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Analysis and treatment of errors due to high velocity gradients
in Particle Image Velocimetry

P. Meunier, T. Leweke

Abstract This paper deals with errors occurring in 2D
cross-correlation PIV algorithms (with window shifting),
when high velocity gradients are present. A first bias er-
ror is due to the difference between the Lagrangian dis-
placement of a particle and the real velocity. This error
is calculated theoretically as a function of the velocity
gradients, and is shown to reach values up to 1 pixel
if only one window is translated. However, it becomes
negligible when both windows are shifted in a symmet-
ric way. A second error source is linked to the image
pattern deformation, which decreases the height of the
correlation peaks. In order to reduce this effect, the win-
dows are deformed according to the velocity gradients in
an iterative process. The problem of finding a sufficiently
reliable starting point for the iteration is solved by ap-
plying a Gaussian filter to the images for the first correla-
tion. Tests of a PIV algorithm based on these techniques
are performed, showing their efficiency, and allowing the
determination of an optimum time separation between
images for a given velocity field.

1
Introduction

Over the last decade, Particle Image Velocimetry (PIV)
has become a powerful and widely used technique to
measure instantaneous velocity fields in a plane. For this,
the flow is seeded with reflecting micro-particles, whose
displacement over a small period is measured and used
to calculate the local velocity.

The particle displacement is normally obtained by
a correlation technique, either by auto-correlation of a
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doubly (or multiply) exposed single particle image, or by
cross-correlation between two successive single-exposure
images. In this article we focus on the latter technique,
although some results are also valid for the former. With
the two-image method, the mean displacement in a given
subpart of the images (the correlation window) is given
by the location of the maximum of the cross-correlation
function between the pixel intensities in the box.

With the strong increase of computer power in re-
cent years, and the availability of high-resolution digital
cameras, image acquisition and correlation computation
for PIV purposes have become very easy to implement,
compared to the recordings on photographic film and
complex optical correlations used in the early days of
PIV (see, e.g., Adrian 1991). In a majority of applica-
tions today, the PIV process is entirely digital. In this
situation where PIV has become a common tool, more
efforts are now directed towards the precise analysis of
the accuracy of this method in different situations, and
towards reducing possible errors. In this respect, the al-
gorithm used to obtain the velocity field from the digital
particle images has received special attention. It is also
the object of the present paper, i.e., we will not consider
errors linked to optical effects or the image acquisition
procedure, but assume that the images correctly rep-
resent the true particle positions at the corresponding
instants in time.

A number of studies (e.g., Willert and Gharib 1991;
Weesterweel 1993; Fincham and Spedding 1997; Raffel et
al. 1998) have analysed the errors in the velocities calcu-
lated by PIV algorithms, and their variation with differ-
ent parameters: particle image density, diameter of the
particles, size of the correlation window, noise in the im-
ages, and displacement amplitude. In general, the corre-
lation methods were found to be very accurate for nearly
uniform flows. However, the accuracy is drastically re-
duced in the presence of high velocity gradients, which
are found for example in turbulent flows, in boundary
layers or in vortex flows.
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One error is caused by the corresponding deforma-
tion of the particle patterns between successive images,
leading to lower and broader correlation peaks. A way
to solve this problem was proposed by Huang et al.
(1993a,b): a deformation of the correlation windows ac-
cording to the velocity gradients, in an iterative pro-
cess. Jambunathan et al. (1995) generalised this method
for flows with length scales smaller than the correlation
box size, by deforming the window according to the dis-
placement of each pixel of the window. The problem of
instabilities, which were observed in such an iterative
processes, was recently solved by Nogueira et al. (1999).
These techniques of window deformation begin to be
commonly used, and error tests have been carried out
by Fincham and Delerce (2000) and Scarano and Rieth-
muller (2000). In all these approaches the calculation of
the first correlation poses a major difficulty, since the ve-
locity gradients are still unknown. Lin and Perlin (1998)
proposed a method to achieve this first step, through a
complex algorithm that reduces the size of the windows.

The deformation of the particle patterns also causes
problem to Particle Tracking Velocimetry algorithms,
which were solved recently by Ishikawa et al. (2000) us-
ing the velocity gradient tensor.

An additional problem arising at high velocity gradi-
ents has been pointed out only very recently by Wereley
and Meinhart (2001). In PIV, a velocity is calculated us-
ing the displacement of particles during a short time in-
terval, i.e. one obtains an average velocity of the particle
on its trajectory between the two recorded positions. If
the velocity is not constant along this trajectory, which is
the case when the gradients are high, this average value
can be substantially different from the one at the begin-
ning of the trajectory (the particle position in the first
image), which is the point the calculated velocity is usu-
ally assigned to. It will be shown below that the resulting
error in the velocity field can be an order of magnitude
higher than the generally admitted uncertainty of PIV
measurements in nearly uniform flows.

In the following, we intend to analyse quantitatively
these two problems arising at high velocity gradients,
and to find ways to reduce the associated errors.

2
Lagrangian displacement of a particle

2.1
Background

In cross-correlation PIV, the velocity field of a fluid (pro-
jected onto a plane) is deduced from the two-dimensional
displacement ∆r of small tracer particles, whose images
were recorded at two times, separated by ∆t. Assuming
that ∆t is “sufficiently” small, the particle/fluid velocity
v is derived from the approximate relation

∆r ≈ v∆t (1)

(This approach does not take into account possible dif-
ferences between the particle and the fluid velocities, a
point which will not be addressed here.) Eq. (1) repre-
sents the first term of a Taylor series expansion of the
velocity field, which, in general, depends on both time
and space coordinates. For nearly uniform velocities (on
the scale of the correlation window), this approximation
is justified. However, when spatial gradients and/or the
time-dependence of the velocity field get larger, notice-
able differences can appear between the measured veloc-
ity ∆r/∆t and the real velocity v. In this Section, we
calculate higher-order terms of the expansion in Eq. (1),
in order to quantify the measurement errors appearing
at high velocity gradients. We also demonstrate analyti-
cally and numerically, how a simple technique consisting
of a symmetric correlation window shift, can drastically
reduce these errors.

2.2
Calculation of the displacement

In the following, we treat two-dimensional displacements
in a two-dimensional domain, which correspond to the
most commonly used PIV applications. Consider a parti-
cle which, at an initial time ti, is located at a position ri,
and at a final time tf at rf (see Fig. 1). We seek an ex-
pression for the displacement ∆r = rf−ri of the particle
in a given velocity field v(r, t), as function of the differ-
ent derivatives of v and the time interval ∆t = tf − ti.
The derivatives are evaluated at a fixed point O, which
is located close to rf and ri, and can be interpreted as
the measurement location (e.g., a pre-defined grid point
or centre of a correlation window; see Fig. 1). It is the
point at which the velocity needs to be known with pre-
cision. Without loss of generality, its coordinates are set
to r = 0. Similarly, the origin of time (t = 0), represent-
ing the time associated to the velocity measurement, is
chosen close to ti and tf (this point is discussed further
in the Appendix).

We suppose that the non-uniform and time-
dependent velocity field

v(r, t) =
(

vx(x, y, t)
vy(x, y, t)

)
(2)

can be expanded into a Taylor series around t = 0 and
the point O with respect to time t and the Cartesian
coordinates x (horizontal) and y (vertical).

Up to second order, this Taylor expansion can be
written in compact form as:

v(r, t) = v0 + v′ · r + t ∂tv (3)

+
1
2

(
r† · v′′x · r
r† · v′′y · r

)
+

1
2
t2 ∂ttv + t ∂tv′ · r
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where r† = (x, y) is the conjugate of r =
(

x
y

)
, and

v0 = v
(

r = 0
t = 0

)
v′′x =

(
∂xxvx ∂xyvx

∂yxvx ∂yyvx

)

v′ =
(

∂xvx ∂yvx

∂xvy ∂yvy

)
v′′y =

(
∂xxvy ∂xyvy

∂yxvy ∂yyvy

)

The full expressions for ∆r, extending Eq. (1) to sec-
ond and third order in ∆t, are derived and given in the
Appendix. Here, we focus on two special cases that are of
particular interest for PIV algorithms. Both are related
to the now frequently used technique of correlation win-
dow shifting, in which a first estimate of the velocity
field is obtained using identical windows in both images,
and where a second correlation is then performed, with
the windows shifted by an amount corresponding to the
mean local particle displacement. The aim is to reduce
the apparent particle displacement between the shifted
windows as much as possible to zero, in order to mini-
mize particle loss and the associated noise effects (see,
e.g., Raffel et al. 1998).

The first case corresponds to the situation depicted
in Fig. 1a, where only the window in the second image is
shifted according to the measured displacement, the one
in the first image remaining centred at the measurement
point O. In this “non-symmetric” situation, the particle
displacement is given by (see Appendix):

∆r = v0∆t +
∆t2

2
(v′ · v0 + ∂tv) + O(∆t3) (4)

i.e., the displacement error is, as expected, of order
O(∆t2). We will see in Sect. 6 that a PIV algorithm us-
ing window deformation can easily handle velocity gra-
dients of the order of ‖v′∆t‖ = 0.2. If at the same time
the displacement is about ‖v∆t‖ = 10 pixels, i.e., about
a third of a typical window size of 32 pixels, which is
the upper limit proposed by Adrian (1991), the absolute
error between the measured displacement of the particle
and the ‘displacement’ v0∆t associated with the point
O can amount to as much as 1 pixel. This is an order
of magnitude higher than the generally admitted uncer-
tainty of classical cross-correlation algorithms, which is
about 0.1 pixel (Raffel et al. 1998). It is therefore useful
to look for a different procedure, for which this error is
considerably smaller.

In the second case, the windows used by the algo-
rithm are translated in a symmetric way (see Fig. 1b).
This method has been proposed recently by Wereley and
Meinhart (2001)

The result of the correlation process gives the dis-
placement of a particle whose initial and final positions
are symmetric with respect to the point O. In this situ-
ation, we find that the second order term vanishes, and
the displacement of the particle becomes, at third order
(see Appendix):

∆r = v0∆t + ∆t3

{
−v′2 · v0

12
+

1
24

(
v†0 · v′′x · v0

v†0 · v′′y · v0

)
(5)

(a)

O v(O)

ri

rf

r(t)

∆r
initial window

final window

(b)

v(O)

r(t)

∆r

ri

initial window
rf

final window

O

Fig. 1 a Non-symmetric and b symmetric translation of cor-
relation windows with respect to the measurement point O

+
1
12

∂tv′ · v0 − 1
12

v′ · ∂tv +
1
24

∂ttv
}

+ O(∆t4)

When applying the general result in Eqs. (4) and (5) to
the special case of axisymmetric flow, expressions iden-
tical to those given by Wereley and Meinhart (2001) are
obtained. For ‖v′∆t‖ = 0.2 and ‖v∆t‖ = 10 pixels,
the first term of the error is of the order of 0.03 pixel.
Assuming that, in most cases, the other terms are of
similar magnitude or less and partly compensate each
other, this error between the velocity in O and the dis-
placement ∆r/∆t measured by the algorithm can be ne-
glected, since it is smaller than the noise in the mea-
surements (of the order of 0.1 pixel). If one nevertheless
wishes to reduce this error, two solutions are possible:
either decreasing the time separation between the two
images, or removing the error numerically, using Eq. (5)
and an approximation of the velocity gradients. How-
ever, the second solution amplifies the noise present in
the measurements and should be used with caution.

2.3
Numerical evidence

The previous results were derived for the displacement
of a single particle. In the following we analyze the effect
of a non-symmetric and a symmetric translation in an
actual PIV algorithm, where average velocities in more
or less extended correlation windows are calculated. We
have tested the two schemes on a velocity field containing
a high velocity gradient, using artificial images. We used
a horizontal and stationary velocity field given by:

v =
(

Sx/∆t
0

)
(6)
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Fig. 2 Error for the horizontal velocity field (6) ◦: non-
symmetric algorithm (as in Fig. 1a). 3: symmetric algorithm
(as in Fig. 1b). Solid lines correspond to theoretical predic-
tions of Eqs. (4) and (5).

For such a field, the exact displacement, over a time ∆t,
of a particle which is at a position x on the first image
is:

∆r =
(

x
(
eS − 1

)
0

)
(7)

For the test, we have chosen a relatively high shear pa-
rameter S = 0.2, which is, however, still small enough
for the algorithm to find the correlation peaks efficiently.
The first and second images are created using this dis-
placement (see Sect. 6 for details on the creation of the
images). We then calculate the error of the horizontal
‘displacement’ vx∆t, obtained using an algorithm which
translates windows of 32 pixels in either a non-symmetric
or a symmetric way. The results are shown in Fig. 2. The
agreement between the calculated errors and the theo-
retical predictions in Eqs. (4) and (5) is very good. Both
show that the error remains weak in the symmetric case,
whereas it is important and cannot be neglected in the
non-symmetric case.

In the literature, artificial images are frequently con-
structed using a displacement v0∆t instead of the real
displacement of each particle in the velocity field. The
error discussed in this Section was then hidden in most
cases and not considered further, despite its importance.

An additional error arises due to the finite size of the
window. Indeed, the algorithm averages the velocity of
the particles over the whole window. This introduces a
systematic error equal to 1

24W 2∆t∇2v, where W is the
size of the windows. This result can be obtained by inte-
grating Eq. (35) (in the Appendix), with the position ri

of the particle varying in the initial window (translated
by −v∆t/2). This error remains negligible as long as W
is smaller than the typical wavelength of the flow. If the
wavelength becomes too small, appropriate algorithms,

presented e.g. by Nogueira et al. (1999) or Jambunathan
et al. (1995), should be used. This error is not present
in our tests, since ∇2v = 0 here.

In conclusion, the use of symmetric window shifting
highly improves the performance of a cross-correlation
algorithm by reducing the error between velocities and
particle displacements to a lower value than the mea-
surement noise due to other effects, in particular in the
presence of high velocity gradients, which deform the
correlation peaks. In the following, we will assume that
symmetric window shifting is used, and the error dis-
cussed in this Section will therefore be neglected.

3
Effect of a velocity gradient on the correlation peak

The main error of PIV algorithms is a noise in the mea-
surements, linked to the size and maximum value of the
correlation peak. If the peak is too low, the noise in the
correlation function introduces spurious vectors in the
velocity field. If the peak is too wide, the determination
of the maximum is less accurate and the corresponding
displacement is noisy. It is thus important to keep the
correlation peaks as high and narrow as possible. In the
following, we analyse the effect of a velocity gradient on
the shape and height of two correlation functions: one us-
ing symmetrically shifted square windows, and one using
windows which are deformed according to the velocity
gradients present in the flow.

3.1
Non-deforming correlation function

For two images of intensities Ii(r) and If (r) at times
ti and tf , respectively, we introduce a new symmetrical
correlation function, defined by:

R(l) =

∫
W

(
Ii(r− l/2)− Ii

) (
If (r + l/2)− If

)
dr

(σiσf )1/2
(8)

where

I = 1
W 2

∫
W

I(r)dr
σ =

∫
W

(
I(r)− I

)2
dr

and W is the side length of a square window centred
on the desired location. This function is an adaptation
of the standard correlation coefficient (see, e.g., Raffel
et al. 1998) to the case of a symmetric translation of
the windows according to the procedure presented in
the previous Section. It is normalized in a way to take
values between −1 and +1. This function is defined for
continuous values of r, even if the real algorithm only
uses discrete positions. The effect of the discretisation
is a slight increase in the effective size of the particles
(see Westerweel 1993, Chapter 3), which remains small
if their diameter is bigger than about 1 pixel.

We now assume that the velocity field v(r) is given,
and we call u = v∆t the ‘displacement’ field. A particle
at a position ri on the first image is shifted by an amount
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(a)

initial window final window

ri
1

ri
2

ri
3

rf
1

rf
2

rf
3

∆r1

∆r2

∆r3

(b)

R(l)

∆r1 ∆r2 ∆r3

(c)

<R(l)>

Fig. 3 a Displacement of particles for horizontal shear. b
Corresponding correlation function. c Average of the corre-
lation function over different particle distributions

∆r(ri) in the second image given by (see Eq. (38) in the
Appendix):

∆r(ri) = u0 + u′ · ri +
1
2
u′ · u0 + O(∆t3) (9)

In the presence of a velocity gradient, the displacements
of the particles are not identical over the whole window
(Fig. 3a). The correlation peaks of different particles are
located at different positions (Fig. 3b) and cannot inter-
fere constructively as in the case of weak velocity gradi-
ents. The correlation peak is thus wider and lower than
in the absence of a velocity gradient. This effect is eval-
uated quantitatively in the following.

3.2
Ensemble average

The shape of the correlation peak highly depends on the
distribution of the particles. In order to recover a uni-
versal property, we consider the average over all possi-
ble particle distributions. The resulting correlation peak
then only depends on the velocity field, since the aver-
age smooths all the peaks coming from individual par-
ticles in a given single distribution. Fig. 3(c) shows this
effect schematically. This behaviour was also verified nu-
merically using artificial images; an example is shown in
Fig. 4.

For the following calculations we use a constant par-
ticle density C, as proposed by Adrian (1988). The sym-
bol < . > denotes the average over all possible particle
distributions.

Westerweel (1993) showed (his Eq. 2.49) that:

< Ii(r′)If (r′′) > − < Ii(r′) >< If (r′′) > (10)
= CFI0 (r′′ − r′ −∆r(r′))

where

FI0(l) =
∫

I0(r)I0(r + l)dr (11)

FI0 is the self correlation function of the intensity of
one particle, denoted by I0(r). If the windows are large
enough, we can assume that I, which is the mean value
of the intensity over the window, is the same for all par-
ticle distributions and equal to the ensemble average of
the intensity < I >. Similarly, we assume that σ, which
is the integral of the variance of the intensity over one
image, is given by < (I − I)2 > W 2, which can be sim-
plified using Eq. (10) into CW 2FI0(0). The expression
of the average of the correlation function can then be
calculated using Eq. (10):

< R(l) >=
1

W 2FI0(0)

∫

W

FI0 [l−∆r(r− l/2)] dr (12)

This result means that the correlation function is the
average of the self correlation function, centred on the
displacement ∆r(r), for r varying in the initial window.
For small velocity gradients, the displacement is nearly
uniform over the window, and can be approximated by
u0. Eq. (12) then simplifies into:

< R(l) >=
FI0(l− u0)

FI0(0)
(13)

This result means that, for uniform flow, the correlation
peak is exactly equal to the self correlation function FI0

centred on the displacement u0.

3.3
Height of the peak in the presence of shear

In order to calculate the height of the correlation peak,
we define the intensity of one particle as:

I0(r) = I0, max e
− r2

d2/8 (14)

It is a Gaussian profile (close to the experimental one) of
parameter d2/8, for which 95% of the intensity is inside
a circle of diameter d. The self correlation function FI0 is
also a Gaussian of parameter d2/4. We consider a shear
‘displacement’ field defined by:

u =
(

Sy
0

)
(15)

On the x-axis, the velocity is zero, and the correlation
function for windows centred on this axis can be calcu-
lated using Eqs. (12) and (38):

< R(l) >= e
− l2y

d2/4
d

2SW

{
erf

(
2
lx
d

+
Sly
d

+
SW

d

)
(16)

− erf
(

2
lx
d

+
Sly
d
− SW

d

)}

The function ‘erf’ is the error function (integral of the
Gaussian function vanishing in 0), and l = (lx, ly). This
formula was recently given by Hart (2000), who proposed
Eq. (12) as a conjecture without derivation. Cuts of this
function along the x- and y-axes are plotted in Fig. 5
for different values of the shear S. The agreement with
the correlation functions obtained numerically, using ar-
tificial images and a non-deforming algorithm, and also
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Fig. 4 Correlation functions obtained from test images with
a horizontal shear of magnitude S = ∂yux = 0.4 (window size
W = 32 pixels). a Typical result obtained at one position.
b Average of 400 correlation functions obtained at different
locations with the same mean velocity

shown in these plots, is very good. (The slightly negative
values are due to the the use of a Fast Fourier Transforms
in the correlation process.) It is obvious that increasing
velocity gradients tend to widen the correlation peak.
At high values of the shear, the peak even becomes flat,
making the determination of the location of its maxi-
mum impossible.

The height of the peak, found for l = 0, is equal to:

< Rmax >=
d

SW
erf

(
SW

d

)
(17)

It it interesting to note that the height only depends
on the non-dimensional shear parameter SW/d. Fig. 6
shows how it decreases with increasing SW/d. The nu-
merical results found with artificial images are again very
close to the theoretical predictions. A similar analysis
was made by Huang et al. (1993a) for particles with a
binary intensity (black or white). The same parameter
was derived, although their analytical expression for the
peak intensity was different.

(a)
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Fig. 5 a Horizontal and b vertical cut through the corre-
lation functions for horizontal shear flows (Eq. ( 15)), ob-
tained from test images (particle diameter d = 4; window
size W = 32 pixels. ◦: S = 0.05; 3: S = 0.2; 4: S = 0.5.
The solid lines correspond to the theoretical predictions of
Eq. (16), and the dotted line to the result for uniform flow
(S = 0)

The analytical and numerical results in this Sec-
tion demonstrate how the presence of velocity gradi-
ents widens and lowers the cross-correlation peaks when
(symmetrically shifted) rigid correlation windows are
used. For high gradients, it is thus necessary to intro-
duce a new correlation function.

3.4
Deforming correlation function

Huang et al. (1993b) proposed to deform the correlation
windows, according to the velocity gradients present in
the flow, in order to increase the height of the correlation
peak. This leads to a new correlation function defined by:

R(l) = (18)
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Fig. 6 Height of the correlation peak as a function of the
normalized horizontal shear stress for different window sizes.
�,�: W = 16; �,�: W = 32; ◦, •: W = 64. Particle di-
ameter in the test images is d = 4. Open symbols: without
window deformation (the solid line represents the prediction
in Eq. (17)). Filled symbols: with window deformation ac-
cording to Sect. 3.4

∫
W

(
Ii(r− l

2 − u′·r
2 )− Ii

) (
If (r + l

2 + u′·r
2 )− If

)
dr

(σiσf )1/2

where

u′ =
(

∂xux ∂yux

∂xuy ∂yuy

)

The same calculation as in Sect. 3.2, using Eqs. (10) and
(38), leads to an average correlation function indepen-
dent of the window size at second order in ∆t:

< R(l) >=
FI0 [(1 + u′/2) · (l− u)]

FI0(0)
(19)

For this correlation function, the height of the peak is
always equal to 1. Its width increases only by 25% for a
velocity gradient of 0.5, whereas it was multiplied by a
factor of 4 with the non-deforming algorithm. For the
shear flow given by Eq. (15), the average correlation
function is:

< R(l) >= exp

(
−4(lx + Sly)2

d2
− 4l2y

d2

)
(20)

A cut along the x-axis gives the same curve as without
shear (i.e., the dotted line in Fig. 5a). On the vertical
axis, it is very close to the curve without shear.

Equation 19 predicts a constant peak height of 1.
The numerical values in Fig. 6, although close to 1 (and
always much larger than those resulting from the non-
deforming algorithm), slightly decrease with increasing
shear. This may be due to the fact that not only the
correlation windows, but also the individual particle im-
ages, are deformed by the algorithm; this is not taken
into account in the theory.

The results of this Section clearly demonstrate the
usefulness of window deformation in cross-correlation
PIV, when high velocity gradients are present. How-
ever, Eq. (19) was obtained using Eq. (38), which is
only a second-order approximation of the displacement
of a particle. When taking into account the third-order
terms, the errors discussed in Sect. 2 reappear. More-
over, the height of the peak decreases when v′′ is not
zero. One way to prevent this would be to define yet an-
other correlation function using the third-order approxi-
mation of the displacement given in Eq. (35), but the re-
sulting expressions and calculations become exceedingly
complex. An alternative was proposed by Jambunathan
et al. (1995) and Nogueira et al. (1999). Unfortunately,
their techniques require quite a high computing power,
since the algorithm must perform at least 30 iterations,
whereas the present one converges in only 2 or 3 itera-
tions (see Sect. 6). Their method becomes necessary for
flows with very small wavelengths, of the order of the
window size or less.

4
Gaussian Filter

For the calculation of the correlation function in
Eq. (18), the algorithm deforms the windows according
to the velocity gradients of the flow. Since the veloc-
ity field is completely unknown in the beginning, several
iterations must be performed in order to converge to-
wards a solution where velocities and velocity gradients
are known together. The main problem is to obtain a
sufficiently accurate result in the first run. Without the
velocity gradients, the algorithm cannot calculate the
deforming correlation function given by Eq. (18) in this
first run. It must find the displacement using the non-
deforming correlation function in Eq. (8). If the gradients
are high, the associated effects discussed in Sect. 3 lead
to an increased noise in the results, resulting in turn in
a large number of spurious vectors, which can be very
different from the real velocity vectors. If there are too
many of them in the first iteration, the velocity gradients
cannot be determined correctly for the second iteration
and the iterative process cannot continue successfully.
We thus need to increase the height of the peaks, even
if some accuracy is lost. The aim is to obtain at least a
rough approximation of the velocity gradients, so that
the next iterations are carried out correctly.

The height of the correlation peak for non-deformed
windows is linked to the parameter SW/d through
Eq. (17) (see also Fig. 6). A recipe for increasing its
height proposed in the literature (Fincham and Sped-
ding 1997, Lin and Perlin 1998) is to decrease the size
W of the correlation window. But by doing this, the
number of particles in the window also decreases and
the correlation peak is more sensitive to noise. Another
idea would be to increase the diameter d of the parti-
cles. However, in an experiment, there is a maximum
allowable size of the particles, if one wants them to be
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Fig. 7 Typical correlation functions obtained for a velocity
field given by Eq. (15) with S = 0.2, with a window size
W = 64 pixels. a without, and b with convolution of the
image with a Gaussian (Eq. 21) of parameter δ = 9 pixels

accurate tracers that move very closely with the fluid
velocity. One way around this problem, which has been
used before, consists in an optical defocussing of the flow
images at acquisition, leading to bigger apparent parti-
cle images. The drawback is that, for higher iterations
of the algorithm, the accuracy will always be limited by
the width of the auto-correlation function of the particle
intensities (Eq. (18)), i.e., it will be noisier than it could
have been without defocussing.

In the present algorithm, the idea is to increase the
size of the particles numerically for the first run only, by
applying a Gaussian filter to the images, i.e., an oper-
ation similar to a numerical defocussing. We convolute
the image intensity matrix with a Gaussian function of
parameter δ2/8 defined by:

G(r) =
8

πδ2
e
− r2

δ2/8 (21)

This technique has the following advantages:

– Large sizes of the correlation window can be used,
keeping the number of particles images in them high.

0%

10%

20%

30%

50%

0.0 0.5 1.0 2.0

false
vectors

δ / SW

Fig. 8 Fraction of false vectors (error larger than 2 pixels)
obtained for images filtered with a Gaussian function defined
by Eq. (21). The velocity field is a horizontal shear (Eq. (15))
with S = 0.15. Window size is W = 64 pixels. ◦: without
noise, ¦: with 20% noise

– The actual particles in the fluid do not need to be
large. They can be chosen small enough to be con-
sidered as accurate tracers.

– The noise is smoothed during the filtering. The signal
to noise ratio does not decrease in the presence of the
filter.

– The unfiltered images are not lost, they are avail-
able for further iterations of the algorithm. The er-
ror, which scales on the diameter of the particles, is
thus independent of the velocity gradient.

Figure 7 shows typical correlation functions obtained
without and with Gaussian filter. Although it might
seem counter-intuitive, the height of the peak increases
when the images are filtered. However, the width of the
peak increases simultaneously. This is why this technique
should only be used for the first iteration, where only a
rough approximation of the velocity field is needed. The
resulting velocities are not highly accurate, but there
are very few spurious vectors. This is well illustrated in
Fig. 8, where the number of spurious vectors is plotted as
a function of the parameter δ characterising the width of
the filtering function, for the example of a simple shear
given by Eq. (15). For appropriately chosen values of δ,
the number of spurious vectors can be decreased by an
order of magnitude with respect to the unfiltered case.
This technique remains efficient in the presence of noise;
adding a random component to the image, whose ampli-
tude is 20% of the maximum intensity of a particle, does
not significantly change the number of spurious vectors.
δ should be chosen so that the number of spurious vec-
tors is a minimum. If one admits that the shear flow
used to obtain the result in Fig. 8 is representative for
more general types of velocity gradients, this would oc-
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cur for δ/SW near unity. This then leads to an empirical
determination of the optimal value for δ:

δ ≈ W ∂rv ∆t (22)

where ∂rv represents the maximum velocity gradient
present in the given flow, which, in many cases, can be
estimated roughly beforehand.

The technique of filtering of the images with a Gaus-
sian function thus seems very effective for the determi-
nation of a rough approximation of the velocity field,
without knowledge of the velocity gradients. In the PIV
algorithm used in the present study and described below,
it is used for the first correlation in an iterative process.

5
Description of the algorithm

A cross-correlation PIV algorithm has been developed,
using the above techniques: symmetric translation of the
windows, Gaussian filtering, and window deformation
according to the velocity gradients. It is briefly outlined
in the following.

5.1
First iteration

Before the first cross-correlation run, the two images are
filtered with the Gaussian function defined in Eq. (21),
with the parameter δ chosen according to Eq. (22). The
images are divided into correlation windows in the stan-
dard way, centred on the points of a grid, where the ve-
locity vectors are to be calculated. The correlation func-
tion of a given window pair is obtained by a Fast Fourier
Transform (FFT) routine, as recommended by Raffel et
al. (1998, Section 5.4.4), but initially without the use of
the weighting factor compensating the in-plane loss of
pairs. This factor strongly amplifies the correlation val-
ues for large displacements, which may lead to situations
where noise-generated peaks become larger than the one
associated with the real particle displacement, resulting
in spurious calculated velocity vectors. Once the maxi-
mum of the unweighted function is detected, the precise
peak location is determined to subpixel accuracy, using
a three-point Gaussian-fit estimator (Westerweel 1993,
Chapter 3.8). For this, the in-plane loss correction is now
applied for better accuracy. The location of the correla-
tion peak corresponds to the velocity at the centre of the
window. At the end, spurious vectors are detected and
replaced by a median-filter procedure (see Westerweel
1994 for details).

5.2
Further iterations

In the subsequent iterations, the unfiltered original im-
ages are used. For an iteration number j, the windows
are translated and deformed according to the displace-
ment field uj−1 calculated in the preceding iteration
j-1. The displacement gradients u′ are obtained through
a centred finite-difference scheme. For each correlation

window, the algorithm rebuilds two new intensity func-
tions Ĩi(r) and Ĩf (r), where r = (x, y), and x, y range
from −W/2 to +W/2:

Ĩi(r) = Ii

(
r− uj−1

2
− u′j−1 · r

2

)
(23)

Ĩf (r) = If

(
r +

uj−1

2
+

u′j−1 · r
2

)

The value of the intensity Ii and If between pixels is
found by bi-linear interpolation between the 4 neigh-
bouring values (see, e.g., Nogueira et al. 1999). A cor-
relation function of these new intensities is calculated
(equal to the deforming correlation function in Eq. (18))
in the same way as in the first iteration, using FFT, and
the location lmax of its peak is determined to subpixel
accuracy. The new displacement uj is then given by:

uj = uj−1 + lmax (24)

False vectors are again treated using a median filter pro-
cedure.

These iterations are carried out two or three times,
depending on the strength of the velocity gradients.

5.3
Last iteration

In the previous iterations, a relatively coarse grid is used
for rapidity of the algorithm. In the final iteration, a re-
finement of the spatial resolution is achieved by increas-
ing the number of vectors, and possibly by reducing the
size W of the correlation windows. Otherwise, the pro-
cedure is the same as for the other iterations. The final
displacement field has a high spatial resolution and high
accuracy.

6
Error estimates and optimisation

6.1
Procedure and results

We have carried out tests with the above algorithm to
determine the error caused by velocity gradients. For this
purpose, pairs of artificial images were created numeri-
cally and coded with 8 bits. Particles having a Gaussian
intensity profile given by Eq. (14), with a diameter of
d = 2 pixels, were introduced on the first image with
an average density of C = 0.02 particles/pixel. This cor-
responds to about 20 particles in a window of 32 × 32
pixels. The new positions are then calculated using the
exact Lagrangian displacement of the flow under consid-
eration, and the particles are introduced on the second
image. In order to further approach typical experimen-
tal conditions, a random white noise with an amplitude
equal to 10% of the maximum intensity of the particles,
is added to each pixel of both images.

We used shear flows defined by Eq. (15), with a
shear parameter S varying from 0 to 0.5. For such flows,
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the velocity gradients are uniform. The following results
are therefore mainly representative for flows with slowly
varying velocity gradients (on the scale of the correla-
tion window), e.g., flows with large vortices or large ex-
pansion or shear areas. In the case of a correlation win-
dow equal to 32 pixels, we also carried out tests with a
stretching flow defined by (6), a rotation flow (Sy , Sx)
and a diverging/converging flow (Sx , Sy) after 3 itera-
tions.The average ‘root-mean-square’ error between the
true displacement u and the displacement umeas. found
by the algorithm, defined as

εrms =
√

< ‖u− umeas.‖2 > (25)

is calculated. The average is performed over all vectors
corresponding to particle displacements of up to a third
of the window size W , which is the generally admitted
maximum allowed displacement for the correlation to
work properly. By doing this, the peak locking error is
also effectively averaged out.

The results of these tests are presented in Fig. 9 for
three different window sizes and a varying number of
iterations. As a general trend, one observes a faster in-
crease of the error for larger window sizes, which is a
consequence of the associated decrease of the height of
the peak (see Fig. 6). For a classical algorithm without
window deformation, the error increases rapidly with the
velocity gradient. For example, for a window size W = 32
pixels, it reaches already 0.3 pixels for a relatively mod-
erate displacement gradient of S(= du/dy) = 0.1. These
results are in agreement with previous calculations made
by Raffel et al. (1998). With window deformation, the
error increases much slower, even after very few itera-
tions. For the same conditions as above (W = 32 pixels,
S = 0.1), the error is divided by a factor of 10 after only
the second iteration. It is important to notice that it is
not necessary to carry out more than 4 iterations, since
no further increase in accuracy is obtained. Two or three
iterations are even sufficient in the case of moderate ve-
locity gradients. Supposing that enough iterations are
made so that the calculated displacements converged,
the error is found to remain almost constant up to a
critical value of the displacement gradient, above which
it then increases rapidly.

6.2
Optimum time separation

The preceding results may be used to determine the op-
timum time separation ∆t, which should be chosen in
a given experiment, i.e., the separation which minimizes
the relative error in the velocity measurements, provided
the algorithm in the preceding section is used, with a
sufficient number of iterations. Let v(r) be the experi-
mental velocity field, which, up to a scaling factor deter-
mined by the optical arrangement, is given in pixels per
unit time. We further let ∂rv represent the maximum ve-
locity gradient in this flow. The corresponding displace-
ment field and displacement gradient are u = v ∆t and
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Fig. 9 Rms errors obtained with artificial images. ◦: algo-
rithm without window deformation ; 2, 3, 5, 4: with win-
dow deformation after 2, 3, 4, and 5 iterations, respectively.
Window sizes are: a W = 16 pixels, b W = 32 pixels; c
W = 64 pixels. A stretching flow (dashed-dotted line), a
rotation flow (dotted line) and a converging/diverging flow
(dashed line)are also considered for 3 iterations

∂ru = ∂rv ∆t, respectively. The relative measurement
error is given by:

εrel =
εrms

‖u‖ =
εrms

‖v∆t‖ (26)

At first sight, Eq. (26) would suggest that the relative
error decreases with increasing ∆t, so that the latter
should be chosen as high as possible. However, Fig. 9
shows that the absolute error εrms tends to increase with
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the displacement gradient, and therefore also with ∆t,
which may work against the positive effect of increasing
displacement u. In order to assess the net result, it is
useful to rewrite the relative error as

εrel =
εrms

∂ru
· ∂rv

‖v‖ (27)

The second term is entirely determined by the flow field,
and independent of ∆t; it is the inverse of a charac-
teristic length scale L of the velocity field. The first
term depends on the time separation via ∂ru. Supposing
εrms varies approximately as in Fig. 9, this term is min-
imum when the displacement gradient ∂ru equals some
optimum value Sopt, which is a function of the corre-
lation window size. We find Sopt ≈ 0.3, 0.2, 0.05 for
W = 16, 32, 64 pixels, respectively. These values cor-
respond to the black dots in Fig. 9. They are found by
minimizing the slope of the line joining the origin and a
given data point in Fig. 9. The first term in Eq. (27) cor-
responds to this slope. For a given velocity field with a
gradient ∂rv, this condition on the displacement gradient
leads to a first estimate of the optimal time separation:

∆t1 ≈ Sopt

∂rv
(28)

An additional well known limitation for ∆t is given
by the fact that the particle displacement between im-
ages should not exceed about a third of the correlation
window size (Adrian 1991), in order to prevent excessive
in-plane loss of pairs. The corresponding upper bound
for the time separation is

∆t2 ≈ W

3‖v‖ (29)

In summary, since the time separation should never
exceed this limit, the condition given in Eq. (28) should
be modified into:

∆t = min(∆t1, ∆t2) (30)

As a final result, an estimation of the minimum rela-
tive error as function of the flow length scale L, achiev-
able with the present algorithm, is given in Fig. 10. For
this, a somewhat more conservative absolute error of
εrms = 0.1 was assumed, which is thought to be more
representative of measurements on realistic flows than
the values in Fig. 9. The relative error was calculated in
the following way: for ∆t1 < ∆t2 (i.e., for small length
scales L), it is given by Eq. (27), with ∂ru = Sopt. For
∆t1 > ∆t2 (large L), we use Eqs. (26) and (29).

The 32-pixel window shows the best overall perfor-
mance. For most length scales the error is less than 1%.
High deviations are only observed for lengths consid-
erably smaller than the window size. For characteristic
lengths larger than about 200 pixels, i.e., for nearly uni-
form flows, the use of 64-pixel windows leads to more
accurate results. The error for W = 16 is twice as high
as for W = 32 for high L, due to the reduced maximum
allowable displacement; and even for low L, the gain in
accuracy is not very significant.
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Fig. 10 Minimum relative error that can be obtained with
the present algorithm as a function of the characteristic
length of the flow, for different window sizes: W = 16 pix-
els (dotted line); W = 32 pixels (solid line); W = 64 pixels
(dash-dotted line)

7
Real flows

It is quite common that many sophisticated techniques
for reducing errors work very well for simulated flows,
but have difficulty with real particle image data. We
have thus tested our algorithm on the experiment of
two co-rotating vortices, described in further detail in
(Meunier and Leweke 2002a,b). The images have dimen-
sions 1008 × 1018 pixels, and allow the calculation of
60 × 60 vectors with an correlation size of 32 pixels. A
zoom of the resulting velocity field is shown in Fig. 11. It
is compared to the results obtained with a classical algo-
rithm, without Gaussian filtering and without deforma-
tion of the windows. The classical algorithm is unable to
give a reliable velocity field in the core of the vortices, in
which the ’displacement’ gradients can reach values up
to 0.4. On the contrary, our algorithm still gives a very
good determination of the velocity field. The efficiency
of our algorithm is even more visible when calculating
the vorticity field by standard finite differences, shown
in Fig. 12. Whereas our algorithm gives nearly circular
vorticity contours, a classical algorithm split each vor-
tex in a series of vorticity peaks, creating an artificial
impression of turbulence.

8
Summary

In this paper, we have performed an analytical and nu-
merical study of the effects of velocity (displacement)
gradients in cross-correlation PIV algorithms with win-
dow shifting and deformation.

Expressions for the error between measured displace-
ment (representing the average velocity of a particle on
its trajectory between the two images) and the displace-
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Fig. 11 Example of the velocity field obtained using real
experimental images (a) with a classical algorithm and (b)
with our algorithm.

ment corresponding to the true velocity at the measure-
ment location were obtained as function of the veloc-
ity field, up to third order in space and time. These re-
sults show that an important bias error exists, even for
moderate displacement gradients, when correlation win-
dows are displaced in a non-symmetric way. On the other
hand, this error is reduced to a level below the standard
noise-related error when using symmetric translations of
the correlation windows in the two images.

The effect of gradients on the shape and height
of the correlation peaks was also analysed in detail.
Analytic expressions for peak profiles were calculated
for both non-deforming and deforming symmetric algo-
rithms. They show that the strong broadening of the
peak and decrease of its amplitude, observed in the pres-
ence of gradients for the case without deformation, is
strongly reduced when deforming the correlation win-
dows according to the gradients of the flow.

A method of obtaining a reliable first approximation
of the velocity field, without previous knowledge of ve-
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Fig. 12 Example of the vorticity field obtained using real
experimental images (a) with a classical algorithm and (b)
with our algorithm. The interval between two contours of
vorticity equals 2s−1; dashed contours correspond to negative
vorticity.

locities or gradients, is proposed and tested successfully.
It is based on a numerical filtering of the images, which
increases the apparent size of the individual particle im-
ages in the first run only.

All theoretical predictions were tested for represen-
tative flow configurations, using artificial images. The
agreement between analytical and numerical results, as
well as between the present general results and special
cases treated in the literature, is found to be very good.

An iterative PIV algorithm was developed, using
the techniques described in this paper, and adapting
the window deformation technique, initially proposed by
Huang et al. (1993b), to the use of Fast Fourier Trans-
forms for increased processing speed. Error tests per-
formed with artificial images demonstrate that, even in
the presence of relatively large gradients, only a few iter-
ations with window deformation are necessary to reduce
the error to a level obtained for almost uniform flows



Analysis and treatment of errors due to high velocity gradients in Particle Image Velocimetry 13

with a non-deforming algorithm. Based on these error
estimates, a practical guideline for the choice of the op-
timum time separation between images is given, as func-
tion of the velocities and gradients present in the flow
under consideration.

Appendix

We seek an expression for the displacement ∆r = rf −ri

of a particle in the velocity field given by Eq. (3). At
t = ti, the particle is located at ri, and at t = tf at rf .
The origin of time (t = 0) is given by the time at which
one wishes to determine the velocity at the reference
point 0 (of coordinates r = 0). All derivatives are taken
at this point and time. The particle trajectory r(t) is
calculated by an iterative process as successive solutions
of the differential equation

dr
dt

= v[r(t)] (31)

at increasing orders of t and r.
At first order, the solution r1(t) of Eq. (31) (using

Eq. (3) taken at order 0) is given by:

r1(t) = ri +
∫ t

ti

v0dt′ = ri + v0(t− ti) (32)

Introducing this result into (3) leads, at first order, to:

dr
dt

= v[r1(t)] = v0 + v′ · (ri + v0t) + t ∂tv (33)

The solution of Eq. (33) is the approximation r2(t) of
the trajectory to the second order:

r2(t) = ri + v0(t− ti) +
t2 − t2i

2
∂tv (34)

+v′ · ri(t− ti) + v′ · v0
(t− ti)2

2

The third-order approximation r3(t) of the particle tra-
jectory is found in the same way, the final result being:

r3(t) = ri +
∫ t

ti

v[r2(t′)]dt′

= ri + v0(t− ti) + v′ · ri(t− ti)

+ v′ · v0
(t− ti)2

2
(35)

+ v′ · ∂tv
(

t3 − t3i
6

− t2i
2

(t− ti)
)

+ v′2 · ri
(t− ti)2

2
+ v′2 · v0

(t− ti)3

6

+ ∂tv
t2 − t2i

2
+

(
r†i · v′′x · ri

r†i · v′′y · ri

)
t− ti

2

+

(
v†0 · v′′x · ri + r†i · v′′x · v0

v†0 · v′′y · ri + r†i · v′′y · v0

)
(t− ti)2

4

+

(
v†0 · v′′x · v0

v†0 · v′′y · v0

)
(t− ti)3

6
+ ∂ttv

t3 − t3i
6

+ ∂tv′ · ri
t2 − t2i

2

+
(

t3 − t3i
3

− t2 − t2i
2

ti

)
∂tv′ · v0

Non-symmetric displacement - For the displacement
corresponding to Fig. 1a, we have ri = 0, and the choice
ti = 0 and tf = ∆t seems appropriate. Using Eq. (34),
this leads to Eq. (4), showing that in this case the error
between the measured velocity ∆r/∆t, and the true ve-
locity v0 at the measurement location and at the time of
the first image is of second order in ∆t. One could also
choose the origin of time halfway between ti and tf (see
Eq. (37) below), which means that the measured velocity
field is associated to the instant between the exposures
of the two images. In this case the term proportional to
∂tv in Eq. (4) would vanish, but the error, now given by
Eq. (38), would still remain of O(∆t2).

Symmetric displacement - For the displacement cor-
responding to the symmetric window shifting in Fig. 1b,
the following relations hold:

rf = −ri =
∆r
2

(36)

tf = −ti =
∆t

2
(37)

Introducing Eq. (37) into Eq. (34), we obtain for t = tf :

∆r = v0∆t + v′ · ri∆t + v′ · v0
∆t2

2
+ O(∆t3) (38)

and, with Eq. (36) and I being the unit matrix,

(I +
∆t

2
v′) · (∆r− v0∆t) = O(∆t3) (39)

This results in

∆r = v0∆t + O(∆t3) (40)

showing that, for a symmetric displacement, the error
is only of order ∆t3. The expression in Eq. (5) for this
higher-order term is found by introducing Eqs. (36), (37)
and (40) into Eq. (35).
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