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EXISTENCE OF C 1,1 CRITICAL SUB-SOLUTIONS OF THE HAMILTON-JACOBI EQUATION ON COMPACT MANIFOLDS

Nous donnons une preuve simple de l'existence d'une sous-solution C 1,1 de l'équation de Hamilton-Jacobi dans le contexte de la theorie de Mather. Nous donnons certaines conséquences dynamiques de ce résultat. Nous montrons que la solution peut être obtenue stricte en dehors de l'ensemble d'Aubry.

Let M be a compact manifold without boundary. A function H(x, p) : T * M -→ R is called a Tonelli Hamiltonian if it is C 2 and if, for each x ∈ M , the function p -→ H(x, p) is convex with positive definite Hessian and superlinear on the fibre T *

x M . Each Tonelli Hamiltonian generates a complete C 1 flow ψ t . We consider the Hamilton-Jacobi equation (HJ) H(x, du x ) = c, with a special emphasis on sub-solutions. A function u : M -→ R is called a sub-solution of (HJ) if it is Lipschtiz and satisfies the inequality H(x, du x ) c at almost every point. Note that this definition is equivalent to the notion of viscosity sub-solutions, see [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. We denote by C 1,1 (M, R) the set of differentiable functions with Lipschitz differential. The goal of the present paper is to present a short and selfcontained proof of:

Theorem A Let H be a Tonelli Hamiltonian. If the Hamilton-Jacobi equation (HJ) has a sub-solution, then it has a C 1,1 sub-solution. Moreover, the set of C 1,1 sub-solutions is dense for the uniform topology in the set of sub-solutions.

Fathi and Siconolfi recently proved the existence of a C 1 sub-solution in [START_REF] Fathi | Existence of C 1 critical sub-solutions of the Hamilton-Jacobi equation[END_REF], see [START_REF] Massart | Sub-solutions of time-periodic Hamilton-Jacobi equations[END_REF] for the non-autonomous case. Our result is optimal in the sense that examples are known where a C 1,1 sub-solution exists, but no C 2 sub-solution, see Appendix A. There exists a real number α(H), called the Mañé critical value in the literature, such that the equation (HJ) has sub-solutions if and only if c α(H). One can prove the existence of smooth sub-solutions for c > α(H) by standard regularization, see [START_REF] Contreras | Lagrangian graphs, minimizing measures and Mañé's critical values[END_REF]. As a consequence, our Theorem is relevant for the sub-solutions of the critical equation H(x, du x ) = α(H), which are called the critical sub-solutions of (HJ). The study of the critical Hamilton-Jacobi equation H(x, du x ) = α(H) is the core of Fathi's weak KAM theory.

A sub-solution u is called strict on the open set U ⊂ M if there exists a smooth non-negative function V : M -→ R which is positive on U and such that u is also a sub-solution of the equation H(x, du x ) + V (x) = c. By applying the Theorem to the Hamiltonian H + V , we obtain:

Addendum If there exists a sub-solution of (HJ) which is strict on the open set U , then there exists a C 1,1 sub-solution which is strict on U .

We now expose some dynamical consequences of the main result, which lead to a very short proof of the existence of invariant sets contained in Lipschitz graphs:

Theorem B There exists a unique non-empty compact set Ã(H) ⊂ T * M with the following properties:

(1) Ã(H) is invariant for the Hamiltonian flow, and

Ã(H) ⊂ H -1 (α(H)).
(2) For each C 1 critical sub-solution u of (HJ), we have

Ã(H) ⊂ Γ u := {(x, du x )|x ∈ M }.
(3) There exists a critical C 1,1 sub-solution u of (HJ) which is strict on the complement of the projection A(H) of Ã(H) onto M .

It is an easy consequence of Theorem B that the set Ã(H) is a Lipschitz graph above A(H) and is not empty. We explain in the course of the proof of Theorem B in section 2 that Ã(H) is the set usually called the Aubry set in the literature (although it was introduced by John Mather).

Let us quote explicitely the following:

Corollary There exists a critical C 1,1 sub-solution which is strict outside of the projected Aubry set.

We give some examples in Appendix A, which explain why C 1,1 regularity is optimal. Theorem A is proved in Section 1, with the use of some properties of semi-concave functions which are recalled in Appendix B. Theorem B is proved in Section 2.

I wish to thank Cedric Villani, whose questions about the geometry of optimal transportation led me to the Proposition 2 which is the key of the proof.

The Lax-Oleinik semi-groups and sub-solutions

We prove Theorem A. It is necessary to start with more definitions. We define the Lagrangian L : T M -→ R associated to H by the relation

L(x, v) = max p∈T * x M p(v) -H(x, p).
Then we define, for each t 0, the function

A t : M × M -→ R by A t (x, y) := min γ t 0 c + L(γ(s), γ(s))ds
where the minimum is taken on the set of curves γ ∈ C 2 ([0, t], M ) which satisfy γ(0) = x and γ(t) = y. Following Fathi, we define the Lax-Oleinik semi-groups T t and Tt on C 0 (M, R) by

T t u(x) = min y∈M u(y) + A t (y, x) and Tt u(x) = max y∈M u(y) -A t (x, y) .
The following useful Lemma is proved in Fathi's book:

Lemma 1. Given a Lipschitz function u : M -→ R, the following properties are equivalent:

• u is a sub-solution of (HJ).

• The inequality u(y) -u(x) A t (x, y) holds for each t > 0 and each

(x, y) ∈ M × M . • The function [0, ∞[∋ t -→ T t u(x) is non-decreasing for each x ∈ M . • The function [0, ∞[∋ t -→ Tt u(x) is non-increasing for each x ∈ M .
An important consequence is that the semi-groups T t and Tt preserve the set of sub-solutions. Another important property of these semigroups is that, for each t > 0 and each continuous function u, the function T t u is semi-concave and the function Tt u semi-convex, see [START_REF] Bernard | The dynamics of pseudographs in convex Hamiltonian systems[END_REF][START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] and Appendix B for the definitions. Recall that a function is C 1,1 if and only if it is both semi-concave and semi-convex.

If u is a sub-solution of (HJ), then for each s > 0 and t > 0, the function T s Tt u is a subsolution. We shall prove that, for each fixed t > 0, this function is C 1,1 when s is small enough. Ludovic Rifford has pointed out to the author that this is a kind of Lasry-Lions regularization, see [START_REF] Lasry | A Remark on regularization in Hilbert Spaces[END_REF]. Since Tt u is semi-convex, Theorem A follows from the following result, which may have other applications.

Proposition 2. Let H be a Tonelli Hamiltonian. For each semi-convex function v, the function T s v is C 1,1 for each sufficiently small s > 0.

Proof. In order to prove this proposition, it is enough to prove that the function T s v is semiconvex for small s, since we already know that it is semi-concave for all s > 0. This follows from two Lemmas: Lemma 3. For each bounded subset F ⊂ C 2 (M, R) there exists a time s 0 > 0 such that, for each s ∈ [0, s 0 ], the image T s (F ) is a bounded subset of C 2 (M, R) and the following relation holds for all functions f ∈ F and all x ∈ M (1)

T s f (x(s)) = f (x) + s 0 c + L(x(t), ẋ(t))dt,
where x(t) is the curve π • ψ t (x, df (x)) (π : T * M -→ M is the projection and ψ t is the Hamiltonian flow).

Proof. Let us consider a C 2 function f and the graph Γ f ⊂ T * M of its differential. This graph is a C 1 Lagrangian manifold transversal to the fibers. It is known that, for s 0 small enough, the Lagrangian manifold ψ s (Γ f ) is the graph of a C 2 function, and that this C 2 function is T s f . Then, we have [START_REF] Bernard | The dynamics of pseudographs in convex Hamiltonian systems[END_REF]. The maximum time s 0 such that these properties hold is uniform for families of functions which are bounded in C 2 norm (for then the associated graphs are contained in a given compact set, and are uniformly transversal to the verticals). In addition, one can choose s 0 in such a way that the set {T s f, s ∈ [0, s 0 ], f ∈ F } is bounded in the C 2 topology, (which amounts to say that the manifolds ψ s (Γ f ) are uniformly transversal to the fibers).

Lemma 4. Let v be a semi-convex function. Then there exists a bounded subset F ⊂ C 2 (M, R) and a time s 0 > 0 such that

T s v = max f ∈F T s f
for all s ∈ [0, s 0 ], hence T s v is a semi-convex function for s 0 small enough.

Proof. If v is semi-convex, then there exists a bounded subset F ⊂ C 2 (M, R) such that v = max F f and such that for each x and each p ∈ ∂ -v(x) (the set of proximal sub-differentials of v at point x, see Appendix B), there exists a function f ∈ F satisfying (f (x), df (x)) = (v(x), p), see Appendix B. Let us fix from now on such a family F of functions, and consider the time s 0 associated to this family by the first Lemma. Notice that

T s v sup f ∈F T s f for all s, because for each f ∈ F we have f v hence T s f T s v.
In order to prove that the equality holds for s ∈ [0, s 0 ], let us fix a point x ∈ M . There exists a point y such that T s v(x) = v(y) + A s (y, x). Now let (x(t), p(t)) : [0, s] -→ T * M be a Hamiltonian trajectory which is optimal for A s (y, x). We mean that x(0) = y, x(s) = x, and

A s (y, x) = s 0 c + L(x(t), ẋ(t))dt.
It is known (see [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF][START_REF] Bernard | The dynamics of pseudographs in convex Hamiltonian systems[END_REF]) that -p(0) is then a proximal super-differential of the function z -→ A s (z, x) at point y. Since the function z -→ u(z) + A s (z, x) is minimal at y, the linear form p(0) is a proximal sub-differential of the function u at point y. Let us consider a function f ∈ F such that (f (y), df (y)) = (u(y), p(0)). Then we have (x(t), p(t)) = ψ t (y, df (y)) and, by the first Lemma,

T s f (x) = T s f (x(s)) = f (y) + s 0 c + L(x(t), ẋ(t))dt = u(y) + A s (y, x) = T s u(x).
We have proved that, for each point x ∈ M , there exists a function f ∈ F such that T s f (x) = T s u(x). This ends the proof.

The proof also implies: Corollary 5. If u is a C 1,1 sub-solution, then there exists ǫ > 0 such that T t u and Tt u are C 1,1 sub-solutions when t ∈ [0, ǫ]. In addition, we have, for these values of t,

Γ u = ψ t Γ Ttu = ψ -t Γ Ttu
where Γ f is the graph of the differential of f .

The Aubry set

In this section, we consider only the critical case c = α(H), and prove Theorem B. Let us first define the projected Aubry set A(H) ⊂ M . This is the set of points x ∈ M such that H(x, du x ) = α(H) for each C1 sub-solution u. A similar definition is given in [START_REF] Fathi | PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians[END_REF]. Lemma 6. If u 1 and u 2 are two critial C 1 sub-solutions, then du 1 = du 2 on A(H).

Proof. If du 1 (x) = du 2 (x), then, by the strict convexity of H, the function (u 1 + u 2 )/2 is a C 1 critical sub-solution which is strict at x. This implies that x does not belong to A(H).

As a consequence, we can define in a natural way the set Ã(H) := {(x, du x )|x ∈ A(H)}

where u is any C 1 critical sub-solution.

Lemma 7. There exists a C 1,1 critical sub-solution u which is strict outside of A(H).

Proof. By the Addendum of Theorem A, it is enough to prove that there exists a critical sub-solution which is strict outside of A(H). Since C 1 (M, R) is separable, the set of critical C 1 sub-solutions of (HJ) endowed with the C 1 norm is separable. As a consequence, there exists a dense sequence u n of C 1 critical sub-solutions. The C 1 function

u(x) := ∞ n=1 u n (x) 2 n
is a C 1 critical sub-solution of (HJ) which is strict outside of A(H). Indeed, for each point x ∈ A(H), there exists a C 1 critical sub-solution v such that H(x, dv x ) < α(H). Since the sequence u n is dense for the C 1 topology, we conclude that H(x, du n (x)) < α(H) for some n.

The desired conclusion follows by the convexity of H.

This Proposition implies that A(H) is not empty. Otherwise, there would exist a critical sub-solution strict on M , which is a contradiction. Proposition 8. The set Ã(H) is invariant.

Proof. Let us choose a C 1,1 critical sub-solution u which is strict outside of the projected Aubry set. We have Ã(H) = Γ u ∩ H -1 (α(H)). Let ǫ be given by corollary 5. We claim that ψ t ( Ã(H)) = Ã(H) for all t ∈ [-ǫ, ǫ], where ψ t is the Hamiltonian flow. This claim clearly implies the desired result. Let (x, du x ) be a point of Ã(H) and t ∈ [-ǫ, ǫ]. Let us denote by (y, dv y ) the point ψ t (x, du x ), where v := T t u. Since v is a critical sub-solution, we have (y, dv y ) ∈ Ã(H) provided y ∈ A(H). In order to prove this inclusion, we denote by w the function w := Tt u, which is a C 1,1 critical sub-solution. Since x ∈ A(H), we have du x = dw x . This implies that ψ t (x, dw x ) = ψ t (x, du x ) = (y, dv y ). Since ψ t (Γ w ) = Γ u , this implies that dv y = du y , and, by energy conservation, that H(y, du y ) = α(H). Since the sub-solution u is strict outside of A(H), we conclude that y ∈ A(H). The usual definition of the Aubry set is based on the notion of calibrated curve. 1 The curve x(t) is said calibrated by the sub-solution u if the equality [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations and optimal control, Progress in nonlinear differential equations and their applications[END_REF] u(x(t)) -u(x(s)) = t s α(H) + L(x(σ), ẋ(σ))dσ holds for each s t. If x(t) is calibrated by u, then it is an extremal, which means that there exists a trajectory (x(t), p(t)) of the Hamiltonian system above the curve x(t). In the book of Fathi [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF], the Aubry set is defined as the union, in T * M , of all the images of the Hamiltonian orbits (x(t), p(t)) : R -→ T * M which are calibrated by all subsolutions. This definition is for z ∈ B 2 , where y = ϕ -1 (x), and f x,p,ϕ = max u outside of ϕ(B 2 ). The functions f x,p,ϕ , ϕ ∈ Φ, x ∈ ϕ(B 1 ), p ∈ ∂ + u(x) form a bounded subset F of C 2 (M, R). It is easy to check that f = min f ∈F f .

A function u is called semi-convex if -u is semi-concave.

Proposition 11. A function is C 1,1 if and only if it is semi-concave and semi-convex.

A very elementary proof of this statement is given in the book of Fathi. Another proof is given in [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations and optimal control, Progress in nonlinear differential equations and their applications[END_REF], Corollary 3.3.8.

here start the modifications compared to the published version

equivalent to the ones previously given by John Mather. Denoting temporarily by F(H) this set defined by Fathi, we have Ã(H) = F(H), which explains our terminology. The inclusion Ã(H) ⊂ F(H) follows from: Claim. Let (x(t), p(t)) be a Hamiltonian orbit contained in the invariant set Ã(H). Then the curve x(t) is calibrated by all the critical sub-solutions. Proof. Since the C 1,1 critical sub-solutions are dense in the set of critical sub-solutions for the uniform topology, it is sufficient to prove the statement for C 1,1 critical sub-solutions. Let u be such a sub-solution. The point (x(t), p(t)) belongs to Ã(H), hence it belongs to the graph of du, and therefore p(t) = du x(t) . We thus have

and the desired formula follows by integration. Conversely, in order to prove the inclusion F (H) ⊂ Ã(H), we neeed:

Claim. Let (x(t), p(t)) be a Hamiltonian orbit contained in F(H), then, for each C 1 subsolution u, we have p(t) = du x(t) and H(x(t), p(t)) = α(H) for each t ∈ R. Proof. It is a classical fact of Weak KAM theory, proved for example in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] that p(t)) = du x(t) when (x(t), p(t)) is an orbit calibrated by the C 1 sub-solution u (actually this equality holds even if u is not C 1 ). We conclude that all C 1 sub-solutions satisfy du x(t) = p(t). Assume that H(x(t), p(t)) < α(H). Then it is possible to perturb slightly the function u by a function v which is still a critical sub-solution and satisfies dv x(0) = p(0), a contradiction.

for all t 0 and x ∈ A(H). Therefore, if u is a critical sub-solution, there exists a C 1,1 subsolution which coincides with u on A(H).

Proof. The second part of the statement clearly follows from the first part: just take T ǫ Tt u, which is equal to u on A(H). So we have to prove the first part of the statement. Once again, it is enough to prove it when u is C 1,1 . We now make this additional assumption. Let x be a point in A(H), and let (x(t), p(t)) be the orbit of the point (x, du x ). Since the curve x(t) is calibrated by u, we have

for all t 0. Since u is sub-solution, we conclude that T t u(x) = u(x). The proof concerning T is similar.

Appendix A. Examples

A.1. Mechanical Hamiltonian system. Let us consider the case

where .

x is a Riemaniann metric on M and V is a smooth function on M . Then it is easy to see that α(H) = max V , and that there exists a smooth sub-solution to (HJ): any constant function is such a sub-solution! A.2. Non-existence of a C 2 sub-solution. Let us now specialise to M = T, and consider the Hamiltonian

depending on the real parameter P . For P = 0 this is a Mechanical system as discussed above, and the constants are sub-solutions of (HJ). Let X(x) : T -→ R be the function such that

The reader can check easily that α(H P ) = 0 for P ∈ [-a, a]. For each P ∈] -a, a[, the equation (HJ) has smooth sub-solutions. For these values of P , the Aubry set is the fixed point (0, -P ). However, for P = a, there is one and only one critical sub-solution of (HJ), which turns out to be a solution. It is given by the primitive of the function X -a. This function is C 1,1 but not C 2 . Note that the Aubry set, then, is not reduced to the hyperbolic fixed point (0, -a) but is the whole graph of X -a.

Appendix B. Semi-concave functions

We recall some useful facts on semi-concave functions, see for example [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations and optimal control, Progress in nonlinear differential equations and their applications[END_REF][START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] for more material. In all this section, M is a compact manifold of dimension d. It is useful to fix once and for all a finite atlas Φ of M composed of charts ϕ : B 3 -→ M , where B r is the open ball of radius r centered at zero in R d . We assume that the sets ϕ(B 1 ), ϕ ∈ Φ cover M . A family F of C 2 functions is said bounded if there exists a constant C > 0 such that

for all x ∈ B 1 , ϕ ∈ Φ, u ∈ F . Note that a bounded family is not required to be bounded in C 0 norm, but will automatically be bounded in C 1 norm and thus equi-Lipschitz. The notion of bounded family of functions does not depend on the atlas Φ.

A semi-concave function is Lipschitz. We say that the linear form p ∈ T x M is a proximal superdifferential of the function u at point x if there exists a C 2 function f such that f -u has a minimum at x and df x = p. We denote by ∂ + u(x) the set of proximal superdifferentials of u at x. We say that a linear form p ∈ T x M is a K-super-differential of the function u at point x if for each chart ϕ ∈ Φ and each point y ∈ B 2 satisfying ϕ(y) = x, the inequality

Proposition 10. A function u is semi-concave if and only if there exists a number K > 0 such that u is K-semi-concave. Then, there exists a bounded subset F ⊂ C 2 (M, R) such that u = min f ∈F f and, for each point x ∈ M and each super-differential p of u at x, there exists a function f ∈ F such that (f (x), df (x)) = (u(x), p).

Proof. Let us consider a smooth function g : R d -→ R such that 0 g 1, and such that g = 0 outside of B 2 and g = 1 inside B 1 . Let us associate, to each chart ϕ ∈ Φ, and each point (x, p) ∈ T x M satisfying x ∈ ϕ(B 1 ), the function f x,p,ϕ : M -→ R defined by f x,p,ϕ • ϕ(z) := g(z) u(x) + p • dϕ y (z -y) + K z -y 2 + (1 -g(z)) max u