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Let M be a compact manifold without boundary. A function H(x, p) : T ∗M −→ R is called a
Tonelli Hamiltonian if it is C2 and if, for each x ∈M , the function p 7−→ H(x, p) is convex with
positive definite Hessian and superlinear on the fibre T ∗

xM . Each Tonelli Hamiltonian generates
a complete C1 flow ψt. We consider the Hamilton-Jacobi equation

H(x, dux) = c, (HJ)

with a special emphasis on sub-solutions. A function u : M −→ R is called a sub-solution of (HJ)
if it is Lipschtiz and satisfies the inequality H(x, dux) 6 c at all its points of differentiability.
Note that this definition is equivalent to the notion of viscosity sub-solutions, see [5]. We denote
by C1,1(M,R) the set of differentiable functions with Lipschitz differential. The goal of the
present paper is to present a short and selfcontained proof of:

Theorem Let H be a Tonelli Hamiltonian. If the Hamilton-Jacobi equation (HJ) has a
sub-solution, then it has a C1,1 sub-solution. Moreover, the set of C1,1 sub-solutions is dense
for the uniform topology in the set of sub-solutions.

Fathi and Siconolfi recently proved the existence of a C1 sub-solution in [6]. Our result
is optimal in the sense that examples are known where a C1,1 sub-solution exist, but no C2

solution. There exists a real number α(H), called the Mañé critical value in the literature, such
that that the equation (HJ) has sub-solutions if and only if c > α(H). It is not hard to prove
the existence of smooth sub-solutions for c > α(H) by regularization, see [4]. As a consequence,
our Theorem is relevant for the sub-solutions of the critical equation H(x, dux) = α(H), which
are called the critical sub-solutions of (HJ). The study of the critical Hamilton-Jacobi equation
H(x, dux) = α(H) is the core of Fathi’s weak KAM theory.

A sub-solution u is called strict on the open set U ⊂M if there exists a smooth non-negative
function V : M −→ R which is positive on U and such that u is also a sub-solution of the
equation H(x, dux) + V (x) = c. By applying the Theorem to the Hamiltonian H + V , we
obtain:

Addendum If there exists a sub-solution of (HJ) which is strict on the open set U , then
there exists a C1,1 sub-solution which is strict on U .
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We then obtain the important:

Corollary There exists a critical C1,1 sub-solution which is strict outside of the Aubry
set.

We refer to the literature, for example [5] and [6], for the definition of the Aubry set. The
Corollary holds if there exist sub-solutions which are strict outside of the Aubry set. This fact is
proved in [6]. In the paper of Fathi and Siconolfi, finding a strict sub-solution is a key technical
step in order to buid C1 sub-solutions. In our approach, the problems of finding strict and
regular sub-solutions are independant. We do not improve on [6] for the existence of strict
sub-solutions, which is an important problem in itself. See however [7, 2] for new methods of
construction of strict sub-solutions.

Let us now proceed to the proof. It is necessary to start with more definitions. We define
the Lagrangian L : TM −→ R associated to H by the relation

L(x, v) = max
p∈T ∗

x
M
p(v) −H(x, p).

Then we define, for each t > 0, the function At : M2 −→ R by

At(x, y) := min
γ

∫ t

0

c+ L(γ(s), γ̇(s))ds

where the minimum is taken on the set of curves γ ∈ C2([0, t],M) which satisfy γ(0) = x and
γ(t) = y. Following Fathi, we define the Lax-Oleinik semi-groups Tt and T̆t on C0(M,R) by

Ttu(x) = min
y∈M

u(y) +At(y, x) and T̆tu(x) = max
y∈M

u(y) −At(x, y).

Fathi proves in his book that a Lipschitz function u is a sub-solution of (HJ) if and only if
the function t 7−→ Ttu(x) is non-decreasing. As a consequence, the operators Tt preserve the
set of sub-solutions. Similarly, the function u is a sub-solution if and only if t 7−→ T̆tu(x) is
non-increasing, hence the operators T̆t preserve the set of sub-solutions. Another important
property of these semigroups is that, for all t > 0 and all continuous function u, the function
Ttu is semi-concave and the function T̆tu semi-convex.

We say that a function u is semi-concave if it can be written

u(x) = min
f∈F

f(x)

with a bounded family F ⊂ C2(M,R) of functions. Similarly, a function is called semi-convex
if it can be written u(x) = maxf∈F f(x). See for example [3, 5, 1] for more on semi-concave
functions. It is known that a function is C1,1 if and only if it is both semi-concave and semi-
convex.

If u is a sub-solution of (HJ), then for each s > 0 and t > 0, the function TsT̆tu is a sub-
solution. Since T̆tu is semi-convex, the Theorem follows from the following result, which may
have other applications.

Proposition Let H be a Tonelli Hamiltonian. For each semi-convex function v, the func-
tion Tsv is C1,1 for each sufficiently small s > 0.

Proof. In order to prove this proposition, it is enough to prove that the function Tsv is semi-
convex for small s, since we already know that it is semi-concave for all s > 0. This follows from
two Lemmas:

Lemma For each bounded subset F ⊂ C2(M,R) there exists a time s0 > 0 such that, for
each s ∈ [0, s0], the image Ts(F ) is a bounded subset of C2(M,R) and the following relation
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holds for all functions f ∈ F and all x ∈M

Tsf(x(s)) = f(x) +

∫ s

0

c+ L(x(t), ẋ(t))dt, (1)

where x(t) is the curve π ◦ ψt(x, df(x)) (π : T ∗M −→ M is the projection and ψt is the Hamil-
tonian flow).

Proof. Let us consider a C2 function f and the graph Γf ⊂ T ∗M of its differential. This graph
is a C1 Lagrangian manifold transversal to the fibers. It is known that, for s > 0 small enough,
the Lagrangian manifold ψs(Γf ) is the graph of a C2 function, and that this C2 function is Tsf .
Then, we have (1). The maximum time s0 such that these properties hold is uniform for families
of functions which are bounded in C2 norm (for then the associated graphs are contained in a
given compact set, and are uniformly transversal to the verticals). In addition, one can chose
s0 in such a way that the set {Tsf, s ∈ [0, s0], f ∈ F} is bounded in the C2 topology, (which
amounts to say that the manifolds ψs(Γf ) are uniformly transversal to the fibers).

Lemma Let v be a semi-convex function. Then there exists a bounded subset F ⊂ C2(M,R)
and a time s0 > 0 such that

Tsv = max
f∈F

Tsf

for all s ∈ [0, s0], hence Tsv is a semi-convex function for s > 0 small enough.

Proof. Let us define, for each x ∈ M , the set ∂−v(x) of proximal sub-differentials of v at
point x. This is the set of linear forms df(x), where f is a C2 function such that u − f has a
minimum at x. If v is semi-convex, then there exists a bounded subset F ⊂ C2(M,R) such that
v = maxF f and such that for each x and each p ∈ ∂−v(x), there exists a function f ∈ F such
that (f(x), df(x)) = (v(x), p) (see [1]). Let us fix from now on such a family F of functions, and
consider the time s0 associated to this family by the first Lemma.

Notice that
Tsv > sup

f∈F

Tsf

for all s, because for each f ∈ F we have f 6 v hence Tsf 6 Tsv. In order to prove that the
equality holds for s ∈ [0, s0], let us fix a point x ∈M . There exists a point y such that

Tsv(x) = u(y) +As(y, x).

Now let (x(t), p(t)) : [0, s] −→ T ∗M be a Hamiltonian trajectory which is optimal for As(y, x).
We mean that x(0) = y, x(s) = x, and

As(y, x) =

∫ s

0

c+ L(x(t), ẋ(t))dt.

It is known (see [5, 1]) that −p(0) is then a proximal super-differential of the function z 7−→
As(z, x) at point y. Since the function z 7−→ u(z) + As(z, x) is minimal at y, the linear form
p(0) is a sub-differential of the function u at point y. Let us consider a function f ∈ F such that
(f(y), df(y)) = (u(y), p(0)). Then we have (x(t), p(t)) = ψt(y, df(y)) and, by the first Lemma,

Tsf(x) = Tsf(x(s)) = f(y) +

∫ s

0

c+ L(x(t), ẋ(t))dt = u(y) +As(y, x) = Tsu(x).

We have proved that, for each point x ∈ M , there exists a function f ∈ F such that Tsf(x) =
Tsu(x). This ends the proof.
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This proof also gives:

Last remark If u is a critical sub-solution of the Hamilton-Jacobi equation, then there
exists a C1,1 critical sub-solution v whose restriction to the Aubry set is equal to u.

I wish to thank Cedric Villani, not only because he is sick at the moment I am writing these
lines, but also because the questions he asked me on the geometry of optimal transportation led
me to the Proposition which is the key of the proof.
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