
HAL Id: hal-00014969
https://hal.science/hal-00014969

Preprint submitted on 1 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Palindromic continued fractions
Boris Adamczewski, Yann Bugeaud

To cite this version:

Boris Adamczewski, Yann Bugeaud. Palindromic continued fractions. 2005. �hal-00014969�

https://hal.science/hal-00014969
https://hal.archives-ouvertes.fr


cc
sd

-0
00

14
96

9,
 v

er
si

on
 1

 -
 1

 D
ec

 2
00

5

Palindromic continued fractions

Boris ADAMCZEWSKI (Lyon) & Yann BUGEAUD * (Strasbourg)

1. Introduction

It is widely believed that the continued fraction expansion of every irrational algebraic
number α is either eventually periodic (and this is the case if, and only if, α is a quadratic
irrationality) or contains arbitrarily large partial quotients, but we seem to be very far away
from a proof (or a disproof). A preliminary step consists in providing explicit examples
of transcendental continued fractions. The first result of this type is due to Liouville [11],
who constructed real numbers whose sequence of partial quotients grows very fast, too
fast for being algebraic. Subsequently, various authors used deeper transcendence criteria
from Diophantine approximation to construct other classes of transcendental continued
fractions. Of particular interest is the work of Maillet [12] (see also Section 34 of Perron
[13]), who was the first to give examples of transcendental continued fractions with bounded
partial quotients. Further examples have been provided by Baker [4, 5], Davison [6],
Queffélec [14], Allouche et al. [3] and Adamczewski and Bugeaud [1], among others.

A common feature of the above quoted results is that they apply to real numbers
whose continued fraction expansion is ‘quasi-periodic’, in the sense that it contains ar-
bitrarily long blocks of partial quotients which occur precociously at least twice. In the
present work, we investigate real numbers whose sequence of partial quotients enjoys an-
other combinatorial property, namely is ‘quasi-symmetrical’, in the sense that it begins
in arbitrarily large ‘quasi-palindromes’. We provide three new transendence criteria, that
apply to a broad class of continued fraction expansions, including expansions with un-
bounded partial quotients. As in [1], their proofs heavily depend on the Schmidt Subspace
Theorem. These criteria are stated in Section 2 and proved in Sections 6 and 7. Our
method allows us to improve upon an earlier result of A. Baker [4] on the transcendence
of continued fractions whose sequence of partial quotients is composed of long strings on 1
and long strings of 2, alternatively. See Section 3 for a precise statement and Section 8 for
its proof. In Section 4, we provide an application of one of our transcendence criteria to the
explicit construction of transcendental numbers with sharp properties of approximation by
rational numbers. All our auxiliary statements are gathered in Section 5.

* Supported by the Austrian Science Fundation FWF, grant M822-N12.
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2. Main results

Throughout the present work, A denotes a given set, not necessarily finite. We identify
any sequence a = (an)n≥1 of elements from A with the infinite word a1a2 . . . an . . . Recall
that a finite word a1a2 . . . an on A is called a palindrome if aj = an+1−j for j = 1, . . . , n.

Our first transcendence criterion can be stated as follows.

Theorem 1. Let a = (an)n≥1 be a sequence of positive integers. If the word a begins
in arbitrarily long palindromes, then the real number α := [0; a1, a2, . . . , an, . . .] is either
quadratic irrational or transcendental.

We point out that there is no assumption on the growth of the sequence (an)n≥1 in
Theorem 1, unlike in Theorems 2 and 3 below.

As shown in [2], given two distinct positive integers a and b, Theorem 1 easily implies
the transcendence of the real number [0; a1, a2, . . . ...], whose sequence of partial quotients
is the Thue–Morse sequence on the alphabet {a, b}, that is, with an = a (resp. an = b)
if the sum of binary digits of n is odd (resp. even). This result is originally due to M.
Queffélec [14].

Before stating our next theorems, we need to introduce some more notation. The
length of a finite word W on the alphabet A, that is, the number of letters composing
W , is denoted by |W |. The mirror image of W := a1 . . . an is the word W := an . . . a1.
In particular, W is a palindrome if, and only if, W = W . A palindrome is thus a finite
word invariant under mirror symmetry. In order to relax this property of symmetry, we
introduce the notion of quasi-palindrome. Let U and V be two finite words; then, the
word UV U is called a quasi-palindrome of order w, where w = |V |/|U |. Clearly, the
larger w is, the weaker is the property of symmetry. In our next transcendence criterion,
we replace the occurrences of aritrarily large palindromes by the ones of arbitrarily large
quasi-palindromes of bounded order. However, this weakening of our assumption has a
cost, namely, an extra assumption on the growth of the partial quotients is then needed.
Fortunately, the latter assumption is not very restrictive. In particular, it is always satisfied
by real numbers with bounded partial quotients.

Let a = (an)n≥1 be a sequence of elements from A. Let w be a rational number with
w > 1. We say that a satisfies Condition (∗)w if a is not eventually periodic and if there
exist two sequences of finite words (Un)n≥1 and (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above by w;

(iii) The sequence (|Un|)n≥1 is increasing.

We complement Theorem 1 in the following way.

Theorem 2. Let a = (an)n≥1 be a sequence of positive integers. Let (pn/qn)n≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , an, . . .].
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Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 is bounded, which is in particular the case when the

sequence a is bounded. If there exists a positive rational number w such that a satisfies
Condition (∗)w, then α is transcendental.

In the statements of Theorems 1 and 2 the palindromes or the quasi-palindromes must
appear at the very beginning of the continued fraction under consideration. Fortunately,
the ideas used in their proofs allow us to deal also with the more general situation where
arbitrarily long quasi-palindromes occur not too far from the beginning.

Let w and w′ be positive rational numbers. We say that a satisfies Condition (∗)w,w′

if a is not eventually periodic and if there exist three sequences of finite words (Un)n≥1,
(Vn)n≥1 and (Wn)n≥1 such that:

(i) For any n ≥ 1, the word WnUnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above by w;

(iii) The sequence (|Un|/|Wn|)n≥1 is bounded from below by w′;

(iv) The sequence (|Un|)n≥1 is increasing.

We are now ready to complement Theorems 2 and 3 as follows.

Theorem 3. Let a = (an)n≥1 be a sequence of positive integers. Let (pn/qn)n≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , an, . . .].

Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 is bounded and set M = lim supℓ→+∞ q

1/ℓ
ℓ and m =

lim infℓ→+∞ q
1/ℓ
ℓ . Let w and w′ be positive rational numbers with

w′ > 2
log M

log m
− 1. (2.1)

If a satisfies Condition (∗)w,w′, then α is transcendental.

We display an immediate consequence of Theorem 3.

Corollary 1. Let a = (an)n≥1 be a sequence of positive integers. Let (pn/qn)n≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , an, . . .].

Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 converges. Let w and w′ be positive rational numbers

with w′ > 1. If a satisfies Condition (∗)w,w′, then α is transcendental.

Theorems 1 to 3 provide the exact analogues of Theorems 1 and 2 from [1]. It would
be desirable to replace the assumption (2.1) by the weaker one w′ > 0. The statements of
Theorems 2 and 3 show that weakening the combinatorial assumption of Theorem 1 needs
further assumptions on the size of the partial quotients.
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3. On a theorem of A. Baker

In this Section we focus on a particular family of continued fractions introduced by
Baker [4]. Let a and b be distinct positive integers. Let Λ = (λn)n≥1 be a sequence of
positive integers and set

αΛ := [0; aλ1 , b
λ2

, aλ3 , . . . , b
λ2n

, aλ2n+1 , . . .],

where, for positive integers m and λ, we use the notation mλ to denote a string of λ
consecutive partial quotients equal to m. In his paper, Baker proved the transcendence of
αΛ assuming that the sequence Λ increases sufficiently rapidly.

For convenience, we assume that b > a (this makes no restriction, since the transcen-
dence of a number does not depend on his first partial quotients), and we set

αa = [a; a, a, . . .], αb = [b; b, b, . . .],

and
ρ = log αb/ log αa.

Observe that we have ρ > 1.
Although stated in a weaker form, the following result can be derived from [4].

Theorem. (A. Baker). Let αΛ be as above. If the sequence Λ satisfies

lim inf
n→∞

λn+1

λn
>

1 +
√

8ρ2 + 1

2ρ
,

then αΛ is transcendental.

Baker’s proof rests on the generalisation, due to LeVeque [10], of Roth’s Theorem
to approximation by algebraic numbers from a given number field. Using our approach
based on quasi-palindromes and on the Schmidt Subspace Theorem, we are able to slightly
improve upon his result.

Theorem 4. Let αΛ be as above. If the sequence Λ satisfies

lim inf
n→∞

λn+1

λn
>

√
2,

then αΛ is transcendental.

Theorem 4 improves upon Baker’s result, since we have

√
2 <

1 +
√

8ρ2 + 1

2ρ
< 2,

for any ρ > 1. For instance, taking a = 1 and b = 2, Baker obtained the value 1.71 . . . (cf.
page 8 of [4]). Throughout the proof of Theorem 4 (postponed to Section 8), we will see
how it is often possible to refine the assumption (2.1) of Theorem 3.
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4. Transcendental numbers with prescribed order of approximation

In Satz 6 of [7], Jarńık used the continued fraction theory to prove the existence of real
numbers with prescribed order of approximation by rational numbers. Let ϕ : R≥1 → R>0

be a positive function. We say that a real number α is ‘approximable at order ϕ’ if there
exist infinitely many rational numbers p/q with q > 0 and |α−p/q| < ϕ(q). Jarńık’s result
can then be stated as follows.

Theorem J. Let ϕ : R≥1 → R>0 be a non-increasing function such that ϕ(x) = o(x−2)
as x tends to infinity. Then, there are real numbers α which are approximable at order ϕ
but which are not approximable at any order c ϕ, with 0 < c < 1.

In his proof, Jarńık constructed inductively the sequence of partial quotients of α.
Actually, he showed that there are uncountably many real numbers α with the required
property, thus, in particular, transcendental numbers. However, his construction did not
provide any explicit example of such a transcendental α.

In the present Section, we apply our Theorem 1 to get, under an extra assumption on
the function ϕ, explicit examples of transcendental numbers satisfying the conclusion of
Theorem J.

Theorem 5. Let ϕ : R≥1 → R>0 be such that x 7→ x2 ϕ(x) is non-increasing and tends
to 0 as x tends to infinity. Then, we can construct explicit examples of transcendental
numbers α which are approximable at order ϕ but which are not approximable at any
order c ϕ, with 0 < c < 1.

Proof : Throughout the proof, for any real number x, we denote by ⌈x⌉ the smallest
integer greater than or equal to x. We will construct inductively the sequence (bn)n≥1 of
partial quotients of a suitable real number α. Denoting by (pn/qn)n≥0 the sequence of
convergents to α, it follows from the continued fraction theory that, for any n ≥ 1, we
have

1

q2
n−1(bn + 2)

<

∣

∣

∣

∣

α − pn−1

qn−1

∣

∣

∣

∣

<
1

q2
n−1bn

. (4.1)

Recall that qn ≥ (3/2)n for any n ≥ 5. For any x ≥ 1, set Ψ(x) = x2 ϕ(x). Let n1 ≥ 6 be
such that Ψ((3/2)n) ≤ 10−1 for any n ≥ n1 − 1. Then, set b1 = . . . = bn1−1 = 1 and bn1

=
⌈1/Ψ(qn1−1)⌉. Observe that bn1

≥ 10. Let n2 > n1 be such that Ψ((3/2)n) ≤ (10bn1
)−1

for any n ≥ n2 − 1. Then, set bn1+1 = . . . = bn2−1 = 1 and bn2
= ⌈1/Ψ(qn2−1)⌉. Observe

that bn2
≥ 10bn1

.
At this step, we have

α = [0; 1
n1−1

, bn1
, 1

n2−n1−1
, bn2

, . . .],

where, as in the previous Section, we denote by 1
m

a sequence of m consecutive partial
quotients equal to 1. Then, we complete by symmetry, in such a way that the continued
fraction expansion of α begins with a palindrome:

α = [0; 1
n1−1

, bn1
, 1

n2−n1−1
, bn2

, 1
n2−n1−1

, bn1
, 1

n1−1
, . . .].
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At this stage, we have constructed the first 2n2−1 partial quotients of α. Let n3 > 2n2 be
such that Ψ((3/2)n) ≤ (10bn2

)−1 for any n ≥ n3−1. Then, set b2n2
= . . . = bn3−1 = 1 and

bn3
= ⌈1/Ψ(qn3−1)⌉. Observe that bn3

≥ 10bn2
. Then, we again complete by symmetry,

and we repeat our process in order to define n4, bn4
, and so on.

Clearly, the real number constructed in this way begins with infinitely many palin-
dromes, thus it is either quadratic or transcendental by Theorem 1. Moreover, the assump-
tion on the function ϕ implies that α has unbounded partial quotients. It thus follows that
it is transcendental. It remains for us to prove that it has the required property of approx-
imation.

By (4.1), for any j ≥ 1, we have

ϕ(qnj−1)

1 + 3 q2
nj−1 ϕ(qnj−1)

<

∣

∣

∣

∣

α − pnj−1

qnj−1

∣

∣

∣

∣

< ϕ(qnj−1). (4.2)

Let pn/qn with n ≥ n2 be a convergent to α not in the subsequence (pnj−1/qnj−1)j≥1, and
let k be the integer defined by nk − 1 < n < nk+1 − 1. Then, by (4.1) and the way we
defined the bnj

, we have

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

>
1

q2
n(bn+1 + 2)

≥ 1

q2
n(bnk−1

+ 2)

≥ 1

3q2
n bnk−1

≥ ϕ(qn)

3q2
nk−1 ϕ(qnk−1) bnk−1

,

(4.3)

since x 7→ x2ϕ(x) is non-increasing. We then infer from (4.3) and

bnk−1 ≤ bnk

10
≤ 11

100
· 1

q2
nk−1 ϕ(qnk−1)

that
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

≥ 3 ϕ(qn). (4.4)

To conclude, we observe that it follows from (4.2) that α is approximable at order ϕ,
and from (4.2), (4.4) and the fact that ϕ is non-increasing that α is not approximable at
any order cϕ with 0 < c < 1. The proof of Theorem 5 is complete.

5. Auxiliary results

The proofs of Theorems 2 to 4 depend on a deep result from Diophantine approx-
imation, namely the powerful Schmidt Subspace Theorem, stated as Theorem B below.
However, we do not need the full force of this theorem to prove our Theorem 1: the
transcendence criterion given by Theorem A is sufficient for our purpose.
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Theorem A. (W. M. Schmidt). Let α be a real number, which is neither rational,
nor quadratic. If there exist a real number w > 3/2 and infinitely many triples of integers
(p, q, r) with q > 0 such that

max

{
∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

,

∣

∣

∣

∣

α2 − r

q

∣

∣

∣

∣

}

<
1

qw
,

then α is transcendental.

Proof : See [15].

Theorem B. (W. M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm be linearly
independent linear forms in x = (x1, . . . , xm) with algebraic coefficients. Let ε be a positive
real number. Then, the set of solutions x = (x1, . . . , xm) in Zm to the inequality

|L1(x) . . .Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof : See e.g. [16] or [17].

For the reader convenience, we further recall some well-known results from the theory
of continued fractions, whose proofs can be found e.g. in the book of Perron [13]. The
seemingly innocent Lemma 1 appears to be crucial in the proofs of Theorems 2 to 4.

Lemma 1. Let α = [0; a1, a2, . . .] be a real number with convergents (pℓ/qℓ)ℓ≥1. Then,
for any ℓ ≥ 2, we have

qℓ−1

qℓ
= [0; aℓ, aℓ−1, . . . , a1].

Lemma 2. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be real numbers. Let n ≥ 1 such
that ai = bi for any i = 1, . . . , n. We then have |α − β| ≤ q−2

n , where qn denotes the
denominator of the n-th convergent to α.

For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the denominator of the
rational number [0; a1, . . . , am]. It is commonly called a continuant.

Lemma 3. For any positive integers a1, . . . , am and any integer k with 1 ≤ k ≤ m − 1,
we have

Km(a1, . . . , am) = Km(am, . . . , a1)

and

Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2 Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am).

The following three results are needed for the proof of Theorem 4.
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Lemma 4. Let α := [0; a1, a2, . . . , an] = pn/qn be a rational number α. Then, we have

log qn =

n
∑

m=1

log([am; am−1, . . . , a1]).

Proof. It follows from Lemma 1 that

log qn =

n
∑

m=1

log

(

qm

qm−1

)

=

n
∑

m=1

log([am; am−1, . . . , a1]),

where q0, q1, . . . , qn denote the denominators of the convergents of α.

Throughout the rest of this Section, θ denotes the Golden Ratio (1 +
√

5)/2.

Lemma 5. Let α be a real number and denote by (pn/qn)n≥1 the sequence of its conver-
gents. Then, for every positive integer k, we have

qk ≥ θk+1

2
√

5
.

Proof. By definition of the convergents we have q1 = 1, q2 = a0+1 and qn = anqn−1+qn−2,
where (an)n≥0 denotes the sequence of partial quotients of α. We thus have q1 ≥ 1, q2 ≥ 1
and qk ≥ qk−1 +qk−2 for every integer k ≥ 2. For any integer k > 0, set sk := θk+1/(2

√
5).

Since s1 < s2 < 1 and sk+2 = sk+1 + sk, we get immediately that qk ≥ sk for any positive
integer k.

Lemma 6. Let r be a positive integer. Let (x(k))1≤k≤r and (y(k))1≤k≤r be two finite
sequences of real numbers lying in [1, +∞). Denote by [x1,k; x2,k, . . .] (resp. [y1,k; y2,k, . . .])
the continued fraction expansion of x(k) (resp. of y(k)). If, for every k satisfying 1 ≤ k ≤ r,
we have

xj,k = yj,k, for j = 1, . . . , k,

then,
r
∑

k=1

∣

∣log(x(k)) − log(y(k))
∣

∣ <
20

θ3
.

Proof. For every k with 1 ≤ k ≤ r, denote by qk the denominator of the k-th convergent
of x(k). By assumption, qk is also the denominator of the k-th convergent of y(k). It thus
follows from Lemma 2 that

∣

∣x(k) − y(k)
∣

∣ <
1

q2
k

,

which implies that

1 − 1

q2
k

≤ x(k)

y(k)
≤ 1 +

1

q2
k

.
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We obtain
∣

∣log(x(k)) − log(y(k))
∣

∣ <
1

q2
k

and it follows from Lemma 5

∣

∣log(x(k)) − log(y(k))
∣

∣ <
20

θ2k+2
.

We thus get that
r
∑

k=1

∣

∣log(x(k)) − log(y(k))
∣

∣ <
20

θ2

+∞
∑

k=1

1

θ2k
=

20

θ3
,

concluding the proof.

6. Proof of Theorem 1

Let n be a positive integer. Denote by pn/qn the n-th convergent to α, that is,
pn/qn = [0; a1, a2, . . . , an]. By the theory of continued fraction, we have

Mn :=

(

qn qn−1

pn pn−1

)

=

(

a1 1
1 0

)(

a2 1
1 0

)

. . .

(

an 1
1 0

)

.

Since such a decomposition is unique, the matrix Mn is symmetrical if, and only if, the
word a1a2 . . . an is a palindrome. Assume that this is case. Then, we have pn = qn−1.
Recalling that

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

<
1

q2
n

and

∣

∣

∣

∣

α − pn−1

qn−1

∣

∣

∣

∣

<
1

q2
n−1

,

we infer from 0 < α < 1, a1 = an, |pnqn−1 − pn−1qn| = 1 and qn ≤ (an + 1)qn−1 that

∣

∣

∣

∣

α2 − pn−1

qn

∣

∣

∣

∣

≤
∣

∣

∣

∣

α2 − pn−1

qn−1
· pn

qn

∣

∣

∣

∣

≤
∣

∣

∣

∣

α +
pn−1

qn−1

∣

∣

∣

∣

·
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

+
1

qnqn−1

≤ 2

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

+
1

qnqn−1
<

a1 + 3

q2
n

,

whence

max

{
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

,

∣

∣

∣

∣

α2 − pn−1

qn

∣

∣

∣

∣

}

<
a1 + 3

q2
n

. (6.1)

Consequently, if the sequence of the partial quotients of α begins in arbitrarily long palin-
dromes, then (6.1) is satisfied for infinitely many integer triples (pn, qn, pn−1). By Theorem
A, this shows that α is either quadratic or transcendental.
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7. Proofs of Theorems 2 and 3

Throughout the proofs of Theorems 2 and 3, for any finite word U = u1 . . . un on Z≥1,
we denote by [0; U ] the rational number [0; u1, . . . , un].

Proof of Theorem 2. Keep the notation and the hypothesis of this theorem. Assume
that the parameter w > 1 is fixed, as well as the sequences (Un)n≥1 and (Vn)n≥1 occurring
in the definition of Condition (∗)w. Set also rn = |Un| and sn = |UnVnUn|, for any n ≥ 1.
We want to prove that the real number

α := [0; a1, a2, . . .]

is transcendental. By assumption, we already know that α is irrational and not quadratic.
Therefore, we assume that α is algebraic of degree at least three and we aim at deriving a
contradiction.

Let (pℓ/qℓ)ℓ≥1 denote the sequence of convergents to α. The key fact for the proof of
Theorem 2 is the equality

qℓ−1

qℓ
= [0; aℓ, aℓ−1, . . . , a1],

given by Lemma 1. In other words, if Wℓ denotes the prefix of length ℓ of the sequence a,
then qℓ−1/qℓ = [0; Wℓ]. Since, by assumption, we have

psn

qsn

= [0; UnVnUn],

we get that
qsn−1

qsn

= [0; UnVn Un],

and it follows from Lemma 2 that

|qsn
α − qsn−1| < qsn

q−2
rn

. (7.1)

This shows in particular that

lim
n→+∞

qsn−1

qsn

= α. (7.2)

Furthermore, we clearly have

|qsn
α − psn

| < q−1
sn

and |qsn−1α − psn−1| < q−1
sn−1. (7.3)

Consider now the four linearly independent linear forms with algebraic coefficients:

L1(X1, X2, X3, X4) =αX1 − X3,

L2(X1, X2, X3, X4) =αX2 − X4,

L3(X1, X2, X3, X4) =αX1 − X2,

L4(X1, X2, X3, X4) =X2.

10



Evaluating them on the quadruple (qsn
, qsn−1, psn

, psn−1), it follows from (7.1) and (7.3)
that

∏

1≤j≤4

|Lj(qsn
, qsn−1, psn

, psn−1)| < q−2
rn

. (7.4)

By assumption, there exists a real number M such that

√
2 ≤ q

1/ℓ
ℓ ≤ M

for any integer ℓ ≥ 3. Thus, for any integer n ≥ 3, we have

qrn
≥

√
2

rn ≥ (M sn)(rn log
√

2)/(sn log M) ≥ q(rn log
√

2)/(sn log M)
sn

and we infer from (7.4) and from (ii) of Condition (∗)w that

∏

1≤j≤4

|Lj(qsn
, qsn−1, psn

, psn−1)| ≪ q−ε
sn

holds for some positive real number ε.
It then follows from Theorem B that the points (qsn

, qsn−1, psn
, psn−1) lie in a fi-

nite number of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple
(x1, x2, x3, x4) and an infinite set of distinct positive integers N1 such that

x1qsn
+ x2qsn−1 + x3psn

+ x4psn−1 = 0, (7.5)

for any n in N1. Dividing (7.5) by qsn
, we obtain

x1 + x2
qsn−1

qsn

+ x3
psn

qsn

+ x4
psn−1

qsn−1
· qsn−1

qsn

= 0. (7.6)

By letting n tend to infinity along N1 in (7.6), it follows from (7.2) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since, by assumption, α is not a quadratic number, we have x1 = x4 = 0 and x2 = −x3.
Then, (7.5) implies that

qsn−1 = psn
. (7.7)

Consider now the three linearly independent linear forms with algebraic coefficients:

L′
1(Y1, Y2, Y3) = αY1 − Y2, L′

2(Y1, Y2, Y3) = αY2 − Y3, L′
3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple (qsn
, psn

, psn−1), we infer from (7.3) and (7.7) that

∏

1≤j≤3

|L′
j(qsn

, psn
, psn−1)| < q−1

sn−1 ≪ q−0.9
sn

,

11



since we have
qℓ+1 ≪ q1.1

ℓ , for any ℓ ≥ 1,

by Roth’s Theorem. Here, the constants implied by ≪ depend only on α.
It then follows from Theorem B that the points (qsn

, psn
, psn−1) with n in N1 lie in

a finite number of proper subspaces of Q3. Thus, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N2 such that

y1qsn
+ y2psn

+ y3psn−1 = 0, (7.8)

for any n in N2. Dividing (7.8) by qsn
, we get

y1 + y2
psn

qsn

+ y3
psn−1

qsn−1
· qsn−1

qsn

= 0. (7.9)

By letting n tend to infinity along N2, it thus follows from (7.7) and (7.9) that

y1 + y2α + y3α
2 = 0.

Since (y1, y2, y3) is a non-zero triple of integers, we have reached a contradiction. Conse-
quently, the real number α is transcendental. This completes the proof of the theorem.

Proof of Theorem 3. Keep the notation and the hypothesis of this theorem. Assume
that the parameters w and w′ are fixed, as well as the sequences (Un)n≥1, (Vn)n≥1 and
(Wn)n≥1. Set also rn = |Wn|, sn = |WnUn| and tn = |WnUnVnUn|, for any n ≥ 1. We
want to prove that the real number

α := [0; a0, a1, a2, . . .]

is transcendental. By assumption, we already know that α is irrational and not quadratic.
Therefore, we assume that α is algebraic of degree at least three and we aim at deriving
a contradiction. Throughout this Section, the constants implied by ≪ depend only on α.
In view of Theorem 2, we may assume that rn ≥ 1 for any n.

The key idea for our proof is to consider, for any positive integer n, the rational Pn/Qn

defined by
Pn

Qn
:= [0; WnUnVnUn Wn]

and to use the fact that the word WnUnVnUn Wn is a quasi-palindrome. Let P ′
n/Q′

n denote
the last convergent to Pn/Qn. By assumption we have

ptn

qtn

= [0; WnUnVnUn]

and it thus follows from Lemma 2 that

|Qnα − Pn| < Qnq−2
tn

(7.10)
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and
|Q′

nα − P ′
n| < Q′

nq−2
tn

, (7.11)

since Wn has at least one letter. Furthermore, Lemma 1 implies that

Q′
n

Qn
= [0; WnUnVn Un Wn],

and we get from Lemma 2 that

|Qnα − Q′
n| < Qnq−2

sn
. (7.12)

This shows in particular that

lim
n→+∞

Q′
n

Qn
= α. (7.13)

Consider now the following four linearly independent linear forms with algebraic co-
efficients:

L1(X1, X2, X3, X4) =αX1 − X3,

L2(X1, X2, X3, X4) =αX2 − X4,

L3(X1, X2, X3, X4) =αX1 − X2,

L4(X1, X2, X3, X4) =X2.

Evaluating them on the quadruple (Qn, Q′
n, Pn, P ′

n), it follows from (7.10), (7.11) and
(7.12) that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| < Q4
nq−4

tn
q−2
sn

. (7.14)

We infer from Lemma 3 that

qtn
qrn

≤ Qn ≤ 2qtn
qrn

and q2
sn

≤ Qn ≤ q2
tn

, (7.15)

and thus (7.14) gives
∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ q4
rn

q−2
sn

. (7.16)

Moreover, by our assumption (2.1), there exists η > 0 such that, for any n large enough,
we have

|Un| ≥
(

2
log M

log m
· 1 + η

1 − η
− 1

)

|Wn|.

Consequently, assuming that n is sufficiently large, we get

m(1−η)sn ≥ M2(1+η)rn

and
qsn

≥ q2+η′

rn
,

13



for some positive real number η′. It then follows from (7.16) that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ q−2η′/(2+η′)
sn

. (7.17)

By assumption, we have for any ℓ large enough

√
2 ≤ q

1/ℓ
ℓ ≤ 2M.

Thus, for any integer n large enough, we have

qsn
≥

√
2

sn ≥ ((2M)tn)(sn log
√

2)/(tn log 2M) ≥ q
(sn log

√
2)/(tn log 2M)

tn

≥ Q(sn log
√

2)/(2tn log 2M)
n ,

by (7.15). We then infer from (7.17) and from (ii) of Condition (∗)w,w′ that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ Q−ε
n (7.18)

holds for some positive ε.
It then follows from Theorem B that the points (Qn, Q′

n, Pn, P ′
n) lie in a finite number

of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple (x1, x2, x3, x4)
and an infinite set of distinct positive integers N1 such that

x1Qn + x2Q
′
n + x3Pn + x4P

′
n = 0, (7.19)

for any n in N1. Dividing by Qn, we obtain

x1 + x2
Q′

n

Qn
+ x3

Pn

Qn
+ x4

P ′
n

Q′
n

· Q′
n

Qn
= 0.

By letting n tend to infinity along N1, we infer from (7.13) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since (x1, x2, x3, x4) 6= (0, 0, 0, 0) and since α is irrational and not quadratic, we have
x1 = x4 = 0 and x2 = −x3. Then, (7.19) implies that

Q′
n = Pn. (7.20)

Consider now the following three linearly independent linear forms with algebraic coeffi-
cients:

L′
1(Y1, Y2, Y3) = αY1 − Y2, L′

2(Y1, Y2, Y3) = αY2 − Y3, L′
3(Y1, Y2, Y3) = Y1.

14



Evaluating them on the quadruple (Qn, Pn, P ′
n), it follows from (7.10), (7.11), (7.15) and

(7.20) that

∏

1≤j≤3

|Lj(Qn, Pn, P ′
n)| ≪ Q3

nq−4
tn

≪ q4
rn

Q−1
n ≪ q4

rn
q−2
sn

≪ Q−ε
n ,

with the same ε as in (7.18). It then follows from Theorem B that the points (Qn, Pn, P ′
n)

lie in a finite number of proper subspaces of Q3. Thus, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N2 such that

y1Qn + y2Pn + y3P
′
n = 0,

for any n in N2. We then proceed exactly as at the end of the proof of Theorem 2 to reach
a contradiction. This finishes the proof of our theorem.

8. Proof of Theorem 4

This Section is devoted to the proof of Theorem 4. Instead of a straightforward
application of Theorem 3, which would yield a weaker result, we carefully determine here
the growth of the denominators of the convergents to the real numbers under consideration.

Proof of Theorem 4. Let α = αΛ = [0; aλ1 , b
λ2

, aλ3 , . . . , aλ2n−1 , b
λ2n

, . . .] and denote by
(pℓ/qℓ)ℓ≥1 the sequence of its convergents. Assume that

lim inf
n→∞

λn+1

λn
>

√
2. (8.1)

We first remark that if moreover the sequence (λn+1/λn)n≥1 is not bounded from
above, then the transcendence of α follows from a direct application of Theorem 3. Indeed,
let us assume that there exists an increasing sequence of positive integers (nk)k≥1 such that
limk→∞(λnk+1/λnk

) = +∞. Without loss of generality, we can also assume that nk is odd

for every k ≥ 1. Then, we apply Theorem 3 with Wk = aλ1b
λ2

aλ3 . . . aλnk , Uk = b
⌊λnk+1⌋/2

and Vk equals to the empty word, since |Vk|/|Uk| = 0 and limk→∞ |Uk|/|Wk| = +∞.
From now on, we thus assume that

lim sup
n→∞

λn+1

λn
< +∞. (8.2)

Without loss of generality, we can assume that b > a. For n ≥ 1, we set Wn =

aλ1b
λ2

aλ3 . . . b
λ2n−2

, Un = aλ2n−1b
λ2n

and Vn = aλ2n+1b
λ2n+2−λ2n

. Set also rn = |Wn|,
sn = |WnUn| and tn = |WnUnVnUn|. By assumption, we have

ptn
/qtn

= [0; WnUnVnUn].
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Following the idea introduced in the proof of Theorem 3, we consider the rational Pn/Qn

defined by
Pn/Qn = [0; WnUnVnUnWn].

Then, using the fact that the word WnUnVnUnWn is a quasi-palindrome, we can mimic
the first steps of the proof of Theorem 3 (see in particular (7.16)). We obtain that α is
transcendental as soon as we can ensure the existence of a positive real number ε such that

q4
rn

q−2
sn

≪ Q−ε
n . (8.3)

Here and below, the numerical constant implicit in ≪ does not depend on n. Moreover,
we can deduce from (8.1) and (8.2) that the sequence (|UnVn|/|Wn|)n≥1 is bounded from
above which implies the existence of a positive real number η such that

qrn
≪ Qη

n.

It thus follows from (8.3) that α is transcendental as soon as we can ensure the existence
of a positive real number δ such that

q4
rn

q−2
sn

≪ q−δ
rn

. (8.4)

Let (aℓ)ℓ≥1 denote the sequence of partial quotients of α, and, for every m ≥ 1, set
xm = [am; am−1, . . . , a1]. It follows from Lemma 4 that

log qsn
=

sn
∑

m=1

log xm = log qrn
+

sn
∑

m=rn+1

log xm.

In view of (8.4), it only remains for us to prove that there exists a positive real number δ
such that

sn
∑

m=rn+1

log xm ≥ (1 + δ)

rn
∑

m=1

log xm, (8.5)

for n large enough.
In the sequel of the proof, we show that (8.5) holds. For n ≥ 1, set cn =

∑n
k=1 λk,

dn =
∑n

k=1 λ2k and en =
∑n

k=1 λ2k−1. To simplify the exposition, we put c0 = d0 = e0 = 0
and, for 0 ≤ j ≤ n − 2, we set

A2j+1 =

c2j+1
∑

m=c2j+1

log xm, B2j+2 =

c2j+2
∑

m=c2j+1+1

log xm,

and, for 0 ≤ j ≤ n − 2, we set

A′
2j+1 =

rn+ej+1
∑

m=rn+ej+1

log xm, B′
2j+2 =

rn+λ2n−1+dj+1
∑

m=rn+λ2n−1+dj+1

log xm.
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It follows from (1) that for 0 ≤ j ≤ n − 2 and for rn + ej + 1 ≤ m ≤ rn + ej+1, the
first m partial quotients of xm are all equals to a. We similary deduce from (1) that for
0 ≤ j ≤ n − 2 and for rn + λ2n−1 + dj + 1 ≤ m ≤ rn + λ2n−1 + dj+1, the first m partial
quotients of xm are all equal to b. By Lemma 6, we thus have

|A2j+1 − log αa| <
20

θ3
, |A′

2j+1 − log αa| <
20

θ3
,

|B2j+2 − log αb| <
20

θ3
, |B′

2j+2 − log αb| <
20

θ3
,

(8.6)

where, as in Section 5, we have set θ = (1 +
√

5)/2. On the other hand, we have

rn
∑

m=1

log xm =

n−2
∑

j=0

(A2j+1 + B2j+2) (8.7)

and

sn
∑

m=rn+1

log xm =
n−2
∑

j=0

(A′
2j+1 + B′

2j+2) +

rn+λ2n−1
∑

m=rn+en−1+1

log xm +

sn
∑

m=sn−λ2n+dn−1+1

log xm.

Then, (8.6) and (8.7) imply that

sn
∑

m=rn+1

log xm−
rn
∑

m=1

log xm ≥
rn+λ2n−1
∑

m=rn+en−1+1

log xm+

sn
∑

m=sn−λ2n+dn−1+1

log xm− 80n

θ3
. (8.8)

We also deduce from (8.1) the existence of a positive real number ω such that

λ2n−1 > (1 + ω)en−1 and λ2n > (1 + ω)dn−1.

Now, from (8.8) and the fact that xm ≥ (b + 2)/(b + 1) for any m ≥ 2, it thus follows

sn
∑

m=rn+1

log xm −
rn
∑

m=1

log xm ≥ w(en−1 + dn−1) log
b + 2

b + 1
− 80n

θ3
= ωrn log

b + 2

b + 1
− 80n

θ3
.

We easily deduce from (8.1) that rn ≥ 2n for n large enough, which implies that

sn
∑

m=rn+1

log xm −
rn
∑

m=1

log xm ≥ ω

2
rn log

b + 2

b + 1
, (8.9)

for n large enough. On the other hand, we have xm < b + 1 for every positive integer m,
implying that

rn
∑

m=1

log xm < rn log(b + 1). (8.10)
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Combining (8.9) and (8.10), we get the existence of a positive real number δ such that

sn
∑

m=rn+1

log xm −
rn
∑

m=1

log xm > δ

(

rn
∑

m=1

log xm

)

,

for n large enough. In view of (8.5), this concludes the proof.
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