An extension theorem

Benoît Claudon

To cite this version:

Benoit Claudon. An extension theorem. 2005. hal-00014791v1

HAL Id: hal-00014791 https: / /hal.science/hal-00014791v1

Preprint submitted on 30 Nov 2005 (v1), last revised 21 Sep 2006 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An extension theorem

Benoît Claudon

November 30, 2005

Introduction

Let us consider the following situation : let $\pi: X \longrightarrow \Delta$ a smooth projective family (over the unit disc) et let $L \longrightarrow X$ be a line bundle over X endowed with a (possibly singular ${ }^{1}$) hermitian metric \tilde{h} such that:
(i) $\Theta_{\tilde{h}}(L) \geq 0$ as a current (i.e. (L, \tilde{h}) is pseudo-effective).
(ii) the restriction $\tilde{h} x_{0}$ of \tilde{h} to the central fiber X_{0} is well defined (i.e. if φ is a local weight of the metric $\tilde{h}, \varphi \mid x_{0} \not \equiv-\infty$ and $\left.\varphi \mid x_{0} \in L_{l o c}^{1}\right)$.
(iii) the multiplier ideal sheaf $\mathcal{J}\left(X_{0}, \tilde{h} x_{0}\right)$ is trivial : $\mathcal{J}\left(X_{0}, \tilde{h} x_{0}\right)=\mathcal{O} x_{0}$.

In this paper, we establish the proof of the following extension result :
Theorem 0.1 let $X \longrightarrow \Delta$ a smooth projective family, $m \geq 1$ an integer and let (L, \tilde{h}) a hermitian line bundle satisfying the conditions (i), (ii) and (iii) above. Then every section of $m\left(K X_{0}+L\right)$ (over \mathcal{X}_{0}) extends to \mathcal{X}; in other words, the restriction map :

$$
H^{0}(X, m(K x+L)) \longrightarrow H^{0}\left(X_{0}, m\left(K x_{0}+L\right)\right)
$$

is surjective.
This result is a "family" version of a result obtained by S. Takayama (see Tak05, th 4.1]).

The strategy employed to prove theorem 0.1 is the one given by M. Paun to simplify Siu's proof of the invariance of plurigenera and, in the same time, to improve this result. Indeed, in Pau05, M. Paun was able to replace the L^{∞} hypothesis (originally formulated by Siu to solve the invariance of plurigenera) by an L^{2} one, which is closely related to extension problems by the way of the Ohsawa-Takegoshi theorem (theorem 1.1 below). We would like to point out here the main steps of this method.

First we fix $s \in H^{0}\left(X_{0}, m\left(K x_{0}+L\right)\right)$, the section we want to extend and let A be an ample line bundle over X which satisfies the following conditions :
(1) $p(K x+L)+A$ is generated by its global sections, say $\left(s_{j}^{(p)}\right)_{j=1 . . N_{p}}$, for $0 \leq p \leq m-1$

[^0](2) every section of $m\left(K_{X_{0}}+L\right)+A$ extends to X.

What we have to do next is to extend the following sections : $s^{\otimes k} \otimes s_{j}^{(p)}$ with $k \geq 1,0 \leq p \leq m-1$ and $0 \leq j \leq N_{p}$ to obtain $\widetilde{s}_{j}^{(k m+p)}$, sections of $(k m+p)(K x+L)+A$. Here the heart of the proof rests on the Ohsawa-Takegoshi theorem : indeed, it implies that we can find such extension with uniform L^{2} estimates. Then, we use the family $\left(\widetilde{s}_{j}^{(k m)}\right)_{j=1 . . N_{p}}$ to construct some metrics on $k m\left(K_{x}+L\right)+A$ and the final step is to extract roots and pass to the limit (i.e. dividing by k, we consider $m(K x+L)+\frac{1}{k} A$ and, passing to the limit, we produce a final metric h_{∞} on $m(K x+L)$. The main point is that the L^{2} estimates produce effective bounds and that is why we can pass to the limit. At the end of the proof, the metric h_{∞} is used to apply (for the last time !) the Ohsawa-Takegoshi theorem to extend the section s.

Aknowledgement : I am very grateful to Mihai Paun for explaining to me his very beautiful method and encouraging me to write down the proof of theorem 0.1. For this and also for many interesting discussions, I would like to thank him.

1 Preliminaries

We recall here some facts we need in the proof of the theorem 0.1 and fix some notations.

To start with, we want to recall how to define a metric on a line bundle $E \longrightarrow X$ when a family $\left(s_{j}\right)$ of sections of E is given : fix any hermitian (smooth) metric h on E and, for $\sigma \in E$, define :

$$
\|\sigma\|^{2}=\frac{\|\sigma\|_{h}^{2}}{\sum_{j}\left\|s_{j}\right\|_{h}^{2}}
$$

This (singular) metric is cleary independent of h and its singularities are concentrated along the common zeroes of the sections $\left(s_{j}\right)$; moreover, the curvature current of this metric is a closed positive current.

As noticed in the introduction above, the main tool of the proof is the L^{2} extension theorem of Ohsawa and Takegoshi (see OT87). However, the version used in the sequel is the one established by Y.-T. Siu in Siu02:

Theorem 1.1 (Ohsawa-Takegoshi, Siu) Let $X \longrightarrow \Delta$ a smooth projective family and $L \longrightarrow X$ a line bundle endowed with a (possibly singular) metric h with semi-positive curvature current. Then there exists a (universal) constant C_{0} such that for every section $\sigma_{0} \in H^{0}\left(X_{0}, K X_{0}+L\right)$ satisfying :

$$
\int_{x_{0}}\|\sigma\|_{h}^{2}<+\infty
$$

there exists $\tilde{\sigma} \in H^{0}(X, K x+L)$ with $\tilde{\sigma}_{\mid x_{0}}=\sigma \wedge d t$ and moreover :

$$
\int_{X}\|\tilde{\sigma}\|_{h}^{2} \leq C_{0} \int_{X_{0}}\|\sigma\|_{h}^{2}
$$

The version established in Siu02 is actually more general, but the previous statement is enough for our purpose. The crucial point is that the constant C_{0} is universal : it is independent of (L, h) (for a precise value of C_{0} see Siu02, th. 3.1, p. 241]).

We fix some more notations : we use the ones in the introduction for $s \in$ $H^{0}\left(X_{0}, m\left(K_{X_{0}}+L\right)\right.$, for A and for the sections $s_{j}^{(p)} \in H^{0}\left(X, p\left(K_{X}+L\right)+A\right)$. If ω is a hermitian metric on X, h_{ω} will denote the metric induced by ω on K_{X}. Let h a smooth metric on L and h_{A} a smooth metric on A with $\Theta_{h_{A}}(A)>0$; if $q \geq 1$ is an integer, h_{q} will denote the metric $\left(h_{\omega} \otimes h\right)^{\otimes q} \otimes h_{A}$ on $q\left(K_{x}+L\right)+A$ (when needed, $h_{q, r}$ will denote the metric $h_{\omega}^{\otimes q} \otimes h^{\otimes r} \otimes h_{A}$).
Consider the metric \tilde{h} on L : we can write $\tilde{h}=e^{-\tilde{\varphi}} h$ and the assumption on the curvature of (L, \tilde{h}) is

$$
\Theta_{\tilde{h}}(L)=\Theta_{h}(L)+i \partial \bar{\partial} \tilde{\varphi} \geq 0
$$

as currents on \mathcal{X}. In particular, this implies that the weight function $\tilde{\varphi}$ is locally bounded from above.

Remark 1.1 the hypothesis made on $\mathcal{J}\left(X_{0}, \tilde{h} X_{0}\right)$ (its triviality) can be expressed in the following way:

$$
\int_{x_{0}} e^{-2 \tilde{\varphi}} d V_{\omega}<+\infty
$$

We will denote by C_{L} this constant in the sequel.

2 Proof of the theorem

As we pointed out in the introduction, we will need precise L^{2} estimates to achieve passing to the limit ; actually, theorem 0.1 will be a straightforward consequence of the following proposition :

Proposition 2.1 There exists a constant $C>0$ such that, for all $k \geq 1$, $0 \leq p \leq m-1$ and $0 \leq j \leq N_{p}$, there exist some sections

$$
\widetilde{s}_{j}^{(k m+p)} \in H^{0}(X,(k m+p)(K x+L)+A)
$$

with $\widetilde{s}_{j \mid x_{0}}^{(k m+p)}=s^{k} \otimes s_{j}^{(p)}$ and with the following estimates :
(E1) if $1 \leq p \leq m-1$, we have

$$
\int_{X} \frac{\sum_{j=1}^{N_{p}}\left\|\widetilde{s}_{j}^{(k m+p)}\right\|_{h_{k m+p}}^{2}}{\sum_{j=1}^{N_{p}-1}\left\|\widetilde{s}_{j}^{(k m+p-1)}\right\|_{h_{k m+p-1}}^{2}} d V_{\omega} \leq C
$$

(E2) for $p=0$ (and $k \geq 2$), the estimate becomes

$$
\int_{X} \frac{\sum_{j=1}^{N_{0}}\left\|\widetilde{s}_{j}^{(k m)}\right\|_{h_{k m}}^{2}}{\sum_{j=1}^{N_{m}-1}\left\|\widetilde{s}_{j}^{((k-1) m+m-1)}\right\|_{h_{(k-1) m+m-1}}^{2}} d V_{\omega} \leq C
$$

Proof of the proposition 2.1 :

To start with, we can consider the sections $s \otimes s_{j}^{(0)}\left(0 \leq j \leq N_{0}\right)$; using the poperty (2) of A, each of the previous sections extends over X. Thus, we get the extensions $\widetilde{s}_{j}^{(m)}$.

Before going further in the proof, it can be usefull to do the following remark : by the global property (1) of A (and possibly shrinking Δ), there exists a constant C_{1} such that

$$
\begin{equation*}
\max _{r, q} \sup _{x}\left(\frac{\sum_{j=1}^{N_{r}}\left\|s_{j}^{(r)}\right\|_{h_{r}}^{2}}{\sum_{j=1}^{N_{q}}\left\|s_{j}^{(q)}\right\|_{h_{q}}^{2}}\right) \leq C_{1} \tag{1}
\end{equation*}
$$

To prove proposition 2.1, we will proceed inductively and construct the desired extensions step by step ; to this end, we consider the following constant :

$$
\widetilde{C}=\max \left(1,\|s\|_{L^{\infty},\left(h_{\omega} \otimes h\right)^{\otimes m}}^{2}\right) C_{0} C_{1} C_{L} e^{2 M}
$$

where M is an upper bound for $\tilde{\varphi}$ (we already shrinked Δ so M exists) and

$$
\|s\|_{L^{\infty},\left(h_{\omega} \otimes h\right)^{\otimes m}}=\sup _{x \in X_{0}}\left(\|s(x)\|_{\left(h_{\omega} \otimes h\right)^{\otimes m}}\right)
$$

We can now initiate the inductive process : to get the extension of the sections $s \otimes s_{j}^{(1)}$, we consider the line bundle $m(K x+L)+A+L$ we endowed with the metric defined by the family $\left(\widetilde{s}_{j}^{(m)}\right)_{j=0 . . N_{0}}$ twisted with the metric \tilde{h}. This metric has clearly a semi-positive curvature current and, using (il), we have

$$
\begin{equation*}
\frac{\left\|s \otimes s_{j}^{(1)}\right\|_{h_{m+1, m} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{0}}\left\|s \otimes s_{q}^{(0)}\right\|_{h_{m}}^{2}}=\frac{\left\|s \otimes s_{j}^{(1)}\right\|_{h_{m+1}}^{2}}{\sum_{q=0}^{N_{0}}\left\|s \otimes s_{q}^{(0)}\right\|_{h_{m}}^{2}} e^{-2 \tilde{\varphi}} \leq C_{1} e^{-2 \tilde{\varphi}} \tag{2}
\end{equation*}
$$

Integrating (2) over X_{0} and using the remark 1.1, we get

$$
\begin{equation*}
\int_{X_{0}} \frac{\left\|s \otimes s_{j}^{(1)}\right\|_{h_{m+1, m} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{0}}\left\|s \otimes s_{q}^{(0)}\right\|_{h_{m}}^{2}} d V_{\omega} \leq C_{1} C_{L}<+\infty \tag{3}
\end{equation*}
$$

We can thus apply the theorem 1.1 and we get $\widetilde{s}_{j}^{(m+1)}$ an extension of $s \otimes s_{j}^{(1)}$ with the estimate :

$$
\begin{equation*}
\int_{X} \frac{\left\|\widetilde{s}_{j}^{(m+1)}\right\|_{h_{m+1, m} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{0}}\left\|\widetilde{s}_{q}^{(m)}\right\|_{h_{m}}^{2}} d V_{\omega} \leq C_{0} C_{1} C_{L} \tag{4}
\end{equation*}
$$

To have an estimate involving only the metric h_{m+1}, we just have to remember that the function $\tilde{\varphi}$ is bounded from above by M, so that:

$$
\begin{equation*}
\int_{X} \frac{\left\|\widetilde{s}_{j}^{(m+1)}\right\|_{h_{m+1}}^{2}}{\sum_{q=0}^{N_{0}}\left\|\widetilde{s}_{q}^{(m)}\right\|_{h_{m}}^{2}} d V_{\omega} \leq C_{0} C_{1} C_{L} e^{2 M} \leq \widetilde{C} \tag{5}
\end{equation*}
$$

Suppose we have already constructed the extension $\widetilde{s}^{(k m+p)}$ (with $\left.(k, p) \neq(1,0)\right)$ with the desired estimates ; we now have to climb to the next step. To do this, we separate the two different following case :

case 1 : $p<m-1$

we consider the line bundle $(k m+p)(K x+L)+A+L$ that we endowed with the metric coming from the family $\left(\widetilde{s}_{q}^{(k m+p)}\right)_{q=0 \ldots N_{p}}$ twisted by \tilde{h}; as in the case treated above, we have the following estimates on X_{0} :

$$
\begin{equation*}
\frac{\left\|s^{k} \otimes s_{j}^{(p+1)}\right\|_{h_{k m+p+1, k m+p} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{p}}\left\|\widetilde{s}_{q}^{(k m+p)}\right\|_{h_{k m+p}}^{2}}=\frac{\left\|s^{k} \otimes s_{j}^{(p+1)}\right\|_{h_{k m+p+1}}^{2}}{\sum_{q=0}^{N_{p}}\left\|s^{k} \otimes s_{q}^{(p)}\right\|_{h_{k m+p}}^{2}} e^{-2 \tilde{\varphi}} \leq C_{1} e^{-2 \tilde{\varphi}} \tag{6}
\end{equation*}
$$

and we can then extend $s^{k} \otimes s_{j}^{(p+1)}$ with estimate, exactly in the same way as in the first step of the induction.
case 2 : $p=m-1$
we still have to consider the line bundle $(k m+m-1)(K x+L)+A+L$ endowed with the metric coming from the family $\left(\widetilde{s}_{q}^{(k m+m-1)}\right)_{q=0 \ldots N_{m-1}}$ twisted by \tilde{h}; at this step, we obtain the needed estimate (on \mathcal{X}_{0}) as follows :

$$
\begin{aligned}
\int_{X_{0}} \frac{\left\|s^{k+1} \otimes s_{j}^{(0)}\right\|_{h_{(k+1) m, k m+m-1} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{m-1}}\left\|\widetilde{s}_{q}^{(k m+m-1)}\right\|_{\omega}^{2}} & =\int_{X_{k m+m-1}} \frac{\left\|s^{k+1} \otimes s_{j}^{(0)}\right\|_{h_{(k+1) m}}^{2}}{\sum_{q=0}^{N_{m-1}}\left\|s^{k} \otimes s_{q}^{(m-1)}\right\|_{h_{k m+m-1}}^{2}} e^{-2 \tilde{\varphi}} d V_{\omega} \\
& \leq C_{1} \int_{X_{0}}\|s\|_{\left(h_{\omega} \otimes h\right)^{\otimes m}}^{2} e^{-2 \tilde{\varphi}} d V_{\omega} \\
& \leq C_{1} C_{L}\|s\|_{L^{\infty},\left(h_{\omega} \otimes h\right)^{\otimes m}}^{2}
\end{aligned}
$$

Applying theorem 1.1, we find a section $\widetilde{s}_{j}^{(k+1) m)} \in H^{0}\left(X,(k+1) m\left(K_{X}+L\right)+A\right)$ with $\widetilde{s}_{j \mid X_{0}}^{((k+1) m)}=s^{k+1} \otimes s_{j}^{(0)}$ and

$$
\begin{equation*}
\int_{X} \frac{\left\|\widetilde{s}_{j}^{((k+1) m)}\right\|_{h_{(k+1) m, k m+m-1} \otimes \tilde{h}}^{2}}{\sum_{q=0}^{N_{m-1}}\left\|\widetilde{s}_{q}^{(k m+m-1)}\right\|_{h_{k m+m-1}}^{2}} d V_{\omega} \leq C_{0} C_{1} C_{L}\|s\|_{L^{\infty},\left(h_{\omega} \otimes h\right)^{\otimes m}}^{2} \tag{7}
\end{equation*}
$$

In order to get the final inductive estimate, we use again the fact that $\tilde{\varphi}$ is bounded from above by M and then

$$
\begin{equation*}
\int_{X} \frac{\left\|\widetilde{s}_{j}^{((k+1) m)}\right\|_{h_{(k+1) m}}^{2}}{\sum_{q=0}^{N_{m-1}}\left\|\widetilde{s}_{q}^{(k m+m-1)}\right\|_{h_{k m+m-1}}^{2}} d V_{\omega} \leq e^{2 M} C_{0} C_{1} C_{L}\|s\|_{L^{\infty},\left(h_{\omega} \otimes h\right)^{\otimes m}}^{2} \leq \widetilde{C} \tag{8}
\end{equation*}
$$

We just have to pose $C=\widetilde{C} \cdot \max \left(N_{0}, \ldots, N_{m-1}\right)$ to conclude the proof of proposition 2.1. \square

Proof of theorem 0.1 :

The end of the proof is now reduced to extract roots of the metrics induced by the families $\left(\widetilde{s}_{q}^{(k m+p)}\right)_{q=0 \ldots N_{p}}$ (see also Pau05) ; indeed, we consider the following weight functions :

$$
f_{k}=\frac{1}{2} \log \left(\sum_{j=1}^{N_{0}}\left\|\widetilde{s}_{j}^{(k m)}\right\|_{h_{k m}}^{2}\right)
$$

Possibly shrinking the disk Δ (to use Jensen inequality and to bound the L^{2} norms of $\widetilde{s}_{j}^{(m)}$), the inductive estimates $(E 1)$ and $(E 2)$ in the proposition 2.1 and the concavity of the logarithm function implies the following inequalities :

$$
\begin{equation*}
\frac{1}{k} \int_{x} f_{k} d V_{\omega} \leq C^{\prime} \tag{9}
\end{equation*}
$$

where C^{\prime} is a positive constant (independent of k). Moreover, f_{k} satisfy the properties :

$$
\begin{equation*}
\Theta_{h_{m}}(m(K x+L))+\frac{i}{k} \partial \bar{\partial} f_{k} \geq-\frac{1}{k} \Theta_{h_{A}}(A) \tag{10}
\end{equation*}
$$

(in the sense of currents) and, on the central fiber, we have

$$
\begin{equation*}
\frac{2}{k} f_{k \mid x_{0}}=\log \left(\|s\|^{2}\right)+\frac{1}{k} \log \left(\sum_{j=1}^{N_{0}}\left\|s_{j}^{(0)}\right\|_{h_{0}}^{2}\right) \tag{11}
\end{equation*}
$$

together with the mean value inequality, (9) and (10) imply the existence of uniform local upper bounds for the functions $\frac{1}{k} f_{k}$ (on each relatively compact subset of \mathcal{X}) and thus we can consider :

$$
f_{\infty}=\varlimsup_{k \rightarrow+\infty} \frac{1}{k} f_{k}
$$

the upper semi-continuous enveloppe of the family $\left(\frac{1}{k} f_{k}\right)_{k \geq 1}$: this is still a quasi-psh function on X. The property (11) yields the pointwise estimate (on the central fiber \mathcal{X}_{0}):

$$
\begin{equation*}
\|s\|^{2} e^{-2 f_{\infty}} \leq 1 \tag{12}
\end{equation*}
$$

The metric $h_{\infty}=e^{-f_{\infty}} h_{m}$ is now a (singular) metric with semi-positive current of curvature (by property (10), after passing to the limit) and s is bounded for this metric. To conclude the proof, we consider the metric $g=h^{\frac{m-1}{m}} \otimes \tilde{h}$ on the line bundle $(m-1)(K x+L)+L$; this is still a metric with semi-positive curvature and the Hölder inequality gives

$$
\begin{aligned}
\int_{X_{0}}\|s\|_{g}^{2} & =\int_{X_{0}}\|s\|^{2} e^{-2 \frac{(m-1)}{m} f_{\infty}-2 \tilde{\varphi}} d V_{\omega} \\
& =\int_{X_{0}}\|s\|^{2 \frac{(m-1)}{m}} e^{-2 \frac{(m-1)}{m}\left(f_{\infty}+\tilde{\varphi}\right)}\|s\|^{\frac{2}{m}} e^{-\frac{2}{m} \tilde{\varphi}} d V_{\omega} \\
& \leq\left(\int_{X_{0}}\|s\|^{2} e^{-2 f_{\infty}} e^{-2 \tilde{\varphi}} d V_{\omega}\right)^{\frac{m-1}{m}}\left(\int_{X_{0}}\|s\|^{2} e^{-2 \tilde{\varphi}} d V_{\omega}\right)^{\frac{1}{m}}
\end{aligned}
$$

Using (12) and the remark 1.1, we see that s is actually L^{2} for the metric g. We can thus apply a last time the Ohsawa-Takegoshi theorem 1.1 and then obtain the desired extension of s

References

[OT87] T. Ohsawa and K. Takegoshi, On the extension of l^{2} holomorphic functions, Math. Z. 195 (1987), 197-204.
[Pau05] M. Paun, Siu's invariance of plurigenera : a one-tower proof, preprint, 2005.
[Siu02] Y.-T. Siu, Extension of pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex Geometry, 2002, pp. 223277.
[Tak05] S. Takayama, Pluricanonical systems on algebraic varieties of general type, preprint, 2005.

[^0]: ${ }^{1}$ the local weights φ of the metric satisfy $\varphi \in L_{\text {loc }}^{1}$ so that $\Theta_{\tilde{h}}(L)=i \partial \bar{\partial} \varphi$ is well defined as a current

