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Résuḿe
We show how to cope with the acoustic identification of poroelastic materials when the specimen is in

the form of a cylinder. We apply our formulation, based on theBiot model, approximated by the equivalent
elastic solid model, to a long bone-like or borehole sample specimen probed by low frequency sound.

1 Introduction

It has become fairly common [1], [2], [3], [4], [5], [6], [7],[8], [9], [10], [11], [12], [13], [14], [15],
to acoustically identify the structural/material properties, and/or the phase velocity/attenuation in poroelas-
tic (e.g., biological or geophysical) materials by processing data relative to the reflected and/or transmitted
pulses of a slab-like specimen of the material in response toan incident plane-wave pulse. In most of these
studies, the model of the medium is that of a fluid or (less often) viscoelastic solid. It is not often that mate-
rials, especially those of biological [16] or geophysical [17] nature, present themselves in the form of slabs,
plates or layers, nor is it judicious to cut them (an operation that is rarely accurate and which often modifies
the physical properties) to fit this shape. We show herein howto cope with the acoustic identification of
these materials, in the form of cylindrical specimens [16],[17], whether they are considered to be fluid-like
or elastic solid-like. Work on the fully-poroelastic (in the sense of Biot) case is in progress.

More specifically, this investigation is concerned with thereconstruction of the material constantsλ1 = 1/κ1

(κ1 the complex compressibility),µ1 (shear modulus),ρ1 (density) of an elastic solid-like (assumed to be
of this nature even if the target is poroelastic in the sense of Biot), almost-circular cylinder, modeled as a
circular cylinder of radiusa close to the average radius of the almost-circular cylindrical target. The latter
is immersed in a fluid-like host wherein propagates plane-wave like acoustic probe radiation. The action of
this wave on the target results in a scattered acoustic wavefield which serves to reveal the material properties
of the target.

The wavelength (Λ0
L = 2π/k0

L) of the probe radiation is assumed to be much larger (χ0
L := k0

La << 1) than
a. A perturbation analysis is shown to enable an explicit reconstruction ofρ1 and of a linear combination of
λ1, µ1.

This reconstruction technique relies on the a priori knowledge ofa ; it is assumed herein that this parameter
is known.

2 Physical configuration

The scattering body is an infinite cylinder whose generatorsare parallel to thez axis in the cylindrical
coordinate system(r, θ, z). The intersection of the cylinder, within which is located the originO, with the
xOy plane defines :

i) the boundary curveΓ = {r = f(θ); 0 ≤ θ < 2π}, with f a continuous, single-valued function ofθ ;
further on, we shall takeΓ to be a circle, i.e.,f(θ) = a, with a its radius, close to the average value ofη(θ),

ii) the bounded (inner) region (i.e., the one occupied by thebody in its cross-section plane)Ω1 = {r <
η(θ); 0 ≤ θ < 2π},

iii) the unbounded (outer) regionΩ0 = {r > η(θ); 0 ≤ θ < 2π}.

It is assumed thatΩ0 is filled with a linear, homogeneous, inviscid fluidM0 andΩ1 by a linear, macroscopically-
homogeneous, isotropic, porous mediumM1 which will subsequently be associated with a linear, homoge-
neous, isotropic, time-invariant elastic solid medium.

The material constants ofM0 are assumed to be known. Those ofM1 are unknown and are to be recovered
by the technique described hereafter. The latter relies on probing the cylinder (from the outside) by a plane
acoustic wave whose wavevector lies in thexOy plane.



3 Ingredients of the Biot theory

We give the ingredients of the basic Biot theory of biphasic (solid/fluid) porous media [18], [19].

3.1 Conservation of momentum relations

In the absence of applied body forces, the conservation of momentum relations take the form

∇ · σ − ρu − ρfw,tt = 0 , ∇p+ ρfu,tt +mw,tt +
ηF

κ
w,t = 0 , (1)

wherein :

- f,t designates a first-order partial derivative with respect totime t, andf,tt := (f,t),t,
- σ is the total stress tensor in the porous fluid-saturated medium,
- ρs the density of the solid component
- ρf the density of the viscous fluid filling the (interconnected)pores,
- ρ the bulk density of the porous medium, such thatρ = (1 − φ)ρs + φρf , with φ the porosity (volume
fraction of fluid relative to total volume in a representative volume element),
- σ the stress tensor,
- u the displacement vector of the solid particle component,
- U the fluid particle displacement vector,
- w the relative displacement vector of the fluid particle relative to the solid particle (both particles assumed
to occupy the same point) defined asw := φ(U − u),
- p the pressure in the fluid component of the porous medium,
- η the viscosity of this fluid,
- κ the (low-frequency) permeability,
- m =

ρf α
φ the virtual mass,

- α the tortuosity (in [20]α is termed the virtual mass coefficient or structure factor),which, in [21], is

related to the porosity byα = 1 + r
(

1−φ
φ

)

(whereinr is a constant with a value between 0 and 1),

- F (t) is a linear integral convolution operator with respect to time which, in the frequency domain, becomes
a frequency-dependent multiplierF (ω), implying frequency-dependent permeability, i.e.,κ̃(ω) = κ

F (ω) ,
whereinκ̃(ω) is the so-called dynamic permeability, andF is designed so thatlimω→0 F (ω) = 1.

3.2 Constitutive relations

Biot’s constitutive relations [18],[22] linearly relate the total stress and fluid pressure to the (isotropic)
solid and fluid displacement spatial derivatives via

σ = 2µε+ [(H − 2µ)e− Cζ] I , p = Mζ − Ce (2)

with :

D = Ks

[

1 + φ

(

Ks

Kf
− 1

)]

, H =
(Ks −K)2

D −K
+K +

4µ

3
, (3)

C =
Ks(Ks −K)

D −K
, M =

K2
s

D −K
, e = ∇ · u , ζ = −∇ ·w , (4)

wherein :

- ε is the strain tensorε = 1
2

(

∇u + ∇uT
)

,
- I the unit tensor
- µ the shear modulus (rigidity) of the saturated solid,
- K = (λ + 2

3µ),Ks the bulk moduli of the dry (i.e., drained) solid matrix and solid grain material respec-

tively (note thatλc =
(

1 − K
Ks

)

C + λ is the Lamé constant of the saturated solid),

- Kf the fluid bulk modulus.



3.3 Equations of motion in terms ofu and w

We assume henceforth that all the material parameters are constants with respect to position, i.e.,the
medium is macroscopically homogeneous. The conservation of momentum equations and constitutive rela-
tions are employed in such a way as to eliminate the pressure and stress tensor so as to obtain :

µ∇2u + (H − µ)∇e− C∇ζ = ρutt + ρfw,tt , C∇e−M∇ζ = ρfu,tt +mw,tt +
η

κ
Fw,t , (5)

which is the vectorial form of the Biot wave equations as given by Yamamoto [19] for a macroscopically-
homogeneous porous medium.

4 Choice of an approximate model to describe wave propagation in a
porous medium

The fundamental difficulty with the Biot theory is twofold : i) two coupled (vectorial) wave equations
have to be solved simultaneously, and ii) many material parameters have to be recovered in the inverse
problem context. This is why the traditional approach (notably in the underwater acoustics community) has
been to reduce this model to a simpler one (with fewer material parameters) in which only one (vectorial or
scalar) wave equation has to be solved.

4.1 Equivalent elastic solid model (EESM) obtained from thelimit φ → 0

The introduction of the second equation of (5) into the first gives

µ∇2u +

(

H − µ−
C

m

)

∇e+

(

−C +
M

m

)

∇ζ +
(

−ρ+
ρf

m

)

utt +
η

mκ
Fw,t = 0 , (6)

Recalling the definitions ofm andw, we conclude thatlimφ→0 m−1 = 0 andlimφ→0 w = 0, so that in
the limit φ→ 0, (6) becomes

µ∇2u + (λc + µ)∇∇ · u− ρutt = 0 , (7)

which is simply the Navier wave equation in a non-dissipative, linear, homogeneous, isotropic solid in which
the material parameters areλc, µ, ρ = ρs.

This equation forms the basis of the so-called equivalent elastic solid model for wave propagation in poroe-
lastic media, often employed for the evaluation of transmission loss of sound over sediment layers on sea
bottoms [23], [24].

4.2 Equivalent viscoelastic solid model (EVSM) for wave propagation in poroelastic
media

We now consider another approximation of the Biot wave equations which leads to what has been termed
the equivalent viscoelastic solid model of propagation in poroelastic media [25][22].

The basic idea is to reduce the Biot model to only one wave equation, while retaining the loss mecha-
nism inherent in this model (contrary to what is done in the equivalent elastic solid model in which the loss
mechanism is abolished in the limitφ→ 0).

Let us return to the definition ofw, i.e., w = φ(U − u) in which we assumeφU << φu. Thus, ne-
glecting the terms inφU in (6), we get

µ∇2u +

[

H − µ−
C

m
− Cφ+

Mφ

m

]

∇∇ · u +
(

−ρ+
ρf

m

)

utt −
ηφ

mκ
Fu,t = 0 . (8)

This wave equation for the displacement in the solid component is similar to the Navier equation, with the
exception that the wavenumber is now complex, its real part not being equal to that of the Navier equation
wavenumber, and its imaginary part being conditioned byηφ

mκF .



4.3 Equivalent fluid model (EFM)

The equivalent fluid model (EFM) is appropriate when the fluidis light (e.g., a gas such as air) and the
solid skeleton is therefore relatively immobile (i.e., rigid). This model has been employed, even when the
fluid is not light, notably in the underwater acoustics community [26], [23], [19].

There exist various versions of the EFM, several of which aredescribed and compared in Depollieret
al. [27]. The one we shall consider herein is a simplified versionof the model offered in [11].

No restrictions are introduced concerning the porosity, but, for the sake of simplicity, the fluid viscosity
is assumed to be nil. The fundamental assumption is that the solid component is rigid, i.e.

Ks = ∞, , u = 0 → u,tt = 0 . (9)

If, in addition, the medium is macroscopically-homogeneous and time-invariant (i.e.,ρf , α andKf are
constants with respect to position andt) then the Biot system of equations reduce to

−∇2p− ρfα∇ ·U,tt = 0 , p,tt +KfU,tt = 0 , (10)

a linear combination of which yields

∇2p−
αρf

Kf
p,tt = 0 , (11)

which is the wave equation in the equivalent fluid.

Note thatα = 1 for a homogeneous fluid.

4.4 Our choice of approximate model

Since all three approximate models reduce to the same type ofwave equation (either vectorial or scalar),
a generic choice–(vectorial in nature) adopted herein–is the EESM.

This means that we replace, by thought, the porous medium cylinder immersed in an inviscid fluid by an
elastic solid cylinder immersed in the same fluid.

5 Mathematical description of the problem

5.1 Preliminaries

Due to the invariance of the cylinder and incident wavefieldpi with respect toz, the incident and scat-
tered fields are also invariant with respect toz.

Let p0 designate pressure inΩ0 ; due to this invariance,p0 = p(x, y, t) = pi(x, y, t) + pd(x, y, t), wherein
pd is the diffracted pressure inΩ0.

For the same reason, the total displacement wavefieldu in Ω1 is of the formu = u(x, y, t).

The analysis is carried out in the space-frequency domain viap0,i,d(x, t) =
∫∞

−∞
p0,i,d(x, ω) exp(−iωt)dω

andu1(x, t) =
∫∞

−∞
u1(x, ω) exp(−iωt)dω whereinx = (x, y).

Henceforth, it is implicit thatp0,i,d (meaningp0, pi or pd) andu1 are functions of(x, ω).

5.2 Governing equations

The incident plane wave is

pi = S(ω) exp
(

−ik0r cos
(

θ − θi
))

(12)

(whereinS(ω) is the amplitude spectrum,θi the incident angle in thexOy plane, andk0 = ω/c0, with
c0 = (ρ0κ0)−1/2).



p0,i,d satisfy the frequency-domain pressure wave (Helmholtz) equation
(

∇2 + (k0
L)2
)

p0,i,d = 0 in Ω0 , (13)

and the radiation condition

pd
,r − ik0pd = o(r−1/2) ; r → ∞ , ∀θ ∈ [0, 2π[ . (14)

u1 satisfies the frequency-domain elastic wave equation

µ∇2u1 + (λ1 + µ1)∇ · ∇u1 + ω2u1 = 0 in Ω1 , (15)

and the boundedness condition

‖u1‖ <∞ in Ω1 . (16)

Let ν designate the unit outward-pointing (fromΩ1) unit normal vector,Tj = σj · ν the traction. Then the
transmission boundary conditions are :

T0 − T1 = 0 , u0 · ν − u1 · ν = 0 on Γ . (17)

5.3 Reduction of the elastic solid wave equation to two Helmholtz equations

The use of the Helmholtz decomposition

u1 = ∇ϕ1 + ∇×ψ1 , (18)

enables (15) to be reduced to the two (one scalar, the other vectorial) Helmholtz equations

(

∇2 + (k1
L)2
)

ϕ1 = 0 ,
(

∇2 + (k1
T )2
)

ψ1 = 0 , (19)

wherein

k1
L =

ω

c1L
= ω

(

λ1 + 2µ1

ρ1

)−1/2

, k1
T =

ω

c1T
= ω

(

µ1

ρ1

)−1/2

. (20)

Recalling that the fieldsp andu do not depend onz enables (13) and (19) to be cast into the cylindrical
coordinate forms :

p0
,rr + r−1p0

,r + r−2p0
,θθ + (k0

L)2p0 = 0 , ϕ1
,rr + r−1ϕ1

,r + r−2ϕ1
,θθ + (k1

L)2ϕ1 = 0

ψ1
,rr + r−1ψ1

,r + r−2ψ1
,θθ + (k1

T )2ψ1 = 0 . (21)

The gauge condition∇ · ψ1 = 0 and the absence of shear stress in the fluid imply thatψ1
r = ψ1

θ = 0. In
the cylindrical coordinate system, the traction and normalcomponent of displacement continuity conditions
reduce to :

− p0 + λ1(k1
L)2ϕ1 − 2µ1

[

ϕ1
,rr − r−2ψ1

z,θ + r−1ψ1
z,rθ

]

= 0 ,

2
[

−r−2ϕ1
,θ + r−1ϕ1

,rθ

]

+
[

−ψ1
z,rr + r−1ψ1

z,r + r−2ψ1
z,θθ

]

= 0 ,

1

λ0(k0
L)2

p0
,r − φ1

,r − r−1ψ1
z,θ = 0 . (22)



5.4 Field representations

The incident pressure field satisfies the periodicity condition pi(r,−θ + 2θi, ω) = pi(r, θ, ω) and the
first of the Helmholtz equations in (21) so that (also on account of (12)

pi =

∞
∑

m=0

amǫmJm(k0
Lr) cosm(θ − θi) , with am = S(ω)e−im π

2 , (23)

whereinJm( ) is them-th order Bessel function andǫ0 = 1 , ǫm>0 = 2.

The periodicity ofpi entailspd(r,−θ+2θi, ω) = pd(r, θ, ω), so that on account of the first of the Helmholtz
equations in (21) and the radiation condition

pd =

∞
∑

m=0

bmǫmHm(k0
Lr) cosm(θ − θi) , (24)

whereinHm( ) = H
(1)
m ( ) is them-th order Hankel function of the first kind.

The periodicity ofpi andpd also entailsφ1(r,−θ + 2θi, ω) = φ1(r, θ, ω), so that on account of the second
of the Helmholtz equations in (21) and the boundedness condition

φ1 =

∞
∑

m=0

cmǫmJm(k1
Lr) cosm(θ − θi) . (25)

By means of any one of the transmission conditions (22), and on account of the periodicity conditions
satisfied bypi, pd, andφ1, it is found thatψ1

z obeys the relationψ1
z(r,−θ + 2θi, ω) = −ψ1

z(r, θ, ω) so that
on account of the third of the Helmholtz equations in (21) andthe boundedness condition

ψ1
z =

∞
∑

m=0

dmǫmJm(k1
T r) sinm(θ − θi) . (26)

6 Use of the transmission boundary conditions to obtain{bm}, {cm},
{dm}

We employ the orthogonality relations

∫ θi+π

θi

cosm(θ−θi) cosn(θ−θi)
dθ

π
=
δmn

ǫm
,

∫ θi+π

θi

sinm(θ−θi) sinn(θ−θi)
dθ

π
= δmn

(1 − δm0)

2
,

(27)

whereinδmm = 1 , δmn6=m = 0 to obtain :

P0q0 = r0 , (28)

in which

P0 =





χ0
LḢ0(χ

0
L) −υ0

Lχ
1
LJ̇0(χ

1
L)

−H0(χ
0
L) υ1

LJ0(χ
1
L) − 2µ1(k1

L)2J̈0(χ
1
L)



 , q0 =

(

b0

c0

)

, r0 =





−a0χ
0
LJ̇0(χ

0
L)

a0J0(χ
0
L)



 ,

(29)

and
Pnqn = rn ; n = 1, 2, ... , (30)

in which



Pn =















χ0
LḢn(χ0

L) −υ0
Lχ

1
LJ̇n(χ1

L) −υ0
LnJn(χ1

T )

−a2Hn(χ0
L) (χ1

L)2
[

λ1Jn(χ1
L) − 2µ1J̈n(χ1

L)
]

2µ1n
[

Jn(χ1
T ) − χ1

T J̇n(χ1
T )
]

0 2n
[

Jn(χ1
L) − χ1

LJ̇n(χ1
L)
]

−(χ1
T )2J̈n(χ1

T ) + χ1
T J̇n(χ1

T ) − n2Jn(χ1
T )















(31)

qn =











bn

cn

dn











, rn =











−anχ
0
LJ̇n(χ0

L)

ana
2Jn(χ0

L)

0











, (32)

with χj
L = kj

La, χj
T = kj

T a, υj
L = λj(kj

L)2, ġ(ς) = dg/dς , g̈ = d2g/dς2, and forn = 1, 2, .....

In principle, the matrix equations (28) and (30) enable to determine the unknown coefficient vectorsq0

andqn ; n = 1, 2, ..., and thus to solve the forward-scattering problem, notablyfor the prediction of the
scattered pressure fieldpd in the host fluid.

Rather than do this, and since we are more interested, in the present context, in solving theinverse-scattering
problem of the reconstruction ofλ1, µ1, ρ1, we adopt a different strategy for determiningq0 andqn ; n =
1, 2, ....

7 Low-frequency approximation of the solution of the forward-scattering
problem in the region outside of the body

We now define this new strategy.

We first note that :

χ1
L =

k1
L

k0
L

χ0
L =

c0L
c1L
χ , χ1

T =
k1

T

k0
L

χ0
L =

c0L
c1T
χ , (33)

whereinχ := χ0
L. We assume thatχ is small enough (i.e.,0 < χ << 1) for it to be true that0 < χ1

L << 1
and0 < χ1

T << 1, and employ a perturbation scheme, based on the smallness ofχ (which, to the very least,
implies very low frequenciesω and/or small cylinder radiusa), to solve the matrix equations.

Thus, the arguments of all the Bessel and Hankel functions appearing in the expression ofPn are small,
which fact authorizes use to be made of the small-argument asymptotic forms

Jm(ξ) ∼
1

m!

(

ξ

2

)m

; H
(1)
0 (ξ) ∼

2i

π
ln ξ , , H(1)

m (ξ) ∼ −
i(m− 1)!

π

(

ξ

2

)−m

; ξ → 0 , m = 0, 1, ... ,

(34)

To do this in a systematic manner, we expandPm, qm, andrm in series of powers ofχ :

Pm(χ) =
∞
∑

j=0

P (j)
m χj ; P (j)

m :=
1

j!

∂j

∂χj
Pm(χ)

∣

∣

χ=0
, qm(χ) =

∞
∑

n=0

q(n)
m χn , (35)

rm(χ) =

∞
∑

l=0

r(l)
m χl ; r(l)

m :=
1

l!

∂l

∂χl
rm(χ)

∣

∣

χ=0
, (36)

which, after introduction into the matrix equationPmqm = rm, yields (after comparison of powers of
χ)

∑l
n=0 P

(l−n)
m q

(n)
m = r

(l)
m ; l = 0, 1, 2, ...., which defines the recursive scheme for the determination



of ql
m :

q(0)
m =

(

P(0)
m

)−1

r(0)
m , ql

m =
(

P(0)
m

)−1
[

r(l)
m −

l−1
∑

n=0

P(l−n)
m q(n)

m

]

; l = 1, 2, .... . (37)

After a series of algebraic manipulations, the following asymptotic form ofbm is found :

b0 = b
(2)
0 χ2 + O(χ4) , b1 = b

(2)
1 χ2 +O(χ4) , bm>1 = O(χ4) ; χ→ 0 . (38)

wherein

b
(2)
0 = a0

(

−iπ

4

)[

λ1 + µ1 − λ0

λ1 + µ1

]

, b
(2)
1 = a1

(

−iπ

4

)[

ρ0 − ρ1

ρ0 + ρ1

]

, (39)

so that the diffracted pressure field in the host fluid becomes(to second order inχ)

pd(r, θ, ω) ≈ b
(2)
0 χ2H

(1)
0 (k0

Lr) + 2b
(2)
1 χ2H

(1)
1 (k0

Lr) cos(θ − θi) . (40)

8 Explicit resolution of the inverse problem : recovery of the material
parameters of the specimen

By making use of (40) and the first of the orthogonality relations (27) we find

Bm :=
4i

π

b
(2)
m

am
=

4i

πamχ2

1

H
(1)
m (k0

Lb)

∫ θi+π

θi

pd(b, θ, ω) cosm(θ − θi)
dθ

π
; m = 0, 1 , (41)

which signifies thatB0 andB1 can be obtained from integrals involving the measured diffracted pressure
field data (for all anglesθ) on a circle of radiusb. Once these two coefficients are found,λ1, µ1 andρ1 can,
in principle, be obtained from (39), i.e.,

B0 =

[

λ+ µ− 1

λ+ µ

]

, B1 =

[

1 − ρ

1 + ρ

]

. (42)

wherein

λ :=
λ1

λ0
, µ :=

µ1

λ0
, ρ :=

ρ1

ρ0
. (43)

These relations :

– show that the field is anonlinear function of the material parameters, and
– apply equally-well to the fluid model of the specimen (i.e.,µ = 0).

Moreover, since only two pieces of data (i.e.,B0 andB1, as expressed by (41)) are available in this (second)
order of approximation (inχ), only one (ρ), and a linear combination (λ + µ) of the other two of the three
material parameters can be recovered via (42).

More specifically, it is found that

λ+ µ =
1

1 −B0
, ρ =

1 −B1

1 +B1
, (44)

which underlines the fact that the proposed technique enables :

– anexplicit (partial) solution of the inverse problem of the reconstruction ofρ and (c1

L)2−(c1

T )2

(c0

L
)2

= λ+µ
ρ

when the material of the specimen is modeled by an elastic solid, and

– anexplicit (complete) solution of the inverse problem of the reconstruction ofρ and (c1

L)2

(c0

L
)2

= λ
ρ when

the material of the specimen is modeled by a fluid.



9 A manner for obtaining the complete solution of the inverse prob-
lem for the elastic solid model of the specimen

The previous analysis showed thatBn = 0 ; n = 2, 3, .... to second order inχ, which is the reason why
only two pieces of data are available to reconstruct the three unknown material parametersρ, λ andµ.

It can be shown that by carrying out the perturbation analysis to fourth order inχ, not onlyB0, B1, but
alsoB2 are non-vanishing, so that by this means one disposes of thethree pieces of data necessary to recon-
struct the three unknown parameters.

The only difficulty with this procedure is that the relationsbetweenB0, B1, B2 andρ, λ, µ are much
more complicated than previously, which fact makes it impossible to obtain explicit algebraic expressions
for ρ, λ, µ in terms ofB0,B1, B2.

It turns out that one is faced with the problem of solving a system of three nonlinear equations in three
unknowns. The procedure for solving this system is advantageously initialized via the second-order-in-χ
approximations ofλ+ µ andρ.

10 Conclusion

We have shown that the low-frequency perturbation scheme enables anexplicit reconstruction of two
(λ1 + µ andρ) of the three material parametersρ, λ, µ of a poroelastic cylindrical specimen, modeled as an
equivalent elastic solid circular cylinder.

Two single-frequency pieces of data, both involving the scattered pressure field on a complete circle around
the cylinder, are required for this procedure.

Data obtained at other frequencies can be employed to reconstruct the frequency-dependent complex pa-
rameterλ1(ω) + µ(ω) of cylindrical specimens modeled asviscoelastic materials.

Above all, the same type of perturbation analysis can be employed to obtain appropriate combinations of
the Biot parameters when the cylindrical specimen is modeled as a fully-poroelastic material (in the sense
of Biot).
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