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The advection of a passive scalar blob in the deformation �eld of an axisymmetric

vortex is a simple mixing protocol for which the advection-di�usion problem is amenable

to a near-exact description. The blob rolls-up in a spiral which ultimately fades away in

the diluting medium. The complete transient concentration �eld in the spiral is accessible

from the Fourier equations in a properly chosen frame. The concentration histogram of

the scalar wrapped in the spiral presents unexpected singular transient features and its

long time properties are discussed in connection with mixtures from the real world.

1. Introduction

A central question in scalar mixing consists in o�ering a satisfactory description of

the histogram, or Probability Density Function (PDF) P (c) of the concentration levels

c of the substance being mixed. The question is particularly interesting, and relevant to

many applications when the substrate is stirred since in that case molecular di�usion is

altered, and in most cases enhanced, by the underlying substrate motions.

The interplay between molecular di�usion and simple deformation �elds is a classi-

cal problem. It is solved in a closed form in a variety of situations such as the saddle

point �ow, the simple shear in two dimensions (Ranz(1979), Mo�att(1983)), in three

dimensions (Villermaux & Rehab(2000)), and in the axisymmetric point vortex (Rhines

& Young(1983), Flohr & Vassilicos(1997)) or spreading vortex �ow (Marble(1988), Bajer

et al. (2001)).

Most of the attention has focussed on the kinetics of the di�usion process in the pres-

ence of stirring motion, particularly its dependence on the substrate rate of deformation


, and di�usion properties of the scalar (di�usivity D). Regarding the characteristic time

ts after which �uctuations start to decay from an initial scalar spatial distribution, of

crucial importance is the rate at which material lines grow in time due to the substrate

motions (Villermaux(2002)). If material lines grow like 
t, as it is the case in a point

vortex �ow, the mixing time of, say, a scalar blob of initial size s0 is ts � 
�1Pe1=3; if

material surfaces in three dimensions grow like (
t)2, then ts � 
�1Pe1=5 and if material

lines are exponentially stretched like e
t, then ts � (2
)�1 logPe where Pe = 
s20=D is

a Péclet number.

The times ts given above are the relevant mixing times as soon as the inverse of the

elongation rate 
�1 is smaller than the di�usive time of the blob constructed on its initial

size s20=D, that is for Pe > 1. In the limit Pe � 1, ts is essentially given by the time

needed to deform the blob 
�1 and molecular di�usion, although a crucial step in the

ultimate uniformization, plays only a weak correction role in the kinetics of the process.

Experiments or numerical simulations addressing this problem quantitatively are scarce,
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Figure 1. Roll-up of a blob of �uorescent dye in a point vortex at t = 0 (upper left), t = 2 sec

(upper right), t = 5 sec (lower left) and t = 10 sec (lower right). Each picture covers a �eld
4:8 � 4:8 cm2 wide and the circulation of the vortex is 14:2 cm2=s. The data come from experi-
ments described in section 2.

and are mostly limited to short times (i.e. t . ts), therefore re�ecting more the kinemat-

ics of the �ow than its mixing properties (see, however Cetegen & Mohamad(1993) and

Verzicco & Orlandi(1995)).

Based on a spatially and temporally resolved experiment, we study the mixing chronol-

ogy of a blob of dye embedded in the displacement �eld of a di�using, Lamb�Oseen type

vortex. The process is described, from the initial segregation of the blob to a state where

it is almost completely diluted in the surrounding medium, through the evolution of

the spatial scalar �eld, and associated transient evolution of the overall concentration

distribution P (c).

2. A di�usive spiral

2.1. Chronology

The phenomenon we analyze is illustrated on Figure 1. A uniform blob of dye (the dark

patch shown on Fig. 1(a))is deposed in a still transparent medium. Then a vortex is

formed by the roll-up of a vortex sheet in the vicinity of the blob, which wraps around



How vortices mix 3

(a)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x   [cm]

y 
  [

cm
]

(b)

0.00

0.05

0.10

0 3 6 9

vθa0/Γ

r/a0 (c)

0.0

0.4

0.8

1.2

0.0 0.4 0.8 1.2

a2

(cm2)

4νt   (cm2)

a0
2

Figure 2. (a) Velocity �eld in the plane of the vortex at t = 10 sec. (b) Radial pro�les of the
azimuthal velocity measured at t = 5 sec (Æ), t = 10 sec (�) and t = 20 sec (M). Solid lines corre-
spond to the pro�les expected from a Lamb-Oseen vortex de�ned by (2.1) with � = 14:2 cm2/s
and a0 = 0:3 cm. The dashed line corresponds to a point vortex de�ned by (3.1). (c) Core size of
the Lamb-Oseen vortex measured by a least-square �t of the two-dimensional measured velocity
�eld and compared to Eq. (2.2) (solid line).

the vortex as seen on Figure 1(b). Although it has been brought to a thin transverse size,

most of the �uid particles constitutive of the blob still bear the initial concentration. The

blob deforms in a spiral shape and after four turns (Fig. 1(c)), the dye concentration is

no more uniform along the spiral: it is weaker near the center of the vortex where the

spiral is very thin, and still close to the injection concentration in the outer region of the

spiral which is thicker there. On Fig. 1(d), the spiral has made more than seven turns and

is about to vanish in the diluting medium. The thickness of the spiral is fairly constant.

Molecular di�usion has clearly been enhanced by the vortex motion. The time lapse

between �gures 1(a) and 1(d) is 10 seconds, when the timescale of pure di�usion based

on the initial size s0 of the blob s20=D is about 103 seconds.

2.2. Flow �eld

The vortex is formed by the impulsive �ap motion of a long �at plate in a large tank

of water initially at rest. The vorticity layer formed at the surface of the plate rolls-up

and detaches at the plate end, producing an axisymmetric vortex which remains two-

dimensional long after the dye has been mixed. A thin uniform Argon-Ion laser sheet is

shed through the tank perpendicular to the plate, and the two-dimensional motion of

the vortex is analyzed by Particle Image Velocimetry (PIV) using a Kodak 1008� 1018
pixels digital camera aimed perpendicular to the laser sheet. Further information on the

set-up and PIV techniques can be found in Meunier & Leweke(2002a) and Meunier &

Leweke(2002b) respectively.

The dye is introduced, prior to the formation of the vortex, by a small tube positioned

below the laser sheet, and forming a slowly ascending column of dye, aligned with the

vortex axis. The dye concentration �eld (disodium Fluoresceine with initial concentration

c0 � 10�3 mol=l) is recorded with the same camera and stored on a disk. The overall

framing rate allows a complete roll-up sequence to be temporally resolved. The images are

digitized on 8 bits and the resulting background subtracted grey levels are proportional

to the dye concentration.

Figure 2(a) shows an example of the axisymmetric velocity �eld obtained by PIV after

the vortex creation. The radial pro�les of azimuthal velocity v� shown on Fig. 2(b) agree

well with that of a Lamb-Oseen vortex, de�ned in the cylindrical coordinates (r ; � ; z) by
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v� =
�

2�r

�
1� e�r

2
=a

2
�

(2.1)

Here, � = 14:2 cm2=s is the circulation of the vortex, and a its core size. This vortex

is an exact solution of the Navier-Stokes equations provided that

a2 = a20 + 4�t (2.2)

where � is the kinematic viscosity of the �uid, a law in close agreement with the

observed growth (Fig. 2(c)), a0 being the initial vortex radius equal to 0.3 cm.

The dashed line in Fig. 2(b) is the velocity pro�le of a point vortex with the same

circulation, de�ned by (3.1). It is tangent to the measured velocity pro�les for large radii

(r=a0 > 3).
Willing to decouple the problem of mixing from the (trivial) problem of the temporal

evolution of the velocity �eld itself, we have systematically deposed the blob of dye far

enough from the vortex core so that the velocity �eld remains that of a steady, point

vortex, throughout the whole mixing process.

3. Concentration �eld along the spiral

We consider the evolution of a blob of dye of initial size s0, in the two-dimensional,

incompressible �ow of a point vortex of circulation � (see Fig. 3a), whose azimuthal

velocity is

v� =
�

2�r
(3.1)

We �rst describe the kinematics of the blob deformation. A �uid particle of the blob

located at a distance r from the center of the vortex turns during time t by an angle �

�(r; t) =

Z t

0

v�

r
dt =

�t

2�r2
(3.2)

A scalar strip of initial length dr, located at a distance r from the vortex center

(Fig. 3(a)) is stretched so that its length equals at time t

dX =
p
dr2 + (rd�)2 = dr

s
1 + r2

�
d�

dr

�2

= dr

r
1 +

�2t2

�2r4
(3.3)

Meanwhile, the transverse, or striation thickness s(t) of the strip, in the absence of

di�usion, decreases so that the surface s(t)dX remains constant in this two dimensional

�ow

s(t) =
s0 dr

dX
=

s0q
1 + �2t2

�2r4

(3.4)

We now describe the scalar dissipation of the blob. The displacement �eld results locally

in a compression perpendicular to the strip, and in an extension along the strip. It is

convenient to introduce a frame of reference (O; X; Y ) whose X-axis is locally aligned
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Figure 3. Schematic of the scalar blob elongation. (a) initial state and (b) at time t

with the spiral as shown on Fig. 3(b). In that frame, the velocity �eld is prescribed by

the temporal evolution of the striation thickness s(t) as

U = �X

s

ds

dt
and V = Y

s

ds

dt
(3.5)

The evolution equation for the dye concentration c is the convection�di�usion equation

in the (X; Y ) coordinates

@c

@t
+ U

@c

@X
+ V

@c

@Y
= D

�
@2c

@X2
+

@2c

@Y 2

�
(3.6)

The ratio of the two convective terms V @c=@Y and U@c=@X is in magnitude propor-

tional to the strip aspect ratio 1 + (�2t2)=(�2r4): the concentration varies more slowly

along the spiral than in its transverse direction for �t=r2 > 1 so that Eq. (3.6) becomes

@c

@t
+
Y

s

ds

dt

@c

@Y
= D

@2c

@Y 2
(3.7)

A change of variables (see e.g. Ranz(1979), Marble(1988), Villermaux & Rehab(2000))

consisting in counting transverse distances in units of the striation thickness s(t) and

time in units of the current di�usion time s(t)2=D transforms Eq. (3.7) into a simple

di�usion equation

with � =
Y

s(t)
and �(r) =

Z
t

0

Ddt0

s(t0)2
=

Dt

s20
+

D�2t3

3�2r4s20
giving

@c

@�
=

@2c

@�2
(3.8)

If c0 is the initial concentration of the dye, the initial conditions at � = 0 are

�
c = c0 for j�j < 1=2
c = 0 for j�j > 1=2

(3.9)

The concentration pro�le at any time and radial position along the spiral is

c(�; �) =
c0

2

�
erf

�
� + 1=2

2
p
�

�
� erf

�
� � 1=2

2
p
�

��
(3.10)
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Figure 4. Comparison of the maximal dye concentrations obtained experimentally (symbols)
and theoretically (solid lines) by Eq.(3.11). (a) Radial dependence at t = 5 sec (Æ), t = 10 sec

(�) and t = 20 sec (M). (b) Temporal dependence for r=a0 = 4:4

The maximal concentration is obtained at the pro�le center � = 0

cM (r; t) = c0 erf

�
1

4
p
�

�
= c0 erf

0
@ 1

4
q

Dt

s20
+ D�2t3

3�2r4s20

1
A (3.11)

This relation can be examined from the experiment (� = 14:2 cm2/s, D = 5 � 10�6

cm2/s and s0 � 0:22 cm). Figure 4(a) shows the maximal dye concentrations as a function

of the radius r at a �xed time, for three di�erent times. The concentration falls to zero

more rapidly closer to the spiral center since the rate of elongation is higher there (see

Eq. (3.3)).

Conversely, the temporal evolution of the concentration at a �xed r�location is con-

stant ( Fig. 4(b)) up to the mixing time ts(r). This time makes the argument of the error

function in Eq. (3.11) of order unity i.e. � = O(1)

ts(r) =
r2

�

�
3�2

16

�1=3 �s0
r

�2=3 � �

D

�1=3

(3.12)

and displays the expected Péclet number dependence Pe1=3, with Pe = �=D charac-

teristic of �ows where material lines grow asymptotically linearly in time (see Eq. (3.3)).

After the mixing time, the maximal concentration cM decreases like t�3=2, in close agree-

ment with the trend shown on Fig. 4(b).

4. Probability Density Function

If A is the total surface area of the spiral bearing a non-zero concentration level, the

Probability Density Function (PDF) of the scalar P (c) is the fraction of the total area

whose concentration lies in the interval [c; c+dc]. It is convenient to compute P (c) in the

(r; �) coordinates where � is de�ned in (3.8) so that with dX =
p
1 + (�2t2)=(�2r4) dr

and dY = s d� = s0 d�=
p
1 + (�2t2)=(�2r4), one has



How vortices mix 7

0.5

1

1.5

2

−0.02

−0.01

0

0.01

0.02
0

0.2

0.4

0.6

0.8

1

r   [cm]Y=s.ξ   [cm]

c/
c 0

(a)

(b) r   [cm]

Y
=

s.
ξ 

  [
cm

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(c)

Figure 5. (a) Perspective view and (b) contour plot of the concentration pro�le given in
Eq. (4.2). The white band corresponds to an iso-concentration c=c0 = 0:6. (c) Zoom of the
end of the spiral on Fig. 1 and same construction.

P (c)dc =

ZZ
c(X;Y )2[c; c+dc]

dX dY

A
=

ZZ
c(r;�)2[c; c+dc]

s0 dr d�

A
(4.1)

The scalar spatial distribution is given in Eq. (3.10) as the di�erence of two error

functions. However, after the mixing time, that is when the spiral thickness is very thin,

this di�erence approximates the derivative of the error function, providing a Gaussian

concentration pro�le

c(�; r) = c0 erf

 
1

4
p
�(r)

!
e��

2
=2�2� (4.2)

where �(r) is given by Eq. (3.8) and ��(r) is the standard deviation of the original

pro�le c(Y ) given in Eq. (3.10)

�2 =

R
Y 2c(Y ) dYR
c(Y ) dY

= s2(t)

R
�2c(�) d�R
c(�) d�

= s2(t)
1 + 24�(r)

12
; or �2� =

1 + 24�(r)

12
(4.3)

Note that the `spiral thickness' � �rst decreases as t�1, reaches a minimum at t = ts
and re-increases as t1=2 after the mixing time, when the spiral is locally nearly parallel

to the vortex streamlines.

The shape of the iso-concentration lines c(r ; �) = c in the (r; �) plane is shown in

Fig. 5

�(r; c) = ���(r)
r

2log
h
erf
�
1=4
p
�(r)

�i
� 2log(c=c0) (4.4)

This curve is de�ned for r > r�1(c) only, that is above the smallest radius bearing the

concentration c at time t



8 P. Meunier and E. Villermaux

(a)

1.0

10.0

0.4 0.6 0.8 1.0

P(c/c0)

c/c0 (b)

1.0

10.0

0.4 0.6 0.8 1.0

P(c/c0)

c/c0

(c)

1.0

10.0

0.4 0.6 0.8 1.0

P(c/c0)

c/c0 (d)

1.0

10.0

0.4 0.6 0.8 1.0

P(c/c0)

c/c0

Figure 6. Probability Density Functions at (a) t = 5 sec, (b) t = 8 sec, (c) t = 10 sec and (d)
t = 13 sec. Solid lines correspond to the theoretical prediction given by Eq. (4.6) and dashed
lines correspond to the PDF of the spatial maxima of concentration, de�ned by Eq. (4.7).

r�1(c) =

"
16

3�2
D�2t3

s20
�
erf�1(c=c0)

��2 � 16Dt

#1=4
(4.5)

If the scalar blob was initially delimited between the radii r1 and r2, the concentration

PDF is

P (c) =
2s0
A

Z r2

max[r1;r
�

1 (c)]

����@c@�
����
�1

dr (4.6)

The concentration pro�le across the spiral, and the evolution of the maximal concen-

tration along the spiral set the global PDF.

The above relation is compared on Fig. 6 with the experimental histograms recorded

with a blob initially located between r1 = 1:65 cm and r2 = 2:1 cm. At early stages,

(Fig. 6a), as long as most of the �uid particles constitutive of the spiral have not reached

the mixing time yet, the PDF is that of a Gaussian spatial pro�le 1=c
p
log(c=cM ) with

cM = c0 displaying a characteristic [ shape.
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As soon as di�usion becomes e�ective, the PDF nucleates a cusp located at the maximal

concentration cM (r1) obtained at the inner end of the spiral. The shape of the PDF for

cM (r1) < c < cM (r2) results from the superposition of the right branches of the [ shaped

distributions parameterized by cM (r) with r1 < r < r2 (Fig. 6b,c,d) and weighted by the

probability of �nding the maximal concentration cM , namely Q(cM ). This distribution is

the fraction of the spiral length dX whose concentration is in the interval [cM ; cM +dcM]

Q(cM ) =
1

L

����dcMdX

����
�1

(4.7)

where L is the spiral length L =
R r2
r1

dX. It is de�ned in the range [cM (r1); cM (r2)]

and shown as the dotted line on Fig. 6. At short times, P (c) and Q(cM ) are very di�erent
because the low concentration levels at a small radii r and � = 0 are as numerous as

the same levels at the edges of the Gaussian transverse pro�le (� 6= 0) at a higher r.

The spatial distribution c(�) contaminates the whole distribution P (c), inducing the

characteristic [ shape. At later stages (Fig. 6d), the low levels of concentration from the

edges of the Gaussian pro�le at large radii are rare in comparison to those at the center

of the spiral and � = 0. Therefore, Q(cM ) becomes a decreasing function of c and gets

closer to P (c). In the �nal stages, when �t=r2 � 1 and for ts(r) > 1 for all r, these two

distributions are both given by

P (c) � Q(cM = c) �
�

~r4s20
D�2t3

�1=4
1

c3=2
(4.8)

where ~r stands for (1=r1 + 1=r2)
�1.

5. Conclusions and implications

In the simple displacement �eld of a two-dimensional vortex, a direct connection exists

between the microscopic equations of di�usion, and the resulting global statistics of

the mixture through the scalar concentration PDF P (c) which, therefore, appears as a
reformulation of the microscopic convection�di�usion problem.

This one-to-one connection is possible because the �ow solely results in a spatial map-

ping of the �uid particles with no interaction between the particles themselves. The

concentration of a given �uid element evolves due to molecular di�usion and not because

it interacts with a nearby element; indeed, the arms of the spiral never reconnect. This

situation would lead to a completely di�erent route for the evolution of P (c). It is, to this
respect, useful to learn that the distribution Q(cM ) tends asymptotically towards P (c),
a hidden assumption made when considering mixtures evolution by particle interaction

(Curl(1963), Pope(1985), Pumir et al. (1991), Villermaux(2002)).

The simple stirring protocol considered here also provides an exact estimation of the

scalar dissipation rate � = � d
dt
hc2i = 2Dh(rc)2i, a quantity sometimes modeled in an

ad-hoc way. Here h�i denotes a spatial integration, therefore

� = 2D

Z r2

r1

dX

s(t)

Z +1

�1

�
@c

@�

�2

d� (5.1)
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With c(�) given in Eq. (3.10) and
R +1
�1

�
@c

@�

�2

d� � 1�e�1=8�(r)p
�(r)

, one sees that as soon

as �t=r2 > 1

(
� � �

s0

p
Dt when t < ts(r) for all r

� � s0p
D�

t�5=2 when t > ts(r) for all r
(5.2)

As long as most of the �uid particles constitutive of the spiral have not reached the

mixing time (i.e. while t < ts(r) and �(r) � 1), � re�ects both the di�usive smoothing

(� 1=
p
Dt) at the edges of the concentration pro�le c(�), and the increase of the con-

centration support length (� �t). When the mixing time has been reached all along the

spiral (i.e. when t > ts(r) and �(r) > 1), the maximal concentration cM decays as t�3=2,

the pro�le thickness � re-increases by pure di�usion like t1=2 and the spiral length still

increases like �t, thus, since � � (cM=�)2��t, providing the t�5=2 time dependence in

Eq. (5.2).
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