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Abstract. We investigate theoretically the low-temperature physics of a two-
component ultracold mixture of bosons and fermions in disordered optical lattices.
We focus on the strongly correlated regime. We show that, under specific conditions,
composite fermions, made of one fermion plus one bosonic hole, form. The composite
picture is used to derive an effective Hamiltonian whose parameters can be controlled
via the boson-boson and the boson-fermion interactions, the tunneling terms and the
inhomogeneities. We finally investigate the quantum phase diagram of the composite
fermions and we show that it corresponds to the formation of Fermi glasses, spin
glasses, and quantum percolation regimes.
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1. Introduction to disordered quantum systems

1.1. From condensed matter physics to ultracold atomic gases

Quantum disordered systems is a very active research field in condensed matter physics
(CM) initiated by the work by P.W. Anderson [] who first pointed out that quenched
(i.e. time-independent) disorder can dramatically change the properties of a quantum
system compared to its long-range ordered counterpart. Hence, disorder plays a
central role in modern solid state physics as it can significantly alter electronic normal
conductivity [|], superconductivity [B] and the magnetic [, f] properties of dirty alloys.

It is by now clear that studying disordered systems is comparable to opening the
Pandora box. On the one hand, disorder introduces a list of non-negligible difficulties.
First, averaging over disorder usually turns out to be a complex task that requires
either original methods such as the replica trick [] and supersymmetry [fJ] or numerical
computations using huge samples or a large number of repetitions with different
configurations. Second, the possible existence of a huge number of excited states with
infinitely small excitation energies leads to complex quantum phases such as bose glasses
[M or spin glasses [[]. Third, the interplay of kinetic energy, particle-particle interactions
and disorder is usually a non-trivial problem [§ which is still challenging. On the other
hand, disorder leads to an extraordinary variety of physical phenomena such as, for
example, Anderson localization [[], quantum percolation [[], or quantum frustration
.

Studies of quantum disorder in CM have several limitations. First, the disorder
cannot be controlled as it is fixed by the specific realization of the sample. In particular,
one cannot switch adiabatically from one configuration to another. Second, the particles
are fermions (electrons) and the inter-particle interaction corresponds to the Coulomb
long-range potential. Third, theoretical studies rely on toy models and experiments do
not provide control parameters. Thus, it would be highly desirable to consider new kinds
of disordered quantum systems. As shown in this work and also discussed in other papers
[0, [, one exciting possibility is that of ultracold atomic gases where these problems
can be revisited with unique parameters control and measurements possibilities.

1.2. Ultracold atomic gases

Following the recent progress in cooling and trapping of neutral atoms [[[J], dilute atomic
Bose-Einstein condensates (BEC) [[[4], degenerate Fermi gases (DFG) [[[J and mixtures
of both [[{] are now currently produced at the laboratory. In these systems almost all
parameters prove to be highly controllable [[7]: (i) Using standard techniques, one can
easily control the trapping potential, the size, the density and the temperature of the
atomic gas. (ii) Due to the strong dilution, the contact interactions are usually small
and can be computed ab initio. In addition, their sign and strength can be controlled
using Feshbach resonances [[§. (iii) Quantum statistics is also a degree of freedom
as one can use bosons or fermions. (iv) Finally, inhomogeneous trapping potentials
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can be designed almost at will using standard optical techniques. In particular, periodic
potentials (optical lattices) with no defect nor phonons can be designed in a wide variety
of geometries [[9. Controlled disordered [RU] or quasi-disordered [21], 7| potentials can
also be optically produced opening new possibilities. Hence, equilibrium and transport
properties of interacting Bose-Einstein condensates in random potentials have been
investigated in recent experiments [23, P4, P3).

In recent works [[J, Rf], we have shown that Fermi-Bose mixtures in an optical
lattice with diagonal (i.e. with random on-site energy) randomness constitute
a case study of quantum disordered systems. In the strongly correlated regime
(strong interactions), the dynamics reduces to a universal effective Hamiltonian whose
parameters can be controlled through the boson-boson and fermion-boson interactions,
or the depth of the periodic and disordered potentials. It results in a rich quantum
phase diagram ranging from Fermi glasses and Fermi Anderson localization to quantum
spin glasses and quantum percolation [[Z].

This paper reviews our works on strongly correlated Fermi-Bose mixtures in
disordered optical lattices. It further details the results discussed in Ref. [[J]. In
Ref. [BG], we have presented a complete study of the system and discussed a wide
variety of cases, including several composite types and quantum phases. As in such a
rich system, completeness competes with conciseness, we think that a shorter review
would be useful for non-specialist readers. It is the aim of this paper to provide such a
concise review of our findings. We have thus chosen to restrict the present analysis to
a specific case that proves to be non the less paradigmatic but also one of the richest
ones. For more details, the interested reader should refer to Ref. [2§].

The paper is organized as follows. In section J}, we introduce the model describing
the considered system (P.I]) and the composite fermions formalism that leads to the
effective hamiltonian (R.2 and B.J). Section [] shows the results for the non-disordered
and weakly disordered lattices and in section {f| the strong disorder limit, the spin glass
limit, is discussed. Finally, we summarize and discuss our results in section

2. Strongly correlated composite fermions in inhomogeneous optical lattices

2.1. The Fermi-Bose Hubbard Hamiltonian

Consider a mixture of ultracold bosons (b) and spinless (or spin-polarized) fermions
(f) trapped in an optical lattice. In addition, the mixture is subjected to on-site
inhomogeneities consisting in a harmonic confining potential and/or in diagonal disorder.
Eventually, the periodic potential and the inhomogeneities are different for the bosons
and the fermions. However, we assume that the lattices for the two species have the
same periodicity. The lattice sites are indexed by ¢ and are thus the same for the
fermions and the bosons. In all cases considered below, the temperature is assumed to
be low enough and the potential wells deep enough so that only quantum states in the
fundamental Bloch bands for both the bosons and the fermions are populated. Notice
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that, this requires that the filling factor for fermions py is smaller than 1 i.e. the total
number of fermions Ny is smaller than the total number of lattice sites V.

We use the Wannier basis of the fundamental Bloch band which corresponds to
wave-functions well localized in each lattice site 7] for both the bosons and the
fermions. This basis is particularly well suited for the strongly correlated regime that

is investigated here [P§. Then, the second quantization Hamiltonian reduces to the

Fermi-Bose Hubbard (FBH) model [B, B, B :

HFBH = — Z _Jbb;rb] + Jff;rf] + hc]
(i5)

+ Z _—u})ni — ,uifml}

where b; and f; are bosonic and fermionic annihilation operators of a particle in the

i-th site and n; = b;fbi, m; = f; fi are the corresponding on-site number operators. The
FBH model describes: (i) nearest neighbor boson (fermion) hopping, with an associated
negative energy, —.Jj, (—Jg); (ii) on-site boson-boson interactions with an energy V/,
which is supposed to be positive (i.e. repulsive) in the reminder of the paper; (iii)
on-site boson-fermion interactions with an energy U, which is positive (negative) for
repulsive (attractive) interactions; (iv) on-site energy due to interactions with a possibly

inhomogeneous potential, with energies —p;” and —p;. Eventually, —u;b and —,LLif also
contain the chemical potentials in grand canonical description.

In the following, we investigate the properties of the strong coupling regime, i.e.
V.U > Jb,f and we derive a one-species effective Hamiltonian using a perturbative

development up to second order in J}, ¢/V.

2.2. Zeroth-order perturbation: formation of fermion composites

In the limit of a vanishing hopping (J;, = J; = 0) with finite repulsive boson-boson

interaction V', and in the absence of interactions between bosons and fermions (U = 0),
b

the bosons are pinned in the lattice sites with exactly n; = [, ] + 1 bosons per site,
where ﬂb = ub /V and [x] denotes the integer part of z. For simplicity, we assume
n; = 1 for all sites so that the boson system is in the Mott insulator (MI) phase with
1 boson per site. In contrast, the fermions can be in any set of Wannier states, since
for a vanishing tunneling, the energy of the system does not depend on the distribution
of the fermions in different lattice sites for the homogeneous optical lattice and will be
very similar for the different repartitions of fermions in the case of small disorder.
Assume now that the boson-fermion interaction is turned on positive (U > 0) and
define a = U/V. The presence of a fermion in site ¢ may expel s = 0 or 1 boson
depending on the interaction strength. The on-site energy gain in expelling s boson

from site i is AE; = %s(s —1)—-Us+ ulbs. Minimizing AE; versus s, we find that
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b

5 = {oz — [ —‘ + 1 that we assume to be 1 in all sites. Within the occupation number
basis, excitations correspond to having 1 boson in a site with a fermion, instead of 0
boson and, therefore, the corresponding excitation energy is ~ U. In the following, we
assume that the temperature is smaller than U so that the populations of the above
mentioned excitations can be neglected.

Summarizing the discussion above, we have assumed that 0 < ,ulo < V (so that
n=1,U0-V < u;b < U (so that in the lowest energy states, each lattice site is
populated by either one boson or one fermion but never 0 or 2 particles), and kgT' < U
(so that only these lowest energy states are significantly populated). The physics of
our Fermi-Bose mixture can thus be regarded as the one of composite particles made
of one fermion plus one bosonic hole. Notice that the bosonic hole is created because
the initially present boson is expelled from the site by the fermion, due to the repulsive
interactions between bosons and fermions. Within the picture of composites, a lattice
site is either populated by one composite (i.e. by one fermion plus bosonic hole) or free
of composite (i.e. populated by one boson). In particular, the vacuum state corresponds
to the MI phase with 1 boson per site. The annihilation and creation operators of the
composites are [B(]:

Fy =blfP (2)
Ff =Pty (3)

where P is the projector onto the sub-Hilbert space of the composites. It is
straightforward to show that F; and F; are fermionic operators.

2.3. Second-order perturbation: effective Hamiltonian

The sub-Hilbert space of the composites is [N!/(Ng)!(N — Np)!]-dimensional, a number
that corresponds to the number of possibilities to distribute the N fermions into the
N lattice sites. We assume now that the tunneling rates Jp) and Jy are small but finite.
For weak enough disorder, one can assume site independent tunneling rates for bosons
and fermions [[[T]. Using second order projection perturbation theory [Bl], we derive
an effective Hamiltonian for the fermionic composites by means of a unitary transform
applied to the total Hamiltonian ([l). The general expression of the effective Hamiltonian
can be written as:

(out|Hglin) = (out|Hy|in) + (out|PH;p Plin) (4)
1 1 1

— —(out|PH, H; n).
2<0u |P zntQ |:H0 — Ezn + HO _ Eout:| Q zntplln>

where @ = 1 — P is the complement of the projection operator P. As second order

theory can only connect states that differ on one set of two adjacent sites, Hyg can only
contain nearest-neighbor hopping and interactions as well as on-site energies 7, [[:

(.3

(i,3) g
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where F; and F] are defined in Eqgs. (B-f) and M; = F|'F; is the composite number
operator in lattice site i. Although the general form of Hamiltonian ([) is universal
for all types of composites, the explicit calculation of the coefficients d; ;, K;; and 7i;
depends on the concrete type of composites that can be created for different values and
sign of alpha [Pf]. The nearest neighbor hopping for the composites is described by
—d; ; and the nearest neighbor composite-composite interaction is given by K ;, which
may be repulsive (> 0) or attractive (< 0). This effective model is equivalent to that of
spinless interacting fermions [J].

In the situation under consideration, each site contains either one boson or one
fermion. Therefore, a fermion jump from site ¢ to site j can only occur if the boson
that was initially in site j jumps back to site ¢ into the hole the fermion leaves behind.
Therefore, the number operator for fermions and bosons are related to the number
operator of composites, i.e. M; =m; =1 —n;. From Eq. (), we find

JnJ o o
a? — (Aij)Q a? — (Aij)Q
h ( 4 20 )
T V- (b (ab)

It 4 1
b f b
My = M + < Z byo b
v (i,9) (A ) a AU
J
" (®)
Zj o+ Af
with A.f?b = ﬂf’b — ﬂf’b measures the inhomogeneity of the lattice sites. Here, (i, j)
1) [ 7 7 ?

represents all sites j adjacent to site i. The coupling parameters in Hamiltonian (f)
depend on all parameters (J},, Jy, U, V, u;b, uf) of the FBH model ([]) in a complex
fashion. For example, the hopping amplitudes d; ; depend on disorder but always remain
positive. In contrast, the interaction term K;; can be positive or negative. All terms

d; j, K;;, 1t; are random due to the inhomogeneous on-site energies ub and ,uif of the

(2
bosons and the fermions respectively. It is thus clear that the qualitative character of
interactions may be controlled by the inhomogeneities [[J.

f

For example, consider the case where disorder only applies to the bosons (;

; = cst,

uniform) [B3]. The corresponding coupling parameters are plotted in Fig. [[. As
mentioned above, the hopping amplitudes d;; are always positive, although may vary
quite significantly with disorder, especially when AB ~ «. As shown in Fig. [l], for
a > 1, K;; <0 and we deal with attractive (although random) interactions. For o < 1,
K;; > 0 and the interactions between composites are repulsive. For o < 1, but close to

1, KU might take positive or negative values for Ab small or Ab ~ Q.
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Figure 1. (color online) Tunneling, d;;, and nearest neighbor interactions K;; between

the fermion composites as a function of the disorder of bosons AB— for various boson-

fermion interactions «. The disorder for fermions is assumed to vanish here (uf =0).

=

In the following two sections, we investigate the ground state properties of the
Fermi-Bose mixture (or equivalently that of the fermion composites) in the presence of
diagonal disorder. We distinguish two limiting cases. The first corresponds to small
disorder while the second corresponds to Aibj) ~ « that interestingly maps to a spin
glass problem.

3. Quantum phase diagrams of Fermi-Bose mixtures in weakly disordered
optical lattices

(f’b) < 1, ) is investigated

7/7]
in this section. For the sake of simplicity, we use J;, = J;y = J. In this limit, the

The first limiting case corresponding to weak disorder (A



Strongly correlated Fermi-Bose miztures in disordered optical lattices 8

contributions of the inhomogeneities Ag’f to the tunneling d;; and to the interaction /;
terms in the effective composite Hamiltonian (J) can be neglected (d;; ~ d and K;; ~ K)
and we keep only the leading disorder contribution in 7, [first term in Eq. (§)]. Note,
that the latter contribution is particularly relevant in 1D and 2D leading to Anderson
localization of single particles [BJ]. We will first describe the non-disordered case and
then we will discuss the effect of weak disorder.

The analysis reported below is supported by mean-field numerical calculations (for
details about the numerical method, see in Ref. [B6]). We consider a 2D optical lattice
with N = 100 sites with N}, = 60 bosons, Ny = 40 fermions and J,/V = J¢/V = 0.02

to compute the ground state of the system in the presence of a very shallow harmonic

trapping potential (u;b’f = wblx 1()?, where [(4) is the distance from site i to the center
in cell size units) with eventually different amplitudes for bosons and fermions. This
simulates optical or magnetic trapping which turns out to be hardly avoidable in current
experiments on ultracold atoms. In addition, it breaks the equivalence of all lattice sites
and makes more obvious the different phases that one can achieve (see below). In the
numerics, we have used wP = 10~7 and Wi =5%x107.

In the absence of interactions between the bosons and the fermions (o = 0), the
bosons are well inside the MI phase with n = 1 boson per site in the center of the trap
[0, BY). Besides, the non-interacting fermions are delocalized and due to the very small
value of wf they do not feel significantly the confining trap as shown in Fig. P(a).

3.1. Quantum phases in non-disordered optical lattices

In the absence of disorder, the physics of the Fermi-Bose mixture is mainly determined
by the ratio K'/d and the sign of K where K and d are site independent parameters. Once
the fermion composites are created (o > iiP, see section P-2), we have K/d = —2(a—1)
as a result of Eqgs. (B-f]) with Jj, = Jy = J and A;; = 0. We now discuss the quantum
phases that are accessible depending on the control parameter o [B4].

b < 1, the interactions between composite fermions are repulsive and of

For i
the same order of magnitude as the tunneling (K ~ d). Therefore, the system enters
an interacting Fermi liquid quantum phase [see Fig. B(b)]. The fermions are delocalized
over the entire lattice but populate preferably the center of the confining trap. Small
repulsive composite interactions tend to flatten the density profile compared to that of

non-interacting composites (see Fig. P and text below).

For @ ~ 1, although the interactions between the bosons and the fermions are
large, the interactions between the fermion composites vanish and the system shows
up properties of an ideal Fermi gas [see Fig. B(c)]. Again, the fermions are delocalized
and their distribution follows the harmonic confinement.
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Figure 2. Local on-site probability of finding one fermion and zero boson at each
lattice site for the N = 100 lattice sites in a Fermi-Bose mixture with Ny = 60,
N¢ = 40, J,,/V = J;/V = 0.02 and in the presence of harmonic traps for bosons and
fermions characterized by wy, = 10~7 and wp="5x 107, respectively. The interaction
between fermions and bosons is (a) a = 0 [independent bosonic MI and Fermi gas], (b)
a = 0.5 [Fermi liquid], (¢) a =1 [ideal Fermi gas] and (d) oo = 10 [fermionic insulator
domain].

Growing further the repulsive interactions between bosons and fermions, the
interactions between the fermion composites become attractive. For 1 < a < 2, one
expects the system to be a weakly interacting superfluid, whereas for o > 2 a fermionic
insulator domain phase is predicted [see Fig. B(d)]. In this case, the fermions are pinned
in the lattice sites. They tend to merge because of site-to-site attractive interactions

and populate the center of the trap.
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Notice that contrary to the bare fermions, the composite fermions are significantly
affected by the harmonic trapping potential. This is because the coupling parameters of
the composite effective Hamiltonian (f]) are much smaller than the coupling parameters
of the bare fermion-boson Hubbard Hamiltonian ([). Therefore the harmonic potential
is able to compete with tunneling and interactions for the composites [2g].

3.2. Quantum phases in disordered optical lattices

We now assume that small on-site inhomogeneities are present and we investigate the
effect of disorder on the quantum phase diagram of the system depending on the
parameters of the effective Hamiltonian (). Fig. B shows a schematic representation of
expected disordered phases of the fermionic composites for small disorder.

Domain Fermi Mott Insulator

insulator «myieess  Glass . (Checker-board
Dirty Metallic for p=1/2)

superfluid Phases

Figure 3. (color online) Schematic phase diagram of fermionic composites for small
disorder (AB < 1,a) as a function of the ratio between nearest neighbor interactions
and tunneling of the composites (K/d).

For |K| < d, the system is in the Fermi glass phase, i.e. Anderson localized (and
many-body corrected) single particle states are occupied according to the Fermi-Dirac
statistics [BY]. The effect of disorder is to localize the fermions preferably into the
deepest sites.

For repulsive and large composite interactions (K > 0 and K > d), the ground
state is a Fermi MI phase and the composite fermions are pinned at large filling factors
preferably into the deepest wells. At half filling factor (py = 1/2), one expects the
ground state to form a checker-board, i.e. the lattice sites are alternatively empty and
populated by one composite.
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For large attractive composite interactions (K < 0 and |K| > d), the fermions form
a domain insulator which average position results from the competition between the
random and the confining potential.

Finally, for intermediate values of K/d, with K > 0, delocalized metallic phases
with enhanced persistent currents are possible [Bg]. Similarly, for attractive interactions
(K < 0)and |K| < done expects a competition between pairing of fermions and disorder
i.e. a dirty superfluid phase.

Further information is provided by numerical computations that we present now.
We consider on-site random inhomogeneities for the bosons u;b. We start from a non-
disordered phase [A(t = 0) = 0] and we slowly increase the standard deviation of the

disorder \/((ﬂlb)2) — ((ﬂlb))Q = A(t) from 0 to its final value A.

We first study the transition from a (composite) Fermi gas in the absence of disorder
[see Fig. fi(b)] to a (composite) Fermi glass [see Fig. fl(c)]. Initially [A(t) = 0], the
composite fermions are delocalized although confined near the center of the effective

harmonic potential [(wg—ws) x 1(2)?]. The local populations fluctuate around (m;) ~ 0.4

with a standard deviation /{((m; — (m;))?) ~ 0.43. Increasing the amplitude of
disorder, the fluctuations of m; decreases as shown in Fig. f|(a). This indicates that
the composites localize more and more in the lattice sites to form a Fermi glass. For
A =5 x 107%, the composite fermions are pinned in random sites as shown in Fig. fl(c).
As expected, the Ny composite fermions populate the Ny sites with minimal /.

We now turn to the transition from a Fermi insulator domain phase [see Fig. f(b)]
to a disordered insulating phase while slowly increasing the amplitude of the disorder.
For the Fermi insulator domain, the composite fermions are pinned near the center of the
harmonic trap and surrounded by a ring of delocalized fermions which results in finite

fluctuations on the fermion occupation number (y/{(m; — (m;))2) ~ 0.35). As shown in
Fig. f(a), while ramping up the amplitude of disorder, the fluctuations decrease down
to \/((m; — (m;))2) ~ 0.13 for A > 10~ showing that the composite fermions are
pinned in different lattice sites. This can be seen in the plot the site population of the

composite fermions presented in Fig. f(c). Contrary to what happens for the transition
from the Fermi gas to Fermi glass, the composites mostly populate the central part of
the confining potential. This is because (i) the attractive interaction between composites
is of the order of K ~ —1.4 x 1073 and competes with disorder (A = 3 x 107%) and (ii)
because tunneling is small (d ~ 8 x 107°) so the fermions can hardly move during the
ramp of disorder.

4. The spin glass limit

4.1. From composite Hamiltonians to spin glasses models

The second limit corresponds to a case where the interactions between fermions and
bosons are of the order of, but slightly smaller than the interactions between the bosons
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Figure 4. Dynamical crossover from the Fermi gas to the Fermi glass phases. The
parameters are the same as in Fig. fl(c). (a) Variance of the number of fermions per
lattice site as a function of the amplitude of the disorder A. (b) Probability of having
one composite (one fermion and zero boson) at each lattice site for the M sites in
the absence of disorder and (c) after ramping up adiabatically diagonal disorder with
amplitude A =5 x 1074,
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Figure 5. Dynamical crossover from the fermionic domain insulator to a disordered

insulating phase. The parameters correspond to Fig. E(d)

(a) Variance of the

number of fermions per lattice site as a function of the amplitude of the disorder.

(b) Probability of having one composite (one fermion and zero boson) in each lattice

site in the absence of disorder and (c¢) after ramping up adiabatically the disorder with
amplitude A = 3 x 104
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(¢ ~1and a < 1). As shown in Fig. [l the effective interaction term K ; has a zero
at large inhomogeneities |APJ\ and varies strongly with \A;b]| reaching both positive
to negative values. Such a situation is accessible for ultracold atomic systems using a
superlattice with a spatial period twice as large as the lattice spacing plus a random
potential, both acting on the bosons. The interaction with this superlattice results in an
alternatively positive and negative additional on-site energy of the bosons, and whose
amplitude is controlled by the intensity of the superlattice. In particular, one can set
|A; j| ~ a. An additional weak random potential introduces disorder.

Due to the random on-site effective energy 7i;, the effective tunneling becomes non-
resonant and can be neglected in first approximation while K; ; is random with a given
average (eventually zero) and strong fluctuations from positive to negative values. The
effective Hamiltonian () then reduces to

1 1 _
Hen = 7 ; Kijsisj + 5 stz‘a (9)
iJ )

where we have introduced s; = 2M;—1 = 1. Interpreting s; as classical Ising spins [B7],
this Hamiltonian is equivalent to the well known Edwards-Anderson model [B]. This
describes spin glasses, i.e., a Ising model with random positive (anti-ferromagnetic) or
negative (ferromagnetic) exchange terms K; ;. Our system however differs from the usual
Edwards-Anderson spin glass model as (i) it has a random magnetic term fi; and (ii) the
average magnetization per site m = 2Ny/N — 1 is fixed by the total number of fermions
in the lattice. It however shares basic characteristics with spin glasses as being a spin
Hamiltonian with random spin exchange terms Kj;. In particular, this provides bond
frustration, which is essential for the appearance of the spin glass phase and turns out
to introduce severe difficulties for analytical and numerical analyses. We thus think that
experiments with ultracold atoms can provide a useful quantum simulator to address
challenging questions related to spin glasses such as the nature of the ordering of its
ground- and possibly metastable states [[l, B, E(], broken symmetry and dynamics of
spin glasses [B, [].

In the following two sections, we outline some general properties of spin glasses
and then we apply the replica method under the constraint of a fixed magnetization and
argue that this preserves the occurrence of a symmetry breaking characteristics of spin
glasses in the Mézard-Parisi theory [f.

4.2. Generalities on spin glasses

Consider a spin glass at finite temperature with a random exchange term K;; with
average K and variance AK. The magnetization is characterized by two order
parameters: (i) m = (s;), the average magnetization per site and (i) guy = (s;)2,
the Edwards-Anderson parameter, where = denotes the average over disorder while (-)
represents the thermodynamics average. It is clear that m # 0 signals a long-range
magnetic order while gz, # 0 signals a local magnetization that may vary from site to
site and from one configuration of quenched disorder to another.
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Figure 6. Schematic phase diagram of a spinglass.

Earlier experimental studies have identified three magnetic phases as schematically
represented in Fig. ] [[F]: (i) At high temperature and small average spin exchange K,
one finds a paramagnetic phase characterized by m = gz, = 0. (ii) For K > 0 and
large, one has a ferromagnet with m # 0 and gz, # 0. (iii) For weak K and small
temperatures, a spin glass phase appears with m = 0 but ¢z, # 0. This signals that the
local magnetization is frozen but that disorder prevents a long-range magnetic order.

As pointed out before, the physics of spin glasses still opens challenging questions.
In particular, there are competing theories that predict different natures of the magnetic
order.

The ’droplet’ picture is a phenomenological theory based on numerical and scaling
arguments. It predicts that there are two ground states related by spin-flip symmetry
and that low-lying excitations are domains with fractal boundaries (the droplets) with
all spins inversed compared to the groundstate. This theory is supported by numerical
computations and is believed to be valid in short-range spin glass models such as the
Edwards-Anderson [Bg].

The Mézard-Parisi picture predicts a large number of low-energy states with very
similar energies. This leads in particular to disorder-induced quantum frustration. This
theory is a mean-field, based on the replica method which is a special trick introduced
to compute the non-trivial average over disorder of the free energy functional. The
Mézard-Parisi theory is formulated in long-range spin glasses such as the Sherrington-
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Kirkpartick model

Hq g = i Z Kijsis; + % Zﬁisi, (10)
(i5) i

that differs from the Edwards-Anderson model (f]) by the long-range spin exchange

[(i7) denotes here the sum over all pairs of lattice sites, either neighbors or not]. The

applicability of the Mézard-Parisi picture to short-range spin glasses is still controversial.

4.3. The replica-symmetric solution for fized magnetization

As the disorder is quenched, one must average over disorder the free energy density,
f=-InZz/ kp using the replica trick. In the following we assume that the random
variables K;; and 7i; are Gaussian distributed with average K and h respectively and
standard deviation AK and Ah respectively. We form n identical copies of the system
(the replicas) and the average is calculated for an integer n and a finite number of spins
N. Then, using the well-known formula In 2 = lim,,_o(2" — 1)/n, In Z is obtained from
the analytic continuation of Z" for n — 0. Finally, we take the thermodynamic limit
N — oo. Explicitly, Z" is given by:

Zn = Z exp [—H[sf‘,n]] (11)

s@=d+1

where H[s% n] is the sum of n independent and identical spin Hamiltonians, averaged
over the disorder, with Greek indices now numbering the n replicas. Computing
the average over disorder leads to coupling between spin-spin-interactions of different
replicas.

After some analytics that are detailed in 6], one finally gets

f (K/kpT)? (AR/ERT)?
m?é B 12)
,é /2 2 _ ]
+/dze In |2 cosh KPq+ ARZ —h
2T kBT

and

7 VK2 + AR2 —h
¢ = /dz € tanh? at (13)
\ 271 kBT

T VE2q+ AR? —h
dz & tanh q+ . (14)
\/ﬁ /{ZBT

These are characteristic values of spinglasses that may be measured in experimental

m =

realizations of the proposed systems.

Finally, a study of stability of the replica method as detailed in [Pg] shows that
the magnetization constraint specific to our model would not change the occurrence of
replica symmetry breaking, provided the Mézard-Parisi approach is valid in finite range
spin glass models.
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5. Conclusion

In this paper, we have reviewed our recent theoretical works on Fermi-Bose mixtures
in disordered optical lattices. In the strongly correlated regime and under constraints
that we have discussed in detail, the physics of the mixture can be mapped into that of
single-species Fermi composites. This is governed by a Fermi-Hubbard like Hamiltonian
with parameters that can be controlled with accuracy in state-of-the-art experiments
on ultracold atoms.

We have shown that the presence of disorder (created by random on-site energies)
introduces further control possibilities and induces an extraordinary rich quantum phase
diagram. For the sake of conciseness, we have restricted our discussion to a particular
regime that proves to be a case study (more details may be found in Ref. [BF]). For
weak disorder, we have discussed the phase diagram which corresponds to the formation
of Fermi glass, Domain insulator, dirty superfluids and metallic phases. Numerical
calculations support our discussion.

For larger amplitudes of disorder, we have shown that the Hamiltonian reduces to
that of a spinglass, i.e. a spin system with random exchange terms. In our system,
the fictitious spins are coded by the presence or the absence of particles in each lattice
site. The physics of spinglasses is a challenging problem in statistical physics which
is still unsolved. In particular, two theories are competing: the droplet picture and
the Mézard-Parisi picture. These two theories lead to different predictions and even
the nature of ordering in spinglasses is not known. On the one hand, the Mézard-
Parisi picture, which is assumed to be valid for long-range spin exchange, predicts
the existence of a huge number of quantum states with very similar energies that all
contribute to the low-temperature physics of spinglasses. On the other hand, the droplet
picture, which is believed to be valid for short spin exchange, assumes the existence of
only two pure states connected by spin flip symmetry and excitations are domains of
constant magnetization with fractal boundaries. As possible experimental realizations
of spinglass systems with controllable parameters, mixtures of ultracold fermions and
bosons may serve as quantum simulators to solve the controversy and shed new light on
this extraordinary rich physics.
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