisted disk of
contact. Then B fully carries lamination.

which implies :

Theorem 4.3 Let B be a branched surface in M . Then the two following
assertions are equivalent :

(A) B fully carries a lamination.
(B) All the twisted disks of contact of B are carrying.

This theorem answers D. Gabai’s problem 3.4 of [GO] (which is also prob-
lem 2.1 of [Ga]) : When does a branched surface in a 3-manifold fully carry a
lamination ?

It also gives a reassuring precision to L. Mosher’s theorem :

Theorem 1.2 (L. Mosher) The problem of whether or not a general branched
surface abstractly carries a lamination is algorithmically unsolvable.

Let us give brief explanations on the terms “general branched surface”
and “abstractly carries” : the definition of a branched surface we will use in
this text is the definition of a branched surface embedded in a 3-manifold.
However, there is a more general definition of a branched surface, which does
not imply that the branched surface is embedded or even immersed in a 3-
manifold. In [Ch], J. Christy gives necessary and sufficient conditions for a
general branched surface to be immersed or embedded in a 3-manifold, and
some examples. “Abstractly carrying” a lamination is the generalisation for
general branched surfaces of “fully carrying” a lamination. Precise definitions
can be found in [MO].

According to theorem 4.3, the problem of whether or not a branched surface
embedded in a 3-manifold fully carries a lamination is algorithmically solvable,
and theorem 1.2 reduces to branched surfaces which can not be embedded in
a 3-manifold.

A proof of theorem 1.2 is given in [Ga].
Let us also recall theorem 2 of T. Li in [Li] :

Theorem 1.3 ([Li]) A 3-manifold contains an essential lamination if and
only if it contains a laminar branched surface.

A laminar branched surface is a branched surface which satisfies conditions
(ii) to (vi) in definition 8.2.1 and has no sink disk. Actually, the last condition
“has no sink disk” can be replaced by the weaker condition “has no twisted
disk of contact and no disk of contact”. Indeed, the first condition implies the
second one, and a branched surface which satisfies conditions (i) to (vi) in
definition 8.2.1 and has no twisted disk of contact is essential by theorem 4.3.
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We conclude with proposition 8.2.3.
An algorithm to decide whether a 3-manifold is laminar has been given by

I. Agol and T. Li in [AL].

Theorem 4.3 can be compared to D. Calegari’s following result, which is
theorem 2.16 of [Ca] :

Theorem 1.4 ([Ca]) There exists a branched surface B in a 3-manifold M
which does not carry a lamination (of any kind) but which virtually carries
a lamination (and even an essential lamination), in the sense that there is

a finite cover M̂ of M so that the pullback of B to M̂ carries an essential
lamination. In fact, for any n there is a branched surface Bn in a manifold
Mn and an n-fold cover M̂n of Mn such that the pullback B̂n fully carries an
essential lamination, but there is no m-fold cover of Mn with m < n for which
the pullback Bn carries anything.

Theorem 1.4 is an answer to D. Gabai’s question : Are there useful branched
surfaces which carry nothing ?.

Corollary 4.7 partially answers the initial question :

Corollary 4.7 Let B be a branched surface in M which carries both a positive
and a negative contact form. Then B fully carries a lamination.

According to results of V. Colin in [Co] , we can use theorem 1.1 and get
corollary 4.8 :

Corollary 4.8 If a closed orientable 3-manifold contains a branched surface
which carries a positive tight form of contact and a negative tight one, then its
universal cover is homeomorphic to R3.

Future investigation must answer questions such as : which branched sur-
faces carry a (tight, hypertight) contact structure (form) ? If a branched surface
carries a positive tight contact structure and a negative one, does this imply
topological results on the manifold ? Are there other contact conditions on a
manifold so that its universal cover is R3 ?

Sections 2 and 3 give the basic definitions about branched surfaces and
surfaces of contact. Section 4 contains the statement of the results. One of the
main tools, the splitting, is defined in section 5. Theorem 4.6 is then proved
in section 6. The proof of theorem 4.3 comes to an end in section 7. The last
section is devoted to the contact structures carried by branched surfaces.
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Throughout the paper, M is an oriented closed 3-manifold.

2 Branched surfaces

Definition 2.1 A branched surface B in M is a union of smooth surfaces
locally modeled on one of the three models of figure 2.2. The branch locus L
of B is the set of points, called branch points, none of whose neighbourhoods
is a disk. Its regular part is B\L. The closure of a connected component of the
regular part is called a sector of B.

Fig. 2.2 – Local models of a branched surface

The branch locus may have double points, as it is the case in the third model
of figure 2.2. At each regular point of L, we can define a branch direction, as
on figure 2.3.

Fig. 2.3 – branch direction

Definition 2.4 A fibred neighbourhood N(B) of B is an interval boundle over
B, as seen on figure 2.5. The leaves of this foliation are the fibres of N(B).
The boundary ofN(B) can be decomposed into an horizontal boundary ∂hN(B)
transverse to the fibres and a vertical boundary ∂vN(B), tangent to the fibres
(see figure 2.5, a)).

We define the projection map π : N(B) → B which sends a fibre of
N(B) onto its base point. In particular, π(∂vN(B)) = L. We can see N(B)
as a part of M , but in this case B is not included in N(B). However, N(B)
contains a branched surface B1 which is isomorphic to B (see figure 2.5, b)).
The branched surface B1 is a splitting of B. Splittings will be defined in section
5.
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: B

: B1

∂hN(B)

∂vN(B)

∂hN(B)

∂vN(B)

∂hN(B)

a) b)

Fig. 2.5 – Fibred neighbourhood

Let’s see how we can put a sign on each double point of L. Locally, two
smooth parts of L run through p. They are cooriented by their branch direction,
and we call them L1 and L2. Set an orientation of the fibre of N(B) passing
through p. Hence, it makes sense to say that one of the branching L1 or L2 is
over the other at p. Say for example that L1 is under L2. Let v1 be a vector
of TpM defining the branch direction of L1 at p, and v2 be a vector of TpM
defining the branch direction of L2 at p.

π−1(p)

L1

v1

v2

v3

L2

a) b)

Fig. 2.6 – a) : {v1, v2, v3} ; b) positive double point

At last, let v3 be a vector giving the chosen orientation of the fibre of
N(B) passing through p, as seen on figure 2.6, a). We then call p a positive
double point (resp. negative double point) if the base {v1, v2, v3} of TpM is direct
(resp. indirect) in respect with the orientation of M . With this convention, the
positive double points will be drawn in the plane as on the diagramm b) of
figure 2.6.
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Remark 2.7 The sign of a double point depends on the orientation of M : if
this one is reversed, the signs of the double points are reversed as well. Though,
this sign is independant of the chosen orientation of the fibre passing through
the double point in the preceding definition.

Definition 2.8 A branched surface B carries a surface S immersed in V if S is
contained in the interior of a fibred neighbourhood of B, and if S is transverse
to the fibres of this fibred neighbourhood. We say that S is fully carried by B
if, moreover, S meets every fibres of the fibred neighbourhood.

Definition 2.9 A codimension 1 lamination in a dimension 3 (resp. 2) mani-
fold V is the decomposition of a closed subset λ of M into injectively immersed
surfaces (resp. curves) called leaves, such that λ is covered by charts of the
form I2 × I (resp. I × I) in which the leaves have the form I2 ×{point} (resp.
(I × {point}).

Definition 2.10 A branched surface B carries a lamination λ of codimension
1 if λ is contained in a fibred neighbourhood of B and if its leaves are transverse
to the fibres. We say that λ is fully carried if moreover it meets all the fibres.

3 Surfaces of contact

Let B be a branched surface.

Definition 3.1 A surface of contact is the immersion of an orientable surface
S in B, whose boundary is sent onto smooth circles of the branch locus of B,
such that the branch directions along these boundary components point into
S.

If we consider a lift of S into N(B), we see that the existence of such a
surface is equivalent to the existence of an immersion f : S → N(B) satisfying :

(i) f(Int(S)) ⊂ Int(N(B)) and is transverse to the fibres ;
(ii) f(∂S) ⊂ Int(∂vN(B)) and is transverse to the fibres.

Hence, the expression surface of contact will be used for both definitions.

An example is given in figure 3.4, a).

Remark 3.2 In general, a surface of contact is not a sector, but a union of
sectors : the branch locus of the branched surface may meet the interior of the
surface of contact. The same is true for the sink surfaces, the twisted surfaces
of contact and the source surfaces defined further.
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Definition 3.3 A sink surface is the immersion of an orientable surface S in
B, whose boundary is sent onto piecewise smooth circles of the branch locus of
B, at least one of whose is not smooth, such that the branch directions along
these boundary components point into S. A double point in the boundary of
S which is the intersection of two smooth components of the boundary of S is
called a corner of S. A sink surface has thus at least one corner.

Equivalently, if we consider a non smooth lift of S into N(B), we can say
that a sink surface is an immersion f : S → N(B) satisfying :

(i) f(Int(S)) ⊂ Int(N(B)) and is transverse to the fibres ;
(ii) f(∂S) is included in Int(∂vN(B)) except in a finite and non empty

number of closed disjoint intervals C1 . . . Ck. Outside these Ci, f(∂S) is
transverse to the fibres of ∂vN(B). Each Ci is included in a fibre of N(B)
corresponding to a double point of L, and must intersect Int(N(B)).
Thus, π(f(∂S)) is not smooth. The Ci s are called the corners of S.

An example is given in figure 3.4, b).

a) b)

Fig. 3.4 – Annulus of contact and sink disk

Definition 3.5 A twisted surface of contact is a sink surface whose every
corners, which are double points, have the same sign, and which satisfies : when
two components of L, a1 and a2, form a corner of S, then, in a neighbourhood
of this corner, neither a1 nor a2 run inside π(S). Then, for some Riemannian
metric for which L in the neighbourhood of a double point cuts B into four
sectors of angle π/2, the corners of a twisted surface of contact are all of angle
π/2.

A twisted surface of contact is positive (resp. negative) if all its corners are
positive (resp. negative).

An example is given in figure 3.6.

In the same spirit, we give a definition which will often be used in section
7 :

Definition 3.7 A source surface is the immersion of a surface into B, whose
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:
negative twisted
disk of contact

: branch locus

Fig. 3.6 – Negative twisted disk of contact

boundary is sent onto circles of L, with the branch directions along these
boundary components pointing outwards.

4 Results and course of the proof

Before giving the main result, we need a last definition :

Definition 4.1 Let D be a twisted disk of contact in a branched surface B.
We say that D is a carrying disk if it satisfies the three following conditions :

(i) D contains a source disk d embedded in the source of Int(D) ; the
boundary of d, denoted C, may have corners ;

(ii) all the sectors which branch on d along C lie, in a neighbourhood of C,
on the same side of d, for a given coorientation of d (this implies that
the angles of C are 3π/2, as seen later in section 7.2) ;

(iii) if we consider all the connected, compact or not, surfaces immersed in
B, bounded by C, and which lie, in a neighbourhood of C, behind C for
its branching orientation, then all these surfaces are not disks.

Figure 4.2 shows some examples : in a), we see a carrying disk. In b), a
torus contains a disk sector bounded by C and a circle δ of the branch locus,
with one corner. This circle is the boundary of infinitely many carrying disks,
because these disks are immersed, and can thus run around the torus as many
times as we want. They are all carrying because behind the branching of C,
there is an immersed non compact cylinder with one boundary component,
C. These cylinders are sent onto the torus and run around it infinitely many
times. In c), the twisted disk of contact satisfies points (i) and (ii) but not
point (iii). In d), the twisted disk of contact does not satisfy point (ii).

The word carrying has been chosen because, as said further, such a carrying
disk D is not an obstruction to the existence of a lamination fully carried by
B, and thus fully carried by D.

The purpose is then to prove the following result :

8



c) d)

b)a)

∂D

C

C

∂D

∂D

δ

d

C

Fig. 4.2 – Twisted disks of contact, carrying or not

Theorem 4.3 Let B be a branched surface in M . Then the two following
assertions are equivalent :

(A) B fully carries a lamination.
(B) All the twisted disks of contact of B are carrying.

Remark 4.4 In the statement of theorem 4.3, the assumption of non exis-
tence of an immersed twisted disk of contact can not be weakened into an
assumption of non existence of an embedded twisted disk of contact.

b)a)

:
disk of contact

:
twisted disk of contact
immersed but not embedded

embedded twisted

Fig. 4.5 – Branched surface having an immersed but not embedded twisted
disk of contact

Indeed, there exist branched surfaces having an immersed and not embed-
ded twisted disk of contact, and which do not fully carry a lamination. An
example is shown in figure 4.5. In this example, we start from a torus, repre-
sented by a square whose opposite sides are identified, and on which we glue
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a disk, in a). We then deform the branch locus in order to get an immersed
but not embedded twisted disk of contact, in b). This branched surface in b)
does not have any embedded twisted surface of contact, and, as the branched
surface in a), it does not fully carry a lamination (this last fact is well-known,
and a proof is given in lemma 6.4.8).

The main difficulty of the proof of theorem 4.3 lies in the proof of the im-
plication (B) ⇒ (A), and in particular in the proof of the following theorem :

Theorem 4.6 Let B be a branched surface in M having no twisted disk of
contact. Then B fully carries lamination.

Theorem 4.3 is useful to prove the following result, which will be explained
and proved in section 8 :

Corollary 4.7 Let B be a branched surface in M which carries both a positive
and a negative contact form. Then B fully carries a lamination.

which in turn implies, using results of [GO]and [Co] :

Corollary 4.8 If a closed orientable 3-manifold contains a branched surface
which carries a positive tight form of contact and a negative tight one, then its
universal cover is homeomorphic to R3.

5 Splittings

5.1 Definition and splitting along an arc

Definition 5.1.1 Let B and B′ be two branched surfaces in M . We say that
B’ is a splitting of B if there exists a fibred neighbourhood N(B) of B and an
I-bundle J in N(B), over a subsurface of B, such that :

(i) N(B) = N(B′) ∪ J ;
(ii) J ∩N(B′) ⊂ ∂J ;
(iii) ∂hJ ⊂ ∂hN(B′) ;
(iv) ∂vJ ∩ N(B′) is included in ∂vN(B′), has finitely many components,

and their fibres are fibres of ∂vN(B′).

Remark 5.1.2 When B′ is a splitting of B, the following notation will be
used : B′ p

→ B. Actually, B′ is included in a fibred neighbourhood N(B) of
B, endowed with a projection π on B, and the restriction p of π to B′ is the
projection we wanted.

There is a first obvious result which be useful in section 7 :

Lemma 5.1.3 Let B′ be a splitting of a branched surface B. If B′ fully carries
a lamination λ, then λ is fully carried by B as well.
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Proof Notice that every lamination carried by B′ is obviously carried by B.
Let J be the I-bundle such that N(B) = J ∪N(B′). Let f be a fibre of N(B).
Point (iii) of definition 5.1.1 implies that the ends of f can not lie in J . Thus,
f\J is not empty. Since λ is fully carried by N(B′), it intersects f\J and hence
intersects f . As a matter of fact, it is fully carried by B. �

Definition 5.1.4 Let B be a branched surface. Let Σ be a sector of B whose
boundary contains a smooth part α of L and whose branching direction points
into Σ. Let γ : I → Σ be an embedded arc in Σ such that γ(0) ∈ α and
γ(t) ∈ Int(Σ) for t 6= 0. A splitting along γ is a branched surface B′ defined as
in definition 5.1.1, where J is an I-bundle over a tubular neighbourhood of γ
in Σ (see figure 5.1.5).

B

B
′

γ

Σ′

γ

Σ′Σ

γ

L L
′

Fig. 5.1.5 – Splitting along γ

γ(0)γ(1)

γ(1)

γ(0)

Fig. 5.1.6 – Over, under and neutral splittings

Definition 5.1.7 We keep the notations of definition 5.1.4. Suppose now that
γ(1) is in L, in a point where the branching direction points into Σ as well.

We then say that γ is in face-to-face position. If an orientation of the fibres
of N(B) along γ is chosen, there are three possible splittings along γ : the over
splitting, the under splitting and the neutral splitting, drawn in figure 5.1.6.
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Remark 5.1.8 If Σ is a non compact sector, a splitting can be performed
along a non compact arc γ : [0, 1[→ Σ, verifying the same conditions as in
definition 5.1.4. This splitting can be seen as a neutral splitting “at infinity”.

Remark 5.1.9 It is possible to perform a splitting along an arc γ which comes
from a sector to another one through the branch locus in the branch direction.
In this case, there is only one possible splitting, called a backward splitting (see
figure 5.1.10).

γ(0)

Fig. 5.1.10 – Backward splitting

5.2 Inverse limit of a sequence of splittings

Definition 5.2.1 Let B be a branched surface. A sequence of splittings is a

sequence . . . Bk+1
pk+1
→ Bk

pk→ . . .
p2→ B1

p1→ B = B0 of branched surfaces (Bi)i∈N

such that :
(i) for all i, Bi+1 is a splitting of Bi ;
(ii) for all i, Bi is endowed with a fibred neighbourhood N(Bi), and those

fibred neighbourhoods are such that N(Bi+1) is contained in N(Bi).
Thus, the fibres of each N(Bi) are tangent to the fibres of N(B).

For such a sequence, we denote, for all k ≥ 1 :

Pk = p1 ◦ p2 ◦ . . . ◦ pk = π|Bk
: Bk → B

the projection from Bk onto B.
We will also denote by πn : N(Bn) → Bn the projection along the fibres

from N(Bn) to Bn.

The following definition is inspired by [MO] :

Definition 5.2.2 A sequence of splittings . . . Bk+1
pk+1
→ . . .

p1→ B = B0 is said
resolving if it satisfies :

(i) there exist points of B denoted (xi)i∈N, a real number ρ > 0 and disks
embedded in B denoted (di)i∈N, centred at xi and of radius ρ for some
metric on B, such that the di ’s cover B ;

(ii) for all i ∈ N, there exists a subsequence (Bϕi(n))n∈N such that the
branch loci of the branched surfaces of this subsequence do not intersect

12



π−1(di). That is, for all k, Bϕi(k) does not have any branching over di : the
branch points over di have been resolved, and P−1

ϕi(k)
(di) is thus a union

of disjoint disks.
When such a sequence exists, we say that B admits a resolving sequence of
splittings.

Remark 5.2.3 In particular, a branched surface admitting a resolving se-
quence of splittings is fully splittable in the sense of [GO].

Lemma 5.2.4 ([GO],[MO]) Let B be a branched surface admitting a resolv-
ing sequence of splittings. Then B fully carries a lamination.

Proof : It can be found in p. 84-85 of [MO].

Let . . . Bk+1
pk+1
→ . . .

p1
→ B = B0 be a resolving sequence.

Let us define λ =
⋂
n∈N

N(Bn). As an intersection of closed subsets, λ is closed.
We will now find an adapted atlas, whose charts will be the π−1(di) ’s, where
the di ’s are the disks from point (i) of definition 5.2.2.
Let i ∈ N, and y ∈ di. Then λ∩π−1(y) is some closed subset T in [0, 1]. The se-
quence of splittings being resolving, let us consider the subsequence (Bϕi(n))n∈N

from point (ii) of definition 5.2.2. Since the N(Bn) form a decreasing sequence
of closed subsets, we get : λ =

⋂
n∈N

N(Bϕi(n)). But, for all y in di and for all
integer n, P−1

ϕi(n)(x) = P−1
ϕi(n)(y), according to point (ii) of definition 5.2.2.

Hence, for all i, λ∩π−1(di) is topologically a product di×T . If the transversal
T contains an interval IT whose interior is non empty, we remove Int(IT ) from
T . We then reduce T to a transversal T ′ = T\Int(T ) = ∂T , whose interior is
empty, and which is totally discontinuous. Hence π−1(di) is a laminated chart,
the leaves being the {t} × di s, for t ∈ T ′. The set λ′ = ∪i∈N(di × T ′) is a
lamination. Moreover, λ′ meets all the fibres of N(B) transversally. �

Definition 5.2.5 Let . . . Bk+1
pk+1
→ . . .

p1
→ B = B0 be a resolving sequence of

splittings. The fully carried lamination λ′ = ∪i∈N(di × T ′) defined in the pre-
vious proof is called the inverse limit of this sequence of splittings.

6 Proof of theorem 4.6

Let B be a branched surface satisfying the hypotheses of theorem 4.6.

6.1 Principle of the proof

The principle is the same as the one of the construction of a lamination
whose holonomy is strictly negative, in section 4 of [OS2]. We will build a
resolving sequence of splittings, whose inverse limit induces a null holonomy
lamination on the fibred neighbourhood of the neighbourhood of the 1-skeleton
of some cell decomposition into disks and half-planes of B.

13



6.2 Cell decomposition of B

The branch locus L cuts B into sectors. This is a first cell decomposition
X of B. The 2-cells are the sectors, and are not disks or half-planes in general.
The edges are the smooth parts of L having no double points in their interior
and such that : if an edge is compact, both ends are double points (they may
be the same double point) ; if an edge is diffeomorphic to [0, 1[, then its end is
a double point ; if an edge is diffeomorphic to R, it does not meet any double
point. But this first decomposition is not fine enough. For reasons which should
become clear after the statement of lemma 6.4.4, this decomposition must be
refined into a decomposition whose compact cells are disks. This is made by
adding as many vertices and edges (compact or not) as necessary. We also add
vertices and edges so that the non compact cells are half-planes, and vertices
so that no edge is a loop (i.e. its two ends coincide). We denote Y the obtained
decomposition.

Remark 6.2.1 The “boundary of a 2-cell” is not the topological boundary,
but the combinatorial one. An edge can be found twice, with different orien-
tations, in the boundary of the same 2-cell.

6.3 First splitting

The first step is to perform a first splitting of B, denoted B1, which is fully
carried by N(B), as in definition 2.4. Let us describe it more precisely.

Let ε be a non negative real number, such that, for some metric on B, the
edges of Y are all strictly longer than 5ε (we shall see why later). Let us look
at the intersection of B with an ε-tubular neighbourhood of L in M . We chose
ε small enough for this tubular neigborhood to be regular. This intersection
is the union of L and of two other parts, which meet together at the double
points : one part lies behind L, for the coorientation of L given by the branch
directions, and the other part, denoted TL, lies in front of L. The boundary
of TL is included in the union of L with a parallel copy of L, called L1. It is
just “included in” and not “equal to” this union, because of what happens at
the double points. The first splitting is a splitting over TL, which means that
we remove from N(B) an I-bundle over TL. The branched surface B1 we get is
isomorphic to B, and its branch locus is L1 (see figure 6.3.1).

The trace of π−1(L) on B1 is made of two copies of L, drawn on two different
sectors (at least locally), as seen on figure 6.3.1. The trace of π−1(Y ) on B1,
denoted Y1, is then more complicated than a cell decomposition into disks and
half-planes, since some of the cells and some of the edges are branched. But
all these branchings lie in a closed ε-neighbourhood of L1, and B1 minus a
closed ε-neighbourhood of the 1-skeleton of Y1 is the same union of disks and
half-planes as B minus L.

14



B B1

π−1(L) ∩ B1

TL

L1L1

L

Fig. 6.3.1 – First splitting

6.4 Train tracks

Each 2-cell Σ of Y inherits from N(B) an interval bundle N(Σ) built in
the following way : we denote by N(Int(Σ)) the set of all the fibres of N(B)
whose base point lies in Int(Σ) and we set N(Σ) = N(Int(Σ)).
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A × I B × I

C × I D × I

A × I B × I

C × I D × I

L

L1

A B

C D

A

C

B

D

∂vN(B)

Y
[1]
0 − L

train track

Fig. 6.4.1 – Train tracks

This N(Σ) can be decomposed into an horizontal boundary (included in
∂hN(B)) and a vertical boundary (not included in ∂vN(B)). Since all the com-
pact 2-cells of Y are disks and are orientable, the vertical boundary of N(Σ),
denoted ∂vN(Σ), is in fact of the form S1 × I. For the non compact 2-cells, the
vertical boundary is of the form R× [0, 1]. For each 2-cell Σ, let us look at the
trace of B1 on ∂vN(Σ), which is also the boundary of Σ1 = p−1

1 (Σ). It is a train
track, i.e. a branched curve fully carried by ∂vN(Σ). This train track does not
have a boundary and avoids the trace of ∂vN(B) on ∂vN(Σ). It is compact if
and only if Σ is compact. Figure 6.4.1 shows two examples of compact train
tracks.
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An orientation of a 2-cell gives an orientation of its boundary. The cor-
responding train track is then oriented as well. For each 2-cell Σ, we set an
orientation of the fibres of ∂vN(Σ). We introduce the following definitions :

Definition 6.4.2 A branching of a train track is said direct when a track
followed in the direct way divides itself into two tracks at this branching, and
it is said backward when two tracks followed in the direct way meet at this
branching.

We can go a bit further in the classification of the branchings of a train
track :

Definition 6.4.3 Let V be an oriented compact train track without boundary,
fully carried by a trivial bundle S1 × [0, 1]. We set an orientation of the fibres.
Let C be a smooth closed curve of V. It cuts S1 × [0, 1] into two parts : (S1 ×
[0, 1])+, containing the points which lie over C for the orientation of the fibres,
and (S1 × [0, 1])− containing the points which lie under. A branching along a
smooth closed curve of V is called an over branching (resp. under branching)
if the branch which leaves or meets C there lies in (S1 × [0, 1])+ (resp. (S1 ×
[0, 1])−).

We can thus state the following lemma :

Lemma 6.4.4 Let . . . Bk+1
pk+1
→ . . .

p1
→ B = B0 be a sequence of splittings of

B. Let Σ be a compact 2-cell of Y (Σ is a disk), and Σn be its trace P−1
n (Σ) on

Bn. Let V be the boundary of Σn for some n. It is an oriented compact train
track of ∂vN(Σ) = S

1 × [0, 1], without boundary and fully carried. We set an
orientation of the fibres. The three following assertions are equivalent :

(i) when we follow a smooth closed curve of V, either no under branching
is met or at least one direct under branching and one backward under
branching are met ;

(ii) V can be split into a union of smooth circles ;
(iii) P−1

n (Σ) contains a twisted disk of contact.

Proof
⋆ (i) ⇒ (ii) : if this is true for each connected component of V, then it

is true for V. So, we suppose that V is connected, and different from a
smooth curve. For each θ ∈ S1 we definemax(θ) = max{t ∈ [0, 1] | (θ, t) ∈ V},
which is in [0,1], and then we define max(V) = {(θ,max(θ)), θ ∈ S1}.
This max(V) is a smooth circle of V, along which we meet at least one
direct under branching and one backward under branching, and no over
branching. In particular, there exists an oriented arc A of max(V), going
(for the orientation of V), from a direct branching to a backward branch-
ing, with no branching between the two previous ones. V\A is then an
oriented compact train track without boundary denoted V1, fully carried
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by S1 × [0, 1], and V = V1 ∪ max(V). Each smooth closed curve of V1

is a smooth closed curve of V as well, and its under branchings remain
unchanged by the previous splitting. Hence, V1 satisfies point (ii) of the
lemma. If V1 is not a circle, we perform the same operation again using
max(V1), and after a finite number of steps, we have decomposed V into
a union of smooth circles. An example is shown in figure 6.4.5.

V1

V max(V)

A

Fig. 6.4.5 – Splitting of a train track into a union of smooth circles

⋆ ¬(i) ⇒ ¬(ii) : Let C be a smooth closed curve of V having, for example,
only direct under branchings. If we follow C in the direct way, and if
we take a direct under branching, then, whatever the smooth path we
follow on V, we will never be able to go on C again, for it would imply
the existence of a backward under branching along C. Thus, no branch
leaving C by a direct under branching is included in a union of smooth
circles.

⋆ ¬(iii) ⇒ ¬(i) : A part of the trace of ∂vN(B) on Bn when P−1
n (Σ) con-

tains a twisted disk of contact is always as on figure 6.4.6, i.e. it is the
union of two smooth circles and of segments joigning them at branch
points.
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train track
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of contact

Fig. 6.4.6 – ¬(i) ⇔ ¬(ii)

The top circle has only under branchings, and it has at least one branch-
ing because a twisted disk of contact has at least one corner. Moreover,
these branchings are of one type because the corners of a twisted disk of
contact all have the same sign.

⋆ ¬(i) ⇒ ¬(iii) : Suppose that there exists a closed smooth curve of V
whose branchings are all under branchings of a single type, for example
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direct, and which has at least one under branching. Look at the trace
of ∂vN(B) on ∂vN(Σ). Each of its connected component has a vertical
boundary with two connected components and a horizontal boundary,
also with two connected components. Each component of the vertical
boundary is included in a fibre of ∂vN(Σ) whose base point is a branch
point of B.
Stand at a point p on C, and follow C in the direct way. When we meet
the first branch point p1, C divides into two branches : the top branch
passes over a component b1 of ∂vN(B), and the bottom branch passes
under b1. We go on until we meet the fibre where b1 ends, whose base
point is some branch point p2. If p2 is not a double point, then the branch
of V which is over b1 joins the branch which is under b1. But these two
branches are the two previous branches, and that would imply that there
is a backward branching on C. Hence p2 is a double point. At p2, there
are thus two branchings, one is direct and the other is backwards. One of
them is on C, so this is the direct one. C divides again into two branches
which surrounds another component b2 of the trace of ∂vN(B). Since this
branching is direct, b2 lies over b1 at p2. We carry on following C until we
return at p. We have then met k components b1 . . . bk of ∂vN(B) and k
double points p1 . . . pk. Each bi goes from pi to pi+1 for i = 1 . . . k modulo
k. At pi, bi−1 lies under bi, for all i. As a result, all the double points
have the same sign, and P−1

n (Σ) contains a twisted disk of contact with
k corners.

�

Remark 6.4.7 In the proof of point (i) ⇒ (ii), we could also define min(V)
in the same way as max(V), and show that points (ii) and (iii) are equivalent
to a point (i’) : when we follow a smooth closed curve of V, either we meet no
over branching, or we meet at least one direct over branching and at least one
backward over branching. Points (i) and (i’) are thus equivalent.

With the same ideas, we can also prove the following well known lemma,
whose result has already been mentioned in remark 4.4 :

Lemma 6.4.8 Let B be a branched surface having a disk sector D which is
twisted disk of contact as well. Then B can not fully carry a lamination.

Proof Suppose that B fully carries a lamination λ. We consider N(D), the
fibred neighbourhood over D in N(B). Let V be the train track which is the
trace of B1 in ∂v(N(D)). The intersection of the leaves of λ passing through D
with N(D) are disks. Their boundaries are circles which form a 1-dimension
lamination in ∂v(N(D)). Since λ is fully carried by B, this 1-dimension lami-
nation by circles is fully carried by a fibred neighbourhood of V. However, as
seen in the example on figure 6.4.9, b), V is the union of two smooth circles,
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and of segments which join these two circles at branch points. And since V can
not be decomposed into an union of circle, there is no circle carried by a fibred
neighbourhood of V which passes over one of these segments (c)), which is a
contradiction.
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A B

C D

a)

L

A × I B × I

C × I D × I

∂vN(B)

V

b) c)

Fig. 6.4.9 – Twisted disk of contact

�

That is why the existence of a twisted disk of contact prevents the proof
to work. That is also why we have refined the first cell decomposition of B in
subsection 6.2.

Remark 6.4.10 For the non compact cells, it is much simpler, since a train
track fully carried by a fibred neighbourhood R × [0, 1] can always be decom-
posed into a union of smooth lines.

By mean of train tracks, the following lemma, which will later be useful,
can also be proven :

Lemma 6.4.11 Let B a branched surface. There is no surface S in B with
a boundary component containing an arc of L of the form of the one shown
in figure 6.4.12 ,a), i.e. an arc formed by n consecutive smooth parts of L,
denoted li, i = 1 . . . n, and satisfying :

⋆ the branch directions along l1 and ln point into S ;
⋆ the branch directions along the li ’s for i different from 1 and n, point

outside of S ;
⋆ the corners of S defined by l1 and l2 and by ln−1 and ln have angle π/2,

and the other ones have angle 3π/2, for some metric on B ;
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⋆ all the corners along this arc have the same sign : each li passes over li−1

and under li+1, or vice-versa.

b)

+ +

+ +

: C

ln−1

lnl1

l2

a)

Fig. 6.4.12 – a) arc in the boundary of S and C ; b) train track on C × [0, 1]

Proof There exists a branched surface B−1 isomorphic to B, a fibred neigh-
bourhood of whose fully carries B. The relation between B−1 and B is the same
as the one between B and B1. In the same way as ε is the distance between the
branch loci of B and B1, we can define a ρ which is the distance between the
branch loci of B−1 and B. Moreover, there is a projection p−1 from this fibred
neighbourhood onto B.

: B

: C

: π−1
−1(C)

stop point

Fig. 6.4.13 –

If S exists, then there exists a circle C on S, contractible in S, and a part
of whose runs along the arc of the lemma at a distance smaller than ρ, and
whose other part returns through the inside of S, at a distance greater than
ρ, as in a) of figure 6.4.12. Let us look at the trace of B on p−1

−1(C). This is a
train track which has two end points. Indeed, p−1

−1(C) is not a regular I-bundle
over C : when we cross a branch point in the branch direction, there is a gap
in the size of the fibres, and B comes out of the I-bundle through this gap.
Figure 6.4.13 shows this phenomenon. The trace of B on p−1

−1(C) is then drawn
in b) of figure 6.4.12. But this train track does not contain any smooth circle,
and hence does not contain C, which is absurd. �
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Example 6.4.14 If, in the previous lemma, we take n = 3, we are in the
situation of figure 6.4.15, and the result is easier to visualize.

Fig. 6.4.15 –

6.5 Resolving sequence of splittings

We keep the real number ε > 0 defined in subsection 6.3 for the splitting
from B to B1. Let (εn)n∈N be a strictly decreasing sequence of real numbers
such that for all n, ε

2
< εn < ε.

Let Yε be a ε
2
-neighbourood of Y [1] in B. Then the trace of B1 on π−1(Yε)

is a branched surface with boundary denoted B′
1.

The purpose of this subsection is to explain how to build a sequence of
splittings of B, whose sequence of splittings it induces on B′

1 is resolving.

We denote (yi)i∈J the set of vertices of Y , where J is a subset of N. To each
vertex yi correspond several vertices of Y1, at least 2 and at most 3, wether
yi is a double point or a regular point of the branch locus. We denote these
vertices yi(j) for j = 1, 2 or 3. We then call di(j) the projection by P1 of the
disk of B1 centred at yi(j) and of radius 2ε, such that di = ∪j=1...3di(j) is a
branched disk, neighbourhood of yi in B (see figure 6.5.1).

di(1)

di(2)

yi

Fig. 6.5.1 –

The branch locus of B′
1 is included in the union of the P−1

1 (di(j))) ’s, for
all the i ’s and j ’s. Notice that the branch locus of B′

1 has no double point.
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Moreover, since we supposed that the edges of Y are strictly longer than 5ε,
if yi1 is different from yi2 , then di1 and di2 are disjoint.

At last, we define a sequence of vertices of Y , (yψ(n))n∈N, for ψ a map from
N to J , such that each vertex appears infinitely many times. This is possible
since there is only countably many vertices in Y .

Define now which are the splittings from B1 to B2. We take all the edges
of Y , a vertex of whose is yψ(1). We orient them from yψ(1) to their second
vertex. Let a be one of these edges. Its second vertex is yk, different from yψ(1).
We call Va the trace of B1 on π−1(a). Since a is oriented, it makes sense to
talk of direct and backward branchings along Va. According to the definition
of B1, the backward branchings all lie in π−1(dψ(1)), and the direct branchings
all lie in π−1(dk). Moreover, each branching lies at a distance ε from the ends
of Va. Actually, at this step of the sequence of splittings, there is at most one
direct branching and one backward branching along Va. If there is no backward
branching, no splitting will be made along Va. Else, we will perform a splitting
along a path inscribed on Va, going from the backward branching to the direct
one if it exists, or to the end of Va, in an ε1-neighbourhood of this path. If a
direct branching is met, this splitting can be an over, under or neutral splitting.
The following subsection 6.6 will tell which one must be chosen. If it is the
neutral splitting, the splitting stops at this branching point. Else, we can split
on along a path in Va which goes to the end of Va. Since ε1 < ε, along this path,
no other backward branching is met, and hence, there is no backward splitting.
The same process is applied to the other edges having yψ(1) as a vertex. The
second splitting takes place in an ε2-neighbourhood of the corresponding path,
the third splitting takes place in an ε3-neighborhhod of the corresponding path,
and so on. This allows to avoid backward splittings. The order of the edges
does not matter.

After these splittings, we get a branched surface B2. We take all the edges
of Y , a vertex of whose is yψ(2). We orient them from yψ(2) to their second
vertex. Let a be one of these edges. Its second vertex is yk, different from
yψ(2). We call Va the trace of B2 on π−1(a). The situation is as previously,
except for one detail : there can now be more than one direct branching and
one backward branching along Va. However, all the backward branchings lie in
π−1(dψ(2)), and all the direct branchings lie in π−1(dk). All these branchings lie
at a distance at least εi from the ends of Va, where i is the number of splittings
performed on B1.

Look at the backward branchings of Va : there are j such branchings. Since
the successive splittings have been performed in smaller and smaller neigh-
bourhoods, we can order these branchings from the furthest from π−1(yψ(2))
to the nearest. We note them b1 . . . bj , bi being strictly further than bi+1. We
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will make splittings along paths going from the bi’s, in smaller and smaller
neighbourhoods, whose size is set by the (εn) sequence. To avoid any back-
ward splitting, we begin by the splitting along a path starting from b1. The
second splitting will start from b2, and so on until the last splitting, which will
start from bj . When a direct branching is met, one of the over, under and neu-
tral splittings must be chosen : this is done in subsection 6.6. As previously,
if the neutral splitting is chosen, the splitting stops here. Else, we can split on
until another direct branching is met, or until the end of Va. Again, thanks
to the choice of the εn, backward splittings are avoided. The same process is
applied to all the edges having yψ(2) as a vertex. The order of the edges does
not matter.

(iv)

lieu singulier

(i) (ii) (iii)

(v)(iv’)

y

a2

a3a1

of B1

lieu singulier
of B

Fig. 6.5.2 – Example of a sequence of splittings

We iterate these operations at each step : the splittings from Bn to Bn+1 are
performed along arcs whose image by π is included in an edge having yψ(n) as
a vertex. The backward branchings are always over dψ(n) : they are more and
more numerous, but they are always strictly ordered, from the furthest to the
nearest. Moreover, the branch locus of B′

n+1 does not intersect P−1
n+1(dψ(n)) any

more : the singularities over dψ(n) have then been resolved. Since the vertex yψ(n)

will reappear infinitely many times in the sequence (yψ(n))n∈N, the sequence of
splittings is resolving.

Figure 6.5.2 shows an example of such a sequence of splittings. On this
figure, the branch loci are seen “from above”, and only the top parts are drawn.
The three first points show a sequence of splittings at the end of which there
are several direct branchings along some edges having y as a vertex. The first
splitting to be performed along a1 is the one drawn in (iv), but not the one
drawn in (iv’) , where a backward splitting occurs. The second splitting is the
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one drawn in (v) . It then remains to split along a2 and a3.

6.6 Adapted splittings

We will now see how it is possible to perform the splittings along the edges
previously defined, in such a way that none of the Bn has a twisted disk of
contact.

If an arc of splitting from Bn to Bn+1 is not in a face-to-face position, then
the branch locus of Bn+1 remains the same as the branch locus of Bn : it is
deformed, but there is no new double point.

When the arc of splitting is in a face-to-face position, then we have the
following fact : an over splitting introduces two new double points in the branch
locus, a positive and a negative one, and an under splitting introduces two
double points at the same place but of opposite signs. Figure 5.1.6 shows this.

Being given an arc to split along, we now have to find a splitting which will
not create a twisted disk of contact. Such a splitting will be said adapted.

The following proposition is fundamental (we keep the previous notations) :

Proposition 6.6.1 Let Bn be a branched surface obtained from B1 by a se-
quence of splittings, and which does not have any twisted disk of contact. We
denote Ln its branch locus. Then, for every arc of splitting in a face-to-face
position, at least one of the three splittings, over, under or neutral, is adapted.

Proof Let a be the arc of splitting, and p1 and p2 be its ends. We suppose
that a is in a face-to-face position, and then the double points p1 and p2 are
of opposite signs. Suppose that both the over and the under splittings along
a create a twisted disk of contact. We denote D+ the twisted disk of contact
created by the over splitting, and D− the one created by the under splitting.
We can suppose that D+ is positive. Here are all the possible cases :

(i) There is a smooth part of the branch locus of Bn whose ends are p1

and p2, denoted a
′, such that, at p1 and p2, the branch orientation of a

′

points to the interior of the edge [p1, p2] (see figure 6.6.2), and such that
a ∪ a

′ bounds a disk D immersed in Bn.
In this case, the over and under splittings turn D into a twisted disk of contact
with one single corner. Hence, only the neutral splitting can be adapted.

Suppose that the neutral splitting creates a twisted disk of contact as well,
as in figure 6.6.3.

Then there exists a union of smooth parts of the branch locus of Bn, denoted
L1, whose corners are all of the same signs, for example positive, such that a∪L1
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Fig. 6.6.2 – (i)

a
′

+

+

+

twisted surface of contact

a) b)

+

a a

+

+

L1

D

D
′

Fig. 6.6.3 – a) the neutral splitting creates a twisted disk of contact ;
b) there was a twisted disk of contact before the splitting

bounds a disk D+. The neutral splitting transforms D+ into a positive twisted
disk of contact. But then a

′ ∪ L1 bounds D ∪ D+, which is a sink disk whose
corners all have the same sign. It is thus a twisted disk of contact, which is
absurd. The neutral splitting is adapted.

We will prove that in the other cases we come to a contradiction :

(ii) in a neighbourhood of a, D+ lies on one side of a, and D− lies on the
other side (see figure 6.6.4) :

In this case, both disks have the same sign, since one of them is created on
one side of a by an over splitting, and the other is created on the other side of
a by an under splitting.

The union of D+ and D− is then a twisted disk of contact of Bn, which is
a contradiction.

(iii) in a neighbourhood of a, D+ and D− lie on the same side of a :

This case can not happen, but this is by far the most difficult case. We
denote a1 and a2 the edges different from a and passing respectively through
p1 and p2, and lying in the boundary of both D+ and D−. Following these two
edges from p1 or p2, we stay on the boundary of D+ and D−, until we arrive
to a double point which is a corner of D+ or D−, and at these double points,
the boundary of D+ and the boundary of D− part. The boundaries of D+ and
D− being in Ln, and after the local models of a branched surface (figure 2.2),
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Fig. 6.6.4 – (ii)

these boundaries can part only at a double point, which is a corner for one of
the disks of contact, but not for the other one.

Let us look at D+ ∩ D−. According to the local models of a branched
surface, D+ and D− can not intersect transversally in M . If an isolated point
or an isolated line is in their intersection, they can only lie in the boundary
of D+ or D−. But in this case, for branching reasons, D+ and D− must lie
on the same side of this intersection, and so they intersect in their interior as
well. Hence, D+ ∩ D− is a surface. Its boundary, which is not smooth, can be
decomposed into maximal segments of four types :

type 1 : the segment lies in ∂D+ ∩ ∂D− ;
type 2 : the segment lies in the boundary of D+, but not in the boundary

of D− ;
type 3 : the segment lies in the boundary of D−, but not in the boundary

of D+ ;
type 4 : the segment is in the branching border, denoted F , which is the

place in the branch locus where D+ and D− part. The easiest example
and a more complicated one are drawn in figure 6.6.5.

This branching border is a union of smooth parts of Ln, whose branch
orientations point into D+ ∩ D−. There may be double points of both signs
along F , as in b) of figure 6.6.5.

F is neither in the boundary of D+, nor in the boundary of D−, but the
interior of F lies in the interior of both D+ and D−. The interiors of the
segments of type 2 lie in the interior of D−, and the interiors of the segments
of type 3 lie in the interior of D+. At last, when F meets the boundary of D+,
for example, it is at a double point, where two smooth parts of Ln intersect.
One of them, α, lies in the boundary of D+, and the other one, β, lies in the
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D+ ∩ D−

a) b)

Fig. 6.6.5 – Branching border

inside of D−, as seen on figure 6.6.6.

D−

D+

α

β

Fig. 6.6.6 –

Anyway, the boundary of D+ ∩ D− is included in Ln. Hence, when we
follow the boundary of D+ ∩ D− and we pass from a segment of some type,
to a segment of another type, we cross a double point. These double points at
which we pass from a type to another one, are called the bifurcations of the
boundary of D+ ∩ D−. The sign of a bifurcation is its sign as a double point.
Along the boundary of D+ ∩ D−, the branch direction always points into the
interior of D+ ∩ D−. Notice that a segment of type 4 can not be adjacent to
a segment of type 1, because the boundaries of D+ and D− being in Ln, we
would be in the situation of figure 6.6.7. But this configuration does not fit
the local models of a branched surface.

Since a ∪ a1 ∪ a2 lies in a boundary component of D+ ∩D−, and since this
whole component can not be of type 1, then this component must contain a
sequence of the form : a segment of type 1 ; a segment of type 2 or 3 ; a finite
number of segments of different types, but not of type 1 ; a segment of type 2
or 3 ; a segment of type 1. The union of the segments of this sequence, minus
the first and the last ones, form a path γ in Ln, whose ends will be denoted q1
and q2. We orient γ from q1 to q2. Each segment of γ inherits an orientation
from the orientation of γ, and has then a first and a last end. The double
points q1 and q2 are corners of D+ or D−, so their signs are known.

We must now determine the signs of the bifurcations of γ. Knowing the
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branch locus

segment of type 4

Fig. 6.6.7 –

sign of a bifurcation, we will determine the sign of the following one, from q1
until q2. We will find of what sign must be q2, but this sign will not be the sign
of q2 already known. Hence a contradiction.

Let [b1, b2] be a segment of γ : it is not of type 1. The double points b1 and
b2 are bifurcations. Let us see how we can deduce the sign of b2 from the sign
of b1, according to the type of [b1, b2] :

⋆ [b1, b2] is of type 2 or 3 :
Suppose that [b1, b2] is of type 2. The case where it is of type 3 is dealt in the
same way. The segment [b1, b2] is in the boundary of D+, and its interior lies
in the interior of D−. The double point b1 is the intersection of two smooth
parts of Ln : one of them is the continuation of [b1, b2] and the other one, l1, is
the continuation of a segment of type 1, 3 or 4, and is thus in D−, the branch
direction pointing into D−. We can decompose l1 into two parts, l+1 and l−1 ,
defined as follows : l+1 = l1 ∩ D+ and l−1 = l1\l

+
1 . The situation is the same at

b2 : [b1, b2] meets there a smooth part l2 of Ln which lies in D−, and can be
decomposed into l+2 and l−2 (see figure 6.6.8).

D−

b1 b2

D+ ∩ D−

l+1

l−1

l1 l2

l+2

l−2

Fig. 6.6.8 –

Thus, l−1 ∪ [b1, b2]∪ l
−

2 is in the boundary of some subsurface of D−. Lemma
6.4.11 implies that b1 and b2 are of opposite signs. Hence, the ends of a segment
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of type 2 or 3 are of opposite signs.
⋆⋆ [b1, b2] is of type 4 :
Then, [b1, b2] lies in the branching border of D+ ∩D−. At b1, we pass from

a segment of type 2 or 3 to a segment of type 4, i.e. we leave the boundary of
D+ or D−. At b2, this is the reversed situation : we meet the boundary of D+

or D−. We can set an orientation of the fibres of N (Bn) along this segment,
for which D+ is over D− at b1. Then, D+ is over D− all along the segment.

Suppose that b1 is on the boundary of D+. The double point b1 is the
intersection of a smooth part f of the branching boundary, lying on D+ ∩ D−

and thus on D−, with a smooth part l of the boundary of D+. Hence, f lies
under l. The double point b2 is also the intersection of f with a smooth part
l′. If b2 lies on the boundary of D+, l′ lies on D+, and f is under l′. Hence, b1
and b2 have opposite signs, as in a) of figure 6.6.9. However, if b2 lies on the
boundary of D−, l′ is on D− and f is over l′. In this case, b2 and b1 have the
same sign, as in b) of figure 6.6.9.

a) b)

D+ ∩ D− f

b1

b2

b1

f

b2

D+ ∩ D−

l′l′

l l

Fig. 6.6.9 –

The case where b1 lies on the boundary of D− is dealt in the same way, and
we come to the result : if b1 and b2 are the ends of some segment of type 4, if
they both lie on the boundary of D+ or both lie on the boundary of D−, they
have opposite signs ; if one of them lies on the boundary of D+ and the other
one lies on the boundary of D−, then they have the same sign.

There are two ways along γ to pass from the boundary of D+ to the bound-
ary of D−. The first one is to cross a bifurcation from a segment I1 of type 2
to a segment I2 of type 3. The first end of I2 and the first end of I1 are then
of opposite signs.

The second way is to pass from a segment I1 = [b1, b2] of type 2 to a seg-
ment I2 = [b2, b3] of type 4, then to a segment I3 = [b3, b4] of type 3. According
to what has previously been said, b1 and b2 have opposite signs and b2 and b3
have the same sign, so b1 and b3 are of opposite signs.

At last, if we have a sequence : segment I1 = [b1, b2] of type 2 (resp. 3) ;
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segment I2 = [b2, b3] of type 4 ; segment I3 = [b3, b4] de type 2 (resp. 3), then
b1 and b3 have the same sign.

All of this proves that the first ends of all the segments of type 2 are of one
sign, and that the first ends of all the segments of type 3 are of the other sign.

It remains to pass from q1 to q2, distinguishing two cases :
⋆ q1 and q2 have the same sign :
For example, q1 and q2 are positive. They are thus both corners of D+, and

q1 is the first end of a segment of type 2, and q2 is the last end of a segment
of type 2. But q1 and q2 have the same sign, which is a contradiction.

⋆⋆ q1 and q2 have opposite signs :
For example, q1 is positive and is thus a corner of D+, and q2 is negative,

and is a corner of D−. Then q1 is the first end of a segment of type 2, and q2 is
the last end of a segment of type 3, hence q1 and q2 must have the same sign,
which is again a contradiction. �

6.7 Conclusion

After the two previous subsections, we have built a sequence of splittings
of B, none of whose having a twisted disk of contact. This sequence induces
a resolving sequence of splittings of B′

1, whose inverse limit is a lamination λ
fully caried by B′

1. We aim at proving that λ has null holonomy.

Let Σ be a 2-cell of Y , and ∂Σ × [0, 1] be the subbundle of N(B) over ∂Σ.
Then λ ∩ (∂Σ × I) is an oriented dimension 1 lamination denoted lΣ, fully
carried by ∂Σ× I, and obtained as the inverse limit (in the sense of definition
5.2.5) of the oriented train tracks vn = Bn ∩ (∂Σ × I).
If Σ is not compact, there are no holonomy problems since there is no first-
return map on a fibre.

Then, suppose that Σ is compact.

Definition 6.7.1 Let λ be an oriented lamination carried by a trivial bundle
S1 × [0, 1]. An increasing leaf (resp. a decreasing leaf) of λ is a leaf which goes,
in the direct way, from a point p1 = (θ, t1) to a point p2 = (θ, t2), with t1 < t2
(resp. t1 > t2).

Lemma 6.7.2 The lamination lΣ is a lamination by circles.

Proof We denote N(vn) = N(Bn)∩ (∂Σ× I), which is a fibred neighbourhood
of vn. We call LΣ = ∩n∈NN(vn), and we then have lΣ = ∂LΣ, according to
definition 5.2.5.

Let L be an increasing leaf of lΣ. This leaf is a spiral with two limit circles :
C+, limit when L is followed in the direct way, and C−, limit when L is followed
in the indirect way. We call A the annulus between C+ and C−. Look at LΣ∩A.
If this intersection is equal to A, lΣ∩Int(A) = ∅ and L is a leaf in the boundary
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of A, and is thus a circle. Else, this means that A\LΣ contains some subset of
the form γ× [0, 1], where γ is a compact oriented path fully carried by ∂Σ× I,
and which is increasing (see. figure 6.7.3).

: γ × [0, 1]

: Lp1

p2

C+

C− direct way

Fig. 6.7.3 –

Hence, there exists an integer N such that for all integer n greater than
N , we have (γ × [0, 1]) ∩N(Bn) = ∅. If not, it would imply the existence of a
sequence of points (qn) such that qn ∈ (γ × [0, 1])∩N(Bn). Since (γ × [0, 1])∩
N(Bn) is compact, there would be a subsequence of (qn) converging towards
a point q contained in ∩n∈N((γ × [0, 1]) ∩N(Bn)). But this last set is equal to
γ ∩ LΣ, which is empty.

It is then impossible to find a path in vN going in the direct way from p2

to p1, where p1 and p2 are two points of L placed as in figure 6.7.3.
However, because Σ is not a twisted disk of contact and according to lemma

6.4.4, the existence of a path of vN going in the direct way from p1 to p2 implies
the existence of a path of vN going in the indirect way from p1 to p2. This is a
contradiction, and L must be a circle. In the same way, lΣ does not have any
decreasing leaf. �

Hence, λ has null holonomy.

To get a lamination fully carried by B, it only remains to “fill the holes” of
leaves of λ, these holes being in fact diffeomorphic to the 2-cells of Y , which
are disks and half planes. This is possible because λ is null holonomic. This
ends the proof of theorem 4.6.
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7 Proof of theorem 4.3

7.1 (A) ⇒ (B)

Let B be a branched surface fully carrying a lamination λ, and D be a
twisted disk of contact in B.

Look at the train track corresponding to the boundary of D. Since D is
twisted, this train track must contain non circular leaves (of dimension 1). But
the corresponding leaves of λ (of dimension 2) can not be fully carried by D, so
they must be carried by some subsurface of D, and then they leave D by mean
of branchings. This part of the branch locus of B which allows these leaves to
escape is a circle C embedded inside D, which may have corners. The sectors
which branch on D along C must lie on the same side of D, at least locally.
And C bounds a disk d embedded in D, such that D\d is a sink annulus. The
conditions (i) and (ii) of definition 4.1 are thus satisfied by D.

At last, since the previous leaves leaving D are carried by B behind the
branchings of C, the following fact must be satisfied : all the immersed surfaces
with boundary in B, whose boundary is sent onto C, and which lie behind the
branchings of C, in a neighbourhood of this boundary, are not disks. This is
exactly condition (iii) of definition 4.1. Thus, D is a carrying disk.

7.2 (B) ⇒ (A)

Let B be a branched surface satisfying condition (B). Since M is compact,
B has countably many twisted disks of contact. We denote them (Dj)j∈J , where
J is a subset of N.

Let Dj be a twisted disk of contact of B. Let d(j) be a disk embedded in
Dj , with boundary C(j) and satisfying the three points of definition 4.1 of a
carrying disk.

Lemma 7.2.1 Keeping the previous notations, d(j) contains a smooth circle
Cm(j) of L bounding a source disk dm(j) embedded in d(j).

Proof Let us look at the intersection of L and d(j). It is a finite set whose
elements are either smooth compact segments of L, which are embedded in
d(j) and whose ends are double points (see figure 7.2.2), or smooth circles of
L, embedded in d(j) as well. Since d(j) is orientable, it has a top and a bottom.
We can thus divide L ∩ d(j) into two parts : on one hand the smooth parts
of L for which the sector branching on d(j) lies, at least locally, over d(j) ; on
the other hand the smooth parts of L for which the sector branching on d(j)
lies, at least locally, under d(j). We will respectively denote them L+ and L−.
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: L+

d(j)

Fig. 7.2.2 –

Notice that two elements of L+ can not meet in their interior, because both
are inscribed on d(j). If two elements of L+ meet, the intersection point lies
in the interior of one of them, and is an end of the second element, which, as
a result, is a segment. Moreover, this segment lies in front of the branching
defined by the first element (see figure 7.2.2). The same is true for the elements
of L−. Two elements of L∩d intersect in their interior only if one is in L+ and
the other one is in L−.

At last, remember that C must be entirely in L+ or L−.

Among the finite set of all circles having the same properties as C(j), we
consider a minimal element, i.e. the disk it bounds does not contain any circle
of this set. We denote it Cm(j). We denote dm(j) the disk it bounds in Dj. The
minimality of Cm(j) implies that there can not be any twisted disk of contact
inside dm(j). If it were so, this twisted disk of contact, being carrying, would
also contain a disk of the previous set, which would contradict the minimality
of Cm(j).

Suppose for example that Cm(j) is a union of elements of L+, and prove
that Cm(j) is smooth. Suppose that it is not, and thus has at least one corner.
The two possible configurations are drawn in figure 7.2.3.

: dm

a) b)

: L+

Fig. 7.2.3 –

But in a) we see an element of L+ coming from behind another element of
L+, which is impossible. We are thus in situation b), and this implies that the
branch locus of B runs in the interior of dm(j).

Let us stand at a corner p0 of Cm(j). This corner is the intersection of two
elements s0 and s1 of L+. It is in the interior of one of these elements, for
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example s1. Since s0 lies, at p0, in front of the branching of s1, s1 can not be
a circle bounding a sink disk. Actually, a part of Cm(j) would lie outside of
this disk of contact, and there would be an element of L+ which would arrive
to another element of L+ from behind, which is impossible. By minimality of
Cm(j), it can neither be a circle bounding a source disk. As a result, s1 is a
segment.

Now, follow s1 from p0, going into dm(j). Doing this, we never meet Cm(j),
else an element L+ would arrive on another element of L+ from behind When
we arrive at the end of s1, we stand in the interior of another element s2 of
L+, at a double point p1. For the same reasons which prevented s1 from being
a circle, s2 is a segment.

Suppose that s1 = s2. In this case, there exists a disk embedded in dm(j),
bounded by a subsegment of s1. If this disk is a source disk, this contradicts
the minimality of Cm(j). If this disk is a sink disk, then this disk is twisted,
which again contradicts the minimality of Cm(j). Hence s1 and s2 are different.

Follow s2 this time, in the way of the branch direction of s1 at p1. Once we
arrive at the end of s2, we stand in the interior of a third element s3 of L+,
at a double point p2. As before, s3 is a segment. However, since p1 and p2 are
both the intersection of two segments of L+, they are of the same sign.

p2

p1

s2

s1 = s3

Fig. 7.2.4 –

Again, s3 is different from s2 and s1. If not, dm(j) would contain either a
source disk or a twisted disk of contact (see figure 7.2.4). Both of these cases
would contradict the minimality of Cm(j).

We can iterate this process infinitely many times, whereas L+ is a finite
set. This leads to a contradiction, and Cm(j) is smooth. �

Remark 7.2.5 Let p be a double point in dm(j), intersection of two elements
of L±. There exists a path, an end of whose is p, whose interior is contained in
the interior of dm(j), and which is built in the same way as the path starting
from p0 built in the previous proof. If p lies on the boundary of dm(j), this
path is uniquely determined. If p lies in the interior of dm(j), for each initial
direction chosen at p, there exists a unique such path. Since such a path will
be extensively used later, we call it a good path from p inside dm(j). We will
call corner of a good path a double point where we pass from an element of
L± to another one.
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Using the same arguments as in the previous proof, if we follow a good
path, we must arrive on the boundary of dm(j) or on a smooth circle of L±

bounding a disk of contact.

In the same way as we have defined L+ and L−, we can share the elements
of L ∩ dm(j) into two parts, Lm+ and Lm−.

We still suppose that Cm(j) is in Lm+. Thus, only the elements of Lm− can
meet Cm(j).

Lemma 7.2.6 With the previous notations, Lm+ ∩ Int(dm(j)) is contained in
a union of disjoint disks of contact, embedded in dm(j), and bounded by smooth
circles of Lm+.

Proof If Lm+ contains only smooth circles, we get the result.

: Lm+

Cm(j)

Fig. 7.2.7 – Lm+ ∩ Int(dm(j)) is contained in a finite union of disks of contact

Else, Lm+ contains two segments which meet at a point p. Following a good
path from p, since we can not arrive on Cm(j), we arrive on a smooth circle of
Lm+ which bounds a disk of contact. Every segment of Lm+ is then contained
in a disk of contact bounded by a circle of Lm+. Since dm(j) is compact, there
are only finitely many such disks of contact. Figure 7.2.7 shows an example.

�

We now set an orientation of Cm(j).

Definition 7.2.8 Let p the intersection of Cm(j) with an element l of Lm−.
We say that p is direct (resp. indirect) if the branch orientation on l at p is
(resp. is reversed to) the orientation of Cm(j) at p.

Remark 7.2.9 The sign of p as a double point tells if p is direct or indirect.
Nevertheless, it would be much easier to use definition 7.2.8 rather than to
take care of the signs of the double points.

Lemma 7.2.10 The intersection of Cm(j) with Lm− satisfies the two following
points :

(i) If it is not empty, then it contains at least one direct point and at least
one indirect point ;
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(ii) If moreover this intersection contains only two points, these points lie
on on a single segment of Lm−.

Proof
(i) Let p1 be in Cm(j) ∩ Lm−. Following the good path from p1 inside dm(j),
we must arrive to a point p2, which lies in Cm(j)∩Lm− as well. This good path
is globally cooriented by the branch orientations along this path. So, if p1 is
direct (resp. indirect), p2 is indirect (resp. direct).
(ii) Suppose now that Cm(j) ∩ Lm− only contains two points, but that these
two points are not on the same segment of Lm−. Then, following the good path
γ1 from p1 inside dm(j), we must arrive at p2, but this good path has at least
one corner. Let c be the last corner met before p2. Follow now the good path
γ2 from p2 inside dm(j). Both paths γ1 and γ2 are equal from p2 to c. However,
c is a corner for γ1 but not for γ2. The two good paths diverge at c : γ2 goes
on behind the branchings of the segments of γ1. Hence, γ1 can not meet γ2

anymore. The second end of γ2 is thus a point p3 in Cm(j) ∩ Lm−, which is
different from p1, which is a contradiction. �

Lemma 7.2.11 There exists a finite sequence of splittings of B with support
in d(j), leading to a branched surface B(j) satisfying :

(i) B(j) satisfies point (B) ;
(ii) if L(j) is the branch locus of B(j), then L(j)∩ Int(dm(j)) is an union

of disjoint smooth circles bounding disks of contact.

Proof Look at Cm(j)∩Lm−. All its points can not be of the same type (direct
or indirect), according to point (i) of lemma 7.2.10.

If we follow Cm(j) in the direct way, there must be a direct point p1 such
that the following point of Cm(j) ∩ Lm− is an indirect point p2. Then, the
portion [p1, p2] of Cm(j) which lies between p1 and p2 is a path in a face-to-
face situation between the element l1 of Lm− which runs through p1 and the
element l2 of Lm− which runs through p2. We perform a splitting along this
path. If possible, we perform any splitting (over, under or neutral) if this does
not create a twisted disk of contact in B. If this is not possible, we show,
as in the proof of proposition 6.6.1, that there exists in B a twisted disk of
contact Dk whose boundary contains p1 and p2, and which follows l1 and l2
in neighbourhoods of p1 and p2. This disk is cut into two disks d1 and d2 by
[p1, p2]. But Dk is carrying, and thus contains a circle C(k) bounding a disk
d(k), satisfying the three points of definition 4.2. Since ]p1, p2[ does not contain
any double point, C(k) does not meet [p1, p2], and d(k) is entirely included in
d1 or d2. For example, it is contained in d1.

If all the corners of Dk are on the boundary of d1, we can perform a neutral
move : d2 becomes a disk of contact, and d1 becomes a carrying twisted disk
of contact.

If some corner of Dk is on the boundary of d2, among the over and the
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under moves, we chose the one which adds to d1 a corner of the same sign as
Dk, and adds to d2 a corner of the opposite sign. Then, after this splitting, d2

is not a twisted disk of contact because it has a corner of each sign, and d1 is
a carrying twisted disk of contact.

In the new branched surface we get, Dk has vanished, to the profit of a new
carrying twisted disk of contact, d1. No other twisted disk of contact has been
created.

In the particular case where p1 and p2 are the only points in Cm ∩ Lm−,
according to point (ii) of lemma 7.2.10, they lie on the same segment s of
Lm−. Hence, with the previous notations, s is in the boundary of Dk. The disk
in dm bounded by [p1, p2] ∪ s is included in Dk, and it is equal to d1 or d2.
By minimality of Cm, it can not contain C(k), so this disk is d2. In this case
there are no corners of Dk on the boundary of d2, and a neutral move can be
performed.

It remains to verify that the modification of the branch locus induced by
this splitting does not destroy the carrying character of a twisted disk of contact
of B. This could happen only if l1 and l2 lie both (at least in neighbourhoods of
p1 and p2) in a circle (possibly with corners) bounding a source disk satisfying
the three points of definition 4.2.

c)b)a)

l2l1

p1 p2

: source disk

Fig. 7.2.12 – source disk : a) before splitting ; b) after an under or over split-
ting ; c) after a neutral splitting

In this case, as seen on figure 7.2.12, there still exists after splitting a circle
bounding a source disk, and this circle satisfies the threee points, because it
bounds the same surfaces (topologically) than the circle before splitting. The
new branched surface thus still satisfies condition (B).

After this splitting, the number of points in Cm(j) ∩ Lm− has strictly de-
creased. Since Cm(j)∩Lm− can not consist of a single point, by repeating this
operation a finite number of times, Cm(j) ∩ Lm− contains only two points. As
seen previously, a neutral move can be performed, and Cm(j) ∩ Lm− becomes
empty.
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: Lm+

: Lm−

a) b) c)

e)d)

f) g)

Cm(j)

Fig. 7.2.13 – example of a sequence of splittings

The intersection Cm(j)∩Lm− being empty, according to lemma 7.2.6, Lm+

is entirely contained in a finite union of disjoint disks of contact embedded in
dm(j). The same is true with Lm−. For each circle bounding a disk of contact in
dm(j), we can apply the previous method. These circles being in finite number,
after finitely many splittings, the trace of the branch locus on dm(j) is a finite
union of smooth circles bounding disks of contact.

Figure 7.2.13 shows an example of such a sequence of splittings. �

Lemma 7.2.14 There exists a finite sequence of splittings of B(j) with support
in dm(j) leading to a branched surface B′(j) satisfying :

(i) B′(j) satisfies (B) ;
(ii) if L′(j) is the branch locus of B′(j), then L′(j) ∩ Int(dm(j)) is empty.

Proof The trace of the branch locus of B(j) in dm(j) is a finite union of smooth
circles bounding disks of contact.

Let C be a minimal element in this set of smooth circles, i.e. the disk dC
bounded by C does not contain any other smooth circle of the branch locus.
We then remove from N(B(j)) an I-bundle over dC , as on figure 7.2.15. Since
this operation does not create nor eliminate any corner, no twisted disk of
contact is created.

Let us verify a last point. It could be possible that C, on top of bounding a
disk of contact, also bounds a source disk. An example of such a circle is shown
in figure 7.2.16, where we can see a branched surface of revolution. But even
in this case, since the interior of dC does not meet the branch locus, C can not
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b)a)

: dm(j)

: dC

Fig. 7.2.15 –

: disk of contact

:source disk

Fig. 7.2.16 –

be a circle turning a twisted disk of contact into a carrying one. Finally, the
previous operation can not destroy the carrying character of a twisted disk of
contact. After this operation, C has vanished from the branch locus.

Doing this from minimal circle to minimal circle, we get after a finite num-
ber of steps, the branched surface B′(j) we wanted. �

Lemma 7.2.17 There exists a finite sequence of splittings of B(j) with support
in dm(j) leading to a branched surface B′ satisfying :

(i) B′ satisfies point (B) ;
(ii) there exists a finite set E whose elements are source disks of B′ with

smooth boundary, and which are sectors (they are thus disjoint), and such
that for every carrying twisted disk of contact D of B′ there exists a disk
of E embedded in D.

Proof Since M is compact, there is a finite number of smooth circles bounding
source disks. Hence, the set of the dm(j) ’s is finite, even if the set of indices
J is not. We apply lemmas 7.2.11 and 7.2.14 to one of those disks, then to
another one, until we have done that for all those disks. After a finite number
of splittings, we get the branched surface B′. �

Remark 7.2.18 Lemma 7.2.17 is not in contradiction with the fact that B
can have infinitely many carrying twisted disks of contact. In the example b)
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of figure 4.2 , two source disks which are sectors are included in infinitely
many carrying twisted disks of contact.

Lemma 7.2.19 We set B′′ = B′\(∪d∈EInt(d)). Then B′′ is a branched surface
having no twisted disk of contact.

Proof According to [Li], a branched surface minus the interior of a source
sector is always a branched surface without boundary, except if two smooth
components of the boundary of this sector are identified in L. This is not the
case here, since the boundary of a circle in E is smooth, and since L does not
meet the interior of these disks. Since E is finite and since its elements are
disjoint, B′′ is branched surface without boundary.

Moreover, by removing those disks, no twisted disk of contact is created.
At last, a disk is removed from the interior of each twisted disk of contact of
B′ : there is no twisted disk of contact anymore in B′′. �

Lemma 7.2.20 B′ fully carries a lamination.

Proof The branched surface B′′ satisfies the hypotheses of theorem 4.6 : it
then fully carries a lamination λ′. We now have to add leaves to λ′, to turn it
into a lamination fully carried by B′.

Let dm(j) be one of the disks taken away from B′. Look at the train track
corresponding to the boundary of dm(j). This train track is fully carried, and
all its leaves (of dimension 1) correspond to leaves of λ′ (of dimension 2) which
take the branching of Cm, and which go over dm(j) since Cm(j) is in L+. Among
all these leaves, the bottom leaf (for the chosen coorientation of dm(j)) must
be a circle, either because it is the lowest leaf of a set of circular leaves, or
because it is the limit leaf of a set of spiral leaves. We denote l this leaf, and
L the leaf of λ′ which contains l.

We must now look at two possibilities : either L\l has two connected com-
ponents, or it is still connected.

The first case is the easiest one. We denote L\l = L1 ∪L2, where L1 is the
part of L which lies behind the branching of dm(j), and L2 is the one which
lies in front of the branching of dm(j). We add to λ′ an isolated copy of L1, just
under L. We “fill” this copy by adding along l a disk fully carried by dm(j),
lying under all the leaves of λ′ taking branchings of L+ in dm(j). By adding
this isolated leaf to λ′, we get a lamination λ fully carried by B.

In the second case, we make an isolated copy of L and l in λ′, just under
L, denoted L′ and l′, and we realize the product L′ × [0, 1], foliated by leaves
L′(t) = L′ × {t}. This new lamination is still fully carried by B′. We then
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consider a diffeomorphism ϕ strictly increasing from [0, 1] to [α, 1], for some
α ∈]0, 1], and satisfying : for each t ∈ [0, 1[, ϕ(t) > t. We next realize the
suspension of L′× [0, 1] by ϕ, which is the following construction : we consider
the foliation (L′× [0, 1])\(l′ × [0, 1]), and we call L′′(t) the leaf L′(t)\(l′ ×{t}).
Locally, in a neighbourhood of (l′ × [0, 1]), L′′(t) is the union of two parts of
L′′(t), denoted L′′

1(t) and L′′
2(t), where L′′

1(t) lies in front of the branching of dm,
and L′′

2(t) lies behind. We then perform a shift between these leaves on each
side of (l′ × [0, 1]) : we glue L′′

2(t) with L′′
1(ϕ(t)) along a copy of l′. After this

operation, L′ × [0, 1] is a new set of leaves. Among these leaves, only the leaf
L′(1) remains unchanged. The others are leaves with one boundary component
of the form l′ × {t}, for some t ∈ [0, ϕ(0)[, spiraling towards L′(1), their limit
leaf. From this set of leaves, we only retain L′(1) and one of the other leaves,
denoted L′

0, and whose boundary is l′(t0), for t0 ∈ [0, ϕ(0)[. We “fill” L′
0 by

adding to it, along l′(t0), a disk fully carried by dm, as in the first case. The
set λ = λ′ ∪ L′(1) ∪ L′

0 is a lamination since L′(1) is the limit leaf of L′
0, and

it is fully carried by dm(j).

Repeating this operation for all the disks of E , we get a lamination Λ fully
carried by B′. �

The proof comes to an end by using lemma 5.1.3 : B′ is a splitting of B,
and Λ is fully carried by B as well.

8 Contact structures carried by a branched

surface - an application

8.1 Definitions

The following definitions are taken from [Co].

Definition 8.1.1 Let ξ be a positive (resp. negative) contact structure defined
in a fibred neighbourhood N(B) of B. We say that ξ is a contact structure
carried by B if ξ satisfies :

(i) ξ is transverse to the fibres of N(B) ;
(ii) each component of ∂hN(B) is transverse to a germ of Reeb vector

field R and ∂(∂hN(B)) is transversally ascending (resp. descending) to ξ,
for the orientation of ∂(∂hN(B)) induced by the orientation of ∂hN(B)
(cooriented by R) and the local orientation of ξ given by R.

Remark 8.1.2 If B carries a contact structure, then ∂hN(B) does not contain
any closed surface. Indeed, in a neighbourhood of the horizontal boundary, ξ
is defined by a 1-form α whose Reeb vector field is transversal to the horizon-
tal boundary. Because dα is non degenerate on the horizontal boundary, and
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because of Stokes theorem, the horizontal boundary can not contain a closed
surface.

Definition 8.1.3 Let ξ be a contact structure carried by B. If moreover all
the fibres of N(B) are tangent to a Reeb vector field for ξ defined on all N(B),
then it is said that B carries a contact form.

Remark 8.1.4 If B carries a contact form, then, of course, it also carries a
contact structure, and, for the same reasons as in remark 8.1.2, it does not
carry any closed surface.

δβ

Fig. 8.1.5 – monogon

Remark 8.1.6 If B carries a contact form, the fibres of N(B) are globally
orientable. This prevents the existence of a monogon : a monogon is a disk
D ⊂ V \Int(N(B)) with ∂D = D ∩ N(B) = β ∪ δ, where β ⊂ ∂vN(B) is in a
fibre of ∂vN(B) and δ ⊂ ∂hN(B) (see figure 8.1.5).

Definition 8.1.7 A branched surface strongly carries a positive (resp. nega-
tive) contact structure ξ if B is everywhere transverse to a Reeb vector field R
of ξ and if its branch locus is transversally ascending (resp. descending) to R,
for the orientation induced by the branch direction.

Remark 8.1.8 By a thickening along R, a branched surface which strongly
carries a contact structure ξ also carries a contact form corresponding to ξ.

Remark 8.1.9 Definitions 8.1.1, 8.1.3 and 8.1.7 establish a hierarchy in the
notion of “contact structure carried by a branched surface”.

Definition 8.1.10 Let ξ be a contact structure carried by a branched surface
B. An overtwisting disk D for ξ is a disk whose boundary is tangent to ∂D
and which is transverse to ξ along ∂D (see [El] for instance). We say that ξ
is a tight contact structure carried by B if there is no overtwisting disk in M
whose boundary is in N(B). The same definition can be applied to contact
forms (resp. structures) carried (resp. strongly carried) by branched surfaces.
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8.2 Some known results

We first need some last definitions :

Definition 8.2.1 If B is a branched surface embedded in M , then B is essen-
tial if it satisfies the following conditions :

(i) B has no disk of contact ;
(ii) ∂hN(B) is incompressible in M\Int(N(B)) ;
(iii) no component of ∂hN(B) is a sphere ;
(iv) there is no monogon in M\Int(N(B)) ;
(v) M\Int(N(B)) is irreducible ;
(vi) B does not carry a torus that bounds a solid torus in M ;
(vii) B fully carries a lamination.

Definition 8.2.2 If B is a branched surface embedded inM , then B is laminar
if it satisfies conditions (ii) to (vi) of definition 8.2.1 and has no sink disk.

As showed by T. Li in [Li], a laminar branched surface is an essential
branched surface. The converse is not true. Essential and laminar branched
surfaces are important because of the two following results :

Theorem 8.2.3 ([GO]) A lamination is essential if and only if it is fully
carried by an essential branched surface.

Theorem 1.3 ([Li]) A 3-manifold contains an essential lamination if and
only if it contains a laminar branched surface.

We then recall results from [Co] :

Proposition 8.2.4 ([Co]) Let B be a branched surface which carries a tight
contact form. Then B satisfies points (i) to (vi) of definition 8.2.1.

which is used to prove

Proposition 8.2.5 ([Co]) If ξ is a tight contact structure strongly carried by
B, then B is laminar, and ([Li]) the universal cover of M is homeomorphic to
R3.

If we want to go down one step into the hierarchy of contact structures
carried by branched surfaces, i.e. we consider contact forms carried by B instead
of contact structures strongly carried by B, proposition 8.2.5 does not hold
anymore, but corollary 4.8 gives a condition which is stronger but in the same
spirit, to get the same conclusion.

43



8.3 Proof of corollary 4.7

We may refer to [Gi1] and [Gi2] for sign conventions.
Suppose that B has a positive twisted surface of contact S. Let α1 be the

positive contact form carried by B. The existence of α1 implies that there is
a global orientation of the fibres of N(B), defined by the Reeb vector field of
α1, and that, maybe after having reversed the orientation of S, the orientation
of N(S) is the same as the orientation of the fibres of N(B). It is impossible
that at two different points of f(S), the fibres of N(S) at these points are
included in the same fibre of N(B) with opposite orientations. This is possible
in general, for example along a monogon.

The boundary of S is piecewise smooth, and each smooth portion of the
boundary is included in the inside of the vertical boundary of N(B). The
coorientation of the connected components of ∂hN(B) by the Reeb vector field
of α1 gives an orientation of the boundary of these components, which itself
induces an orientation of each smooth component of the boundary of S. For this
orientation, each smooth component is transversal ascending to α1. However,
this orientation is reversed to the orientation of the boundary of S, when S is
also cooriented by the Reeb vector field of α1. Finally, the boundary of S for
this coorientation is transversal descending to α1. As a result, the characteristic
foliation of S points inwards along its boundary.

Moreover, for the contact form α1, S is convex (in a contact sense, see [Gi1]
for definitions) and its characteristic foliation has only positive singularities,
and an empty dividing curve. This is in contradiction with the fact that the
boundary of S is transversally descending for the Reeb vector field of α1.

In the same way, B can not have any negative twisted surface of contact
or else there would be a convex surface whose characteristic foliation points
outwards along its boundary, but having only negative singularities and an
empty dividing curve.

It remains to apply theorem 4.3 (actually, theorem 4.6 is here sufficient).

8.4 Proof of corollary 4.8

If B carries a positive tight contact form and a negative one, it fully carries
a lamination according to corollary 4.7, and it is essential, according to propo-
sition 8.2.4. This lamination is thus essential, thanks to proposition 8.2.3.
Theorem 1.1 then implies that the universal cover of M is homeomorphic to
R3.
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