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Abstract. We derive the exact bifurcation diagram of the Duffing oscillator with parametric noise thanks
to the analytical study of the associated Lyapunov exponent. When the fixed point is unstable for the
underlying deterministic dynamics, we show that the system undergoes a noise-induced reentrant transition
in a given range of parameters. The fixed point is stabilised when the amplitude of the noise belongs to
a well-defined interval. Noisy oscillations are found outside that range, i.e., for both weaker and stronger
noise.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.10.Gg
Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems

In a classical calculation, Kapitza (1951) has shown
that the unstable upright position of an inverted pendu-
lum can be stabilised if its suspension axis undergoes si-
nusoidal vibrations of high enough frequency [1]. More
generally, stabilisation can also be obtained with random
forcing [2,3,4]. In both cases, analytical derivations of the
stability limit are based on perturbative approaches, i.e.,
in the limit of small forcing or noise amplitudes.

In a recent work [5], we studied the Duffing oscilla-
tor with parametric white noise when the fixed point of
the underlying deterministic equation is stable: a purely
noise-induced transition [6] occurs when stochastic forc-
ing is strong enough compared to dissipation so as to ‘lift’
the system away from the absolute minimum of the po-
tential well. We showed, using a factorisation argument,
that the noise-induced transition occurs precisely when
the Lyapunov exponent of the linearised stochastic equa-
tion changes sign. An analytical calculation of the Lya-
punov exponent allowed us to deduce for all parameter
values the bifurcation diagram, that was previously known
only in the small noise (perturbative) limit. The relation
between stochastic transitions in a nonlinear Langevin
equation and the sign of the Lyapunov exponent is in fact
mathematically rigorous and has been proved under fairly
general conditions [7]. In [5], we also made the following
striking observation: close to the bifurcation, the averaged
observables of the oscillator (energy, amplitude square and
velocity square), as well as all their non-zero higher-order
moments, scale linearly with the distance from the thresh-

old. This multifractal behaviour may provide a generic
criterion to distinguish noise-induced transitions from or-
dinary deterministic bifurcations.

In the present work, we reformulate the stochastic sta-
bilisation of an unstable fixed point of the underlying de-
terministic system within the framework of noise-induced
transitions. We extend the analysis of [5] and derive the
full phase diagram of an inverted Duffing oscillator. We
show in particular that a reentrant transition occurs in
this zero-dimensional system. (Reentrant transitions in-
duced by noise have been studied in the more complex
setting of spatially extended systems [8]). Moreover, the
inverted Duffing oscillator also exhibits a multifractal be-
haviour close to the transition point.

The dissipative stochastic system considered here is
defined by the equation:

d2x

dt2
+ γ

dx

dt
+
√
Dξ(t)x = −∂U

∂x
, (1)

where x(t) is the position of the oscillator at time t, γ the
dissipation rate and ξ(t) denotes a stochastic process. The
confining, anharmonic potential U(x) is defined as:

U(x) = −1

2
µx2 +

1

4
x4 , (2)

where µ is a real parameter. Without noise, the corre-
sponding deterministic system undergoes a forward pitch-
fork bifurcation when the origin becomes unstable as µ
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changes sign from negative to positive values. In [5], we
only considered the case µ < 0 and showed that for strong
enough noise, the origin becomes unstable. Here, we study
the case µ > 0 (‘inverted’ Duffing oscillator) and show
that for a finite range of positive values of µ, a reentrant

transition is observed when the noise amplitude is varied:
the noisy oscillations obtained for weak and strong noise
are suppressed for noise of intermediate amplitude. Our
results are non-perturbative: they are based on an exact
calculation of the Lyapunov exponent, performed for arbi-
trary parameter values, ξ(t) being a Gaussian white noise
process. Furthermore, our numerical simulations indicate
that the phenomenology described above is unchanged for
coloured Ornstein-Uhlenbeck noise.

We first rescale the time variable by taking the dissi-
pative scale γ−1 as the new time unit. Equation (1) then
becomes

d2x

dt2
+

dx

dt
− α x + x3 +

√
∆ ξ(t) x = 0 , (3)

where we have defined the dimensionless parameters

α =
µ

γ2
and ∆ =

D
γ3

, (4)

and rescaled the amplitude x(t) by a factor γ. Linearis-
ing equation (3) about the origin, we obtain the following
stochastic differential equation:

d2x

dt2
+

dx

dt
− α x +

√
∆ ξ(t) x = 0 . (5)

The Lyapunov exponent of a stochastic dynamical system
is generally defined as the long-time average of the local
divergence rate from a given orbit [9]. In the case discussed
here, deviations from the (trivial) orbit defined by the
origin in phase space, (x(t), ẋ(t)) = (0, 0), satisfy equation
(5). In practice, we use the (equivalent) definition for the
(maximal) Lyapunov exponent Λ

Λ = lim
t→∞

1

2 t
〈log x2〉 , (6)

where the brackets denote ensemble averaging. Let z(t) =
ẋ(t)/x(t). From equation (5) we find that the new variable
z(t) obeys:

ż = α − z − z2 −
√

∆ ξ(t) . (7)

The Lyapunov exponent Λ is equal to [5]

Λ = 〈z〉stat =

∫

z Pstat(z) dz , (8)

where Pstat(z) is the stationary probability distribution
function (p.d.f.) of the variable z, solution of equation (7).

External fluctuations acting upon the oscillator will
first be modeled by Gaussian white noise ξ(t) of zero mean
value 〈ξ(t)〉 = 0 and of unit amplitude:

〈ξ(t)ξ(t′)〉 = δ(t − t′) . (9)
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Fig. 1. Lyapunov exponent Λ of a linear, damped oscillator
with parametric white noise. For different values of the control
parameter α, we plot Λ vs. the noise amplitude ∆. Inset: Graph
of the function g(x) (equation (13)).

The stationary p.d.f. of z can then be computed exactly,
by adapting a calculation presented in detail in [5] (see also
[10,11]), where the Fokker-Planck equation equivalent to
equations (7)-(9) is solved in the stationary regime. We
find:

Pstat(z) =
1

N

∫ z

−∞
exp

{

2

∆
(Ψ(z) − Ψ(y))

}

dy, (10)

where Ψ(y) = αy − 1
2y2 − 1

3y3, and N is a normalisa-
tion constant. After some calculations along the lines of
Ref. [5], equation (8) leads to the following expression for
the Lyapunov exponent:

Λ(α, ∆) =
1

2











∫ +∞
0 du

√
u e

2

∆

(

(α+ 1

4
)u−u

3

12

)

∫ +∞
0

du√
u
e

2

∆

(

(α+ 1

4
)u−u3

12

) − 1











. (11)

We now examine the properties of Λ as a function of α
and ∆. We shall limit the discussion to the range α ≥ − 1

4
(see [5] for a detailed study of the range (−∞, 0]). Let

∆̃ = ∆/(α + 1
4 )3/2. We rewrite equation (11) as:

Λ(α, ∆) =
1

4

√
1 + 4α g(∆̃) +

1

2

(√
1 + 4α − 1

)

, (12)

where the function g(x) is defined for x ≥ 0 as

g(x) =

∫ +∞
0 du

√
u e

2

x

(

u−u
3

12

)

∫ +∞
0

du√
u
e

2

x

(

u−u3

12

) − 2 . (13)

The method of steepest descent yields

g(0) = 0 , g′(0) = −1

4
. (14)

The function g(x) decreases in the interval [0, xm], with
an absolute minimum g(xm) ≃ −0.54 at xm ≃ 3.40, then
g(x) increases to infinity over [xm, +∞) (see the inset of
Fig. 1). At fixed α, the behaviour of Λ(α, ∆) with respect
to ∆ is deduced from that of g(x) by translations and
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Fig. 2. Bifurcation diagram of the Duffing oscillator with para-
metric white noise. The solid line is the locus in parameter
space (α, ∆) where Λ(α, ∆) = 0. The bifurcation line α = 0 of
the noiseless dynamical system is drawn for comparison (dot-
ted line).

dilations along coordinate axes. A few representative ex-
amples are drawn in Fig. 1: (i) α = −0.2: Λ changes sign
once (noise-induced bifurcation of the nonlinear system
[5]); (ii) α = 0.2: Λ changes sign twice (noise-induced reen-
trant transition of the nonlinear system); (iii) α = 0.5: Λ
is positive for all ∆ (no transition).

From this analysis, the bifurcation diagram of the non-
linear oscillator with parametric, Gaussian white noise
(equations (3 and 9)) follows immediately. The origin is
stable (resp. unstable) when the Lyapunov exponent of
the linearised system is negative (resp. positive). The bi-
furcation line α = αc(∆) is defined by the equation

Λ(αc(∆), ∆) = 0 . (15)

The transition is best qualified as a stochastic Hopf bi-
furcation: the bifurcated state displays noisy oscillations
around the origin, with a non-zero r.m.s. of the oscilla-
tor’s position and velocity. For ∆ ≤ ∆∗ ≃ 3.55 (resp.
∆ ≥ ∆∗), the origin is stabilised (resp. destabilised) by
the stochastic forcing in the range 0 ≤ α ≤ αc(∆) (resp.
αc(∆) ≤ α ≤ 0). The full bifurcation diagram of the in-
verted stochastic Duffing oscillator is displayed in Fig. 2.
In the weak noise limit ∆ → 0+, we obtain from Eq. (14)
αc(∆) ∼ (−2 g′(0) ∆) ∼ ∆/2, in agreement with the
result of the (perturbative) Poincaré-Linstedt expansion
performed in [3].

We emphasise that the stability of the origin of the
nonlinear random dynamical system (3) cannot be de-
duced from a stability analysis of finite-order moments of
the linearised system [12]: indeed second-order moments
of solutions of equation (5) with white noise forcing are
always unstable when α is positive. The proper indicator
of the transition of the nonlinear system is the Lyapunov
exponent of solutions of the linearised equations.

As an example, we show in Fig. 3 numerical evidence
of a reentrant transition observed for α = 0.2. The asymp-
totically stable state is the origin when the noise ampli-
tude belongs to the bounded interval ∆ ∈ [∆1, ∆2], where
∆1 and ∆2 are the two solutions of Λ(α = 0.2, ∆) = 0.
Noisy oscillations are found for both weaker (∆ < ∆1)
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Fig. 3. Reentrant transition of the noisy nonlinear oscilla-
tor (3) subject to parametric white noise (9), with a fixed
parameter α = 0.2. The numerical solutions of the equation
Λ(0.2, ∆) = 0 are ∆1 ≃ 0.627, ∆2 ≃ 1.700. Even-order mo-
ments 〈x2〉, 〈x4〉 and 〈x6〉 are plotted versus the distance to
threshold ǫ = (∆1 −∆)/∆1 (symbols). Dashed lines respecting
a linear behaviour 〈x2n〉 ∝ ǫ1 are drawn to guide the eye. Lin-
ear scaling is also observed for the second transition (∆ & ∆2;
not shown). Inset: the mean square position (measured in the
stationary regime) is non-zero for ∆ ∈ [0, ∆1[∪]∆2, +∞[.

and stronger (∆ > ∆2) noise strengths. As predicted in
[5], even-order moments of the position and velocity scale
linearly with the distance to threshold in the vicinity of
these stochastic bifurcations. (Note that odd-order mo-
ment are equal to zero by symmetry.)

Since the locus of the transition is determined by a
dynamical property of the linearised system, it cannot de-
pend on the precise functional form of the confining po-
tential U(x) for large x. For instance, the bifurcation line
is unchanged when the confining potential reads:

U(x) = −1

2
αx2 − 1

4
x4 +

1

6
x6 , (16)

i.e., when the deterministic nonlinear system undergoes
a backward pitchfork bifurcation. We checked numerically
that such is indeed the case.

Let us now turn to stochastic forcing by coloured noise.
For definiteness, we shall use an Ornstein-Uhlenbeck pro-
cess ξ(t) of correlation time τ , defined as the solution of
the stochastic differential equation:

dξ(t)

dt
= −1

τ
ξ(t) +

1

τ
η(t) , (17)

where η(t) denotes Gaussian white noise with zero mean
and unit amplitude (〈η(t)η(t′)〉 = δ(t − t′)). The analytic
expression of the stationary (marginal) p.d.f. Pstat(z) as-
sociated with the linear system (7-17) is not known: the
Lyapunov exponent must be evaluated numerically. The
line α = αc(∆) with Λ(αc(∆), ∆) = 0 is drawn in Fig. 4.a
for τ = 0.1 and 1.0. (We checked that the same measure-
ment protocol, when used with white noise forcing, yields
data in agreement with the analytic result (11).) Numer-
ical simulations confirm that, with parametric coloured
noise, (i) bifurcations of the nonlinear system (equations
(3-17)) occur where the Lyapunov exponent of the linear
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Fig. 4. Parametric forcing with Ornstein-Uhlenbeck noise of
correlation time τ . (a) Bifurcation lines for τ = 0.1 and 1.0
are obtained from numerical measurements of the Lyapunov
exponent (6). For comparison, we draw the (analytic) white
noise line already given in Fig. 2. (b) For τ = 1.0 and 0.0
(white noise), we plot on the same graph, for a fixed value
∆ = 1.096, and with respect to α, the numerical values of the
Lyapunov exponent of the linear system (symbols with dashed
lines) and of the averaged square position in the oscillatory
regime of the nonlinear system (symbols with solid lines). The
bifurcation occurs where the Lyapunov exponent changes sign.
Note the linear dependence of 〈x2〉 on distance to threshold.

system changes sign; (ii) averaged observables scale lin-
early with distance to threshold close to the bifurcation
(see Fig. 4.b). In the weak noise limit, our data agrees
with the prediction of [3]: αc(∆) ∼ ∆/(2(1 + τ)). For a
noise amplitude of order 1, the bifurcation line is qualita-
tively similar to that obtained with white noise. However,
depending on the value of ∆, the value of the bifurcation
point αc(∆) is not necessarily a monotonic function of τ .

We have shown here that noise can suppress oscil-
lations by stabilizing a deterministically unstable fixed
point. Our study can be related to similar observations
in the context of chaotic systems where Lyapunov expo-
nents also play a crucial role as indicators of transitions
[13]. Indeed, the effective lowering of Lyapunov exponents
by noise can induce synchronization in a pair of chaotic
systems [14,15], or suppress chaos in nonlinear oscillators
[16] or in neural networks [17].

Our hope is that this work will help to bridge the gap
between the abstract theory of random dynamical systems
[7] and experimental investigations of the stability of phys-
ical systems subject to random forcing [18,19]. The be-
haviour of Lyapunov exponents of the linearised stochastic
system (or “sample stability”) is known to explain the sta-
bility properties of a regular state of electrohydrodynamic
convection of nematic liquid crystals driven by multiplica-
tive, dichotomous noise [20]. A non-perturbative study of
bifurcations of spatially-extended systems under stochas-
tic forcing of arbitrary strength [21] remains a challenging
open problem.
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E 56, 4068 (1997)
16. S. Rajasekhar, M. Lakshmanan, Physica A 167, 793

(1990); Physica D 67, 282 (1993)
17. L. Molgedey, J. Schuchhardt, H. G. Schuster, Phys. Rev.

Lett. 69, 3717 (1992)
18. R. Berthet, S. Residori, B. Roman, S. Fauve, Phys. Rev.

Lett. 33, 557 (2002); R. Berthet, A. Petrossian, S. Residori,
B. Roman, S. Fauve, Physica D 174, 84 (2003)
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