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ON THE MAILLET–BAKER CONTINUED FRACTIONS

BORIS ADAMCZEWSKI, YANN BUGEAUD

Abstract. We use the Schmidt Subspace Theorem to establish the
transcendence of a class of quasi-periodic continued fractions. This im-
proves earlier works of Maillet and of A. Baker. We also improve an old
result of Davenport and Roth on the rate of increase of the denominators
of the convergents to any real algebraic number.

1. Introduction

A central question in Diophantine approximation is concerned with how
algebraic numbers can be approximated by rationals. This problem is inti-
mately connected with the behaviour of their continued fraction expansion.
In particular, it is widely believed that the continued fraction expansion
of any irrational algebraic number ξ either is eventually periodic (and we
know that this is the case if, and only if, ξ is a quadratic irrational), or it
contains arbitrarily large partial quotients. Apparently, this problem was
first considered by Khintchine in [11] (we also refer the reader to [3, 21, 22]
for surveys including a discussion on this subject). Some speculations about
the randomness of the continued fraction expansion of algebraic numbers of
degree at least three have later been made by Lang [12]. However, one shall
admit that our knowledge on this topic is up to now very limited.

A first step consists in providing explicit examples of transcendental con-
tinued fractions. The first result of this type goes back to the pioneering
work of Liouville [14], who constructed transcendental real numbers with a
very fast growing sequence of partial quotients. Subsequently, various au-
thors used deeper transcendence criteria from Diophantine approximation to
construct other classes of transcendental continued fractions. Of particular
interest is the work of Maillet [15] (see also Section 34 of Perron [17]), who
was the first to give explicit examples of transcendental continued fractions
with bounded partial quotients. His work has later been carried on by A.
Baker [4, 5].

More precisely, Maillet proved that if a = (an)n≥0 is a non-eventually pe-
riodic sequence of positive integers, and if there are infinitely many positive
integers n such that

an = an+1 = . . . = an+λ(n)−1,

then the real number ξ = [a0; a1, a2, · · · ] is transcendental, as soon as λ(n)
is larger than a certain function of the denominator of the n-th convergent
to ξ. Actually, the result of Maillet is more general and also includes the
case of repetitions of blocks of consecutive partial quotients (see Section
2). His proof is based on a general form of the Liouville inequality which
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limits the approximation of algebraic numbers by quadratic irrationals. In-
deed, under the previous assumption, the quadratic irrational real numbers
ξn, defined as having the eventually periodic continued fraction expansion
[a0; a1, · · · , an−1, an, an, an, . . .], provide infinitely many ‘too good’ approxi-
mations to ξ.

Not surprisingly, the breakthrough made by Roth in his 1955 seminal
paper [18] leads to an improvement of this result. Indeed, Baker [4] used
in 1962 the Roth theorem for number fields obtained by LeVeque [13] to
strongly improve upon the results of Maillet and make them more explicit.
His main idea was to remark that when infinitely many of the quadratic
approximations found by Maillet lie in a same quadratic number field, one
can favourably replace the use of the Liouville inequality by the one of
LeVeque’s Theorem.

The purpose of the present paper is to improve the results obtained by
Baker in [4], that are recalled in Section 2. Our approach rests on the
Schmidt Subspace Theorem, but we follow a rather different way than the
one previously considered by Maillet and by Baker. Our results are stated in
Section 3 and proved in Section 6. Section 4 is devoted to the improvement
of an old result of Davenport and Roth [9] on the rate of increase of the
denominators of the convergents to any real algebraic number. It is the key
point for the proof of Theorem 3.1 below, and is also of independent interest.
Auxiliary results are gathered in Section 5.

2. Earlier results

Throughout the present paper, we keep the following notation. Let a =
(an)n≥0 be a sequence of positive integers, that is not eventually periodic.
Let (nk)k≥0 be an increasing sequence of positive integers. Let (λk)k≥0 and
(rk)k≥0 be sequences of positive integers. Assume that for any non-negative
integer k, we have nk+1 ≥ nk + λkrk and

(1) am+rk
= am for nk ≤ m ≤ nk + (λk − 1)rk − 1,

and consider the real number ξ defined by

ξ = [a0; a1, a2, . . . , an, . . .].

Then, ξ has a quasi-periodic continued fraction expansion in the following
sense: for any positive integer k, a block of rk consecutive partial quotients
is repeated λk times, such a repetition occurring just after the (nk − 1)-th
partial quotient.

In [4], Baker established three theorems, which strongly improved the
pioneering work of Maillet. The first one is very general.

Theorem 2.1 (A. Baker). With the previous notation, let us assume that

(2) lim sup
k→∞

rk

nk
< +∞.

and

(3) lim sup
k→∞

(log λk)(log nk)
1/2

nk
= +∞.

Then, the real number ξ is transcendental.
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Actually, it is not difficult to modify Baker’s proof of Theorem 2.1 in order
to get rid of the assumption (2). Notice also a related result due to Mignotte
[16]. Under the assumption that the sequence a is bounded, condition (3)
can be considerably relaxed.

Theorem 2.2 (A. Baker). Let A ≥ 2 be an integer. Let a be a sequence of
integers at most equal to A that satisfy (1) for a bounded sequence (rk)k≥0.
Assume that

lim sup
k→∞

λk

nk
> B = B(A),

where B is defined by

B = 2




log

((

A +
√

A2 + 4
)

/2
)

log
(
(1 +

√
5)/2

)



 − 1.

Then, the real number ξ is transcendental.

First, we remark that B(A) increases with A and that limA→∞ B(A) =
+∞. The smallest value, obtained for A = 2, is B(2) ≃ 2.66... Let us also
note that, when one only knows that the sequence a is bounded, but without
having any explicit bound, the stronger assumption

(4) lim sup
k→∞

λk

nk
= +∞

is required to apply Theorem 2.2.

One of the difficulties in the proof of Theorem 2.2 is that one needs
a precise estimate for the growth of the sequence of the denominators of
the convergents to ξ. This in particular explains why, in this result, the
value of B depends on A. However, for a more restricted class of quasi-
periodic continued fractions, that we present now, Baker [4] partly succeeded
in overcoming this difficulty.

Theorem 2.3 (A. Baker). Let us consider the quasi-periodic continued frac-
tion

ξ = [a0; a1, . . . , an0−1, an0 , . . . , an0+r0−1
︸ ︷︷ ︸

λ0

, an1 , . . . , an1+r1−1
︸ ︷︷ ︸

λ1

, . . .],

where the notation implies that nk+1 = nk + λkrk and the λ’s indicate the
number of times a block of partial quotients is repeated. Let us assume that
the sequences (an)n≥0 and (rk)k≥0 are both bounded, that (an)n≥0 is not
ultimately periodic, and that

(5) lim inf
k→∞

λk+1

λk
> 2.

Then, the real number ξ is transcendental.

As a typical example of such continued fractions, Baker considered at the
end of [4] the following family of real numbers:

(6) ξa,b = [0; a, a, . . . , a
︸ ︷︷ ︸

λ0

, b, b, . . . , b
︸ ︷︷ ︸

λ1

, a, a, . . . , a
︸ ︷︷ ︸

λ2

, b, b, . . .],
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where a and b denote distinct positive integers. In the very particular case
where a = 1 and b = 2, Baker improved Theorem 2.3 by showing that ξ
is a transcendental number as soon as lim infk→∞(λk+1/λk) > 1.72. Unfor-
tunately, Baker’s approach does not enable us to replace 2 by a constant
smaller than

√
2 ≃ 1, 41 in Inequality (5), even for the specific examples

considered in (6).

3. Main results

We present here our main results which improve the three theorems due
to Baker mentioned in the previous Section.

The first of Baker’s results, namely Theorem 2.1, heavily rests on an
upper bound due to Davenport and Roth [9] (see (13) below) for the rate
of increase of the denominators of the convergents to any real algebraic
number. Our improvement of (13) stated in Theorem 4.1 below allows us
to get the following strengthening of Theorem 2.1.

Theorem 3.1. Let a = (an)n≥0 be a sequence of positive integers, which
satisfies (1) and is not ultimately periodic. Assume that

(7) lim sup
k→∞

log λk

n
ε+2/3
k

= +∞

holds for some ε > 0. Then, the real number ξ = [a0; a1, a2, . . . , an, . . .] is
transcendental.

In order to improve the two other results quoted in Section 2, it is tempt-
ing to try to apply the powerful Schmidt Subspace Theorem (see Section 5)
instead of the result of LeVeque mentioned in the Introduction. For instance,
the authors of [2] recently improved Theorem 2.3 via the Subspace Theo-
rem, but only in the particular case given in (6), for which they reached the

bound
√

2 (instead of 2), independently of the values of the distinct positive
integers a and b. See also related results by Davison [8].

Quite surprisingly, a different application of the Subspace Theorem based
on the mirror formula (see Lemma 5.4 for a definition) allows us to consid-
erably relax the assumptions of two of the transcendence criteria obtained
by Baker. Our main result can be stated as follows.

Theorem 3.2. Let a = (an)n≥0 be a sequence of positive integers, which sat-
isfies (1) and is not ultimately periodic. Let (pn/qn)n≥1 denote the sequence
of convergents to the real number

ξ = [a0; a1, a2, . . . , an, . . .].

Assume that the sequence (q
1/n
n )n≥1 is bounded (which is in particular the

case when the sequence a is bounded), and that

(8) lim sup
k→∞

λk

nk
> 0.

Then, the real number ξ is transcendental.
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Unlike in Theorem 2.2, the transcendence condition obtained in Theorem
3.2 does not require neither that the partial quotients of the real number
ξ are bounded, nor that the lengths of the blocks which are repeated are
bounded. Furthermore, we point out that the assumption ‘the sequence

(q
1/n
n )n≥1 is bounded’ is satisfied by almost all real numbers. If one follows

Baker’s proof of Theorem 2.1 under this additional assumption, it is easily
seen that one gets a much weaker version of Theorem 3.2, namely with the
condition (8) being replaced by (4).

The proof of Theorem 3.2 splits into two parts. In the first part, we de-
velop a new application of the Schmidt Subspace Theorem, based on Lemma
5.4 below. This is the main novelty of the present paper and it allows us to
deal e.g. with real numbers ξ satisfying the assumption of Baker’s Theorem
2.2. The second part is far much easier.

As a direct corollary of Theorem 3.2, we obtain the following improvement
of Theorem 2.3.

Corollary 3.3. Let us consider the quasi-periodic continued fraction

ξ = [a0; a1, . . . , an0−1, an0 , . . . , an0+r0−1
︸ ︷︷ ︸

λ0

, an1 , . . . , an1+r1−1
︸ ︷︷ ︸

λ1

, . . .],

where the notation implies that nk+1 = nk + λkrk and the λ’s indicate
the number of times a block of partial quotients is repeated. Denote by
(pn/qn)n≥0 the sequence of the convergents to ξ. Assume that the sequences

(q
1/n
n )n≥0 and (rk)k≥0 are bounded, that (an)n≥0 is not ultimately periodic,

and that

(9) lim inf
k→∞

λk+1

λk
> 1.

Then, the real number ξ is transcendental.

Finally, we mention that applying the Schmidt Subspace Theorem in a
similar way as in our previous work [1] allows us to get rid of the assumptions
on the sequences (an)n≥0 and (rk)k≥0 in Theorem 2.3.

Theorem 3.4. Let us consider the quasi-periodic continued fraction

ξ = [a0; a1, . . . , an0−1, an0 , . . . , an0+r0−1
︸ ︷︷ ︸

λ0

, an1 , . . . , an1+r1−1
︸ ︷︷ ︸

λ1

, . . .].

Assume that the sequence (an)n≥0 is not ultimately periodic, and that

(10) lim inf
k→∞

λk+1

λk
> 2.

Then, the real number ξ is transcendental.

4. An improvement of a result of Davenport and Roth

Throughout the present Section (which can be read independently of the
rest of the paper), ξ denotes an arbitrary irrational, real algebraic number
and (pn/qn)n≥1 always denotes the sequence of its convergents. The rate
of growth of (qn)n≥1 is at least exponential, as immediately follows from
the theory of continued fraction, see Lemma 5.3 below. Our purpose is to
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estimate it from above. It is well known that, if ξ is quadratic, then there

exists a real number C(ξ), depending only on ξ, such that q
1/n
n ≤ C(ξ) for

any n ≥ 1. It is widely believed that (q
1/n
n )n≥1 also remains bounded if the

degree of ξ is greater than two. However, we seem to be very far away from
a proof (or a disproof).

The first general upper estimate for the rate of increase of (qn)n≥1 follows
from the Liouville inequality, saying that any algebraic number of degree d
cannot be approximated by rationals at an order greater than d. Using this
result, we easily get that

(11) log log qn ≪ n.

Throughout the present Section, all the constants implied by ≪ depend only
on ξ.

Let δ be a positive real number. In 1955, Roth [18] proved that the set
of solutions to the inequality

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<

1

q2+δ
,

in integers p, q with gcd(p, q) = 1 and q > 0, is finite. In his joint work with
Davenport [9], some steps from [18] were made more explicit in order to
get an upper estimate for the cardinality N (ξ, δ) of this set. In particular,
Davenport and Roth [9] established that, for δ ≤ 1/3, there exist positive
constants c1 and c2, depending only on ξ, such that

(12) N (ξ, δ) ≤ c1 exp{c2δ
−2}.

They further derived from (12) an improvement of (11), namely the upper
estimate

(13) log log qn ≪ n√
log n

.

Bombieri and van der Poorten [6] were the first who established an upper
bound for N (ξ, δ) which is polynomial in δ−1. A slight sharpening has
subsequently been obtained by Evertse, who proved at the end of Section 6
of [10] that, for δ < 1, there exists a positive constant c3, depending only on
ξ, such that

(14) N (ξ, δ) ≤ c3 δ−3 (1 + log δ−1)2.

Any qualitative improvement of (12) yields an improvement of (13). In
particular, if we insert (14) instead of (12) in Davenport and Roth’s proof
of (13), we get the upper estimate

(15) log log qn ≪ n3/4
√

log n.

It turns out that a suitable modification of the argument used by Davenport
and Roth allows us to derive from (14) a much better result than (15).

Theorem 4.1. Let ξ be an arbitrary irrational, real algebraic number and
let (pn/qn)n≥1 denote the sequence of its convergents. Then, for any ε > 0,
there exists a constant c4, depending only on ξ and ε, such that

log log qn ≤ c4 n2/3+ε.
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As an immediate corollary, we get a transcendence criterion for real num-
bers whose convergents have very large denominators.

Corollary 4.2. Let θ be an irrational, real number and let (rn/sn)n≥1 de-
note the sequence of its convergents. If there exists a positive real number ε
such that

lim sup
n→+∞

log log sn

n2/3+ε
= +∞,

then θ is transcendental.

Corollary 4.2 is the key point for the proof of Theorem 3.1.

Proof of Theorem 4.1. The basic idea is to introduce more parameters in
the proof of Theorem 3 of [9]. Recall that we have

(16)

∣
∣
∣
∣
ξ − pn

qn

∣
∣
∣
∣
<

1

qnqn+1
,

for any n ≥ 1. Let k ≥ 1 be an integer and δ1, . . . , δk be real numbers with
0 < δ1 < δ2 < . . . < δk < 1, that will be selected later on.

It is convenient to introduce a positive real number ν > 1 such that
N (ξ, δ) ≪ δ−ν holds for any δ with 0 < δ < 1. In view of (14), we can take
for ν any real number strictly larger than 3.

Let N be a (sufficiently large) integer and put S0 = {1, 2, . . . , N}. For
j = 1, . . . , k, let Sj denote the set of positive integers n in S0 such that

qn+1 > q
1+δj
n . Observe that S0 ⊃ S1 ⊃ . . . ⊃ Sk. It follows from (16) that,

for any n in Sj, the convergent pn/qn gives a solution to
∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<

1

q2+δj
.

Consequently, the cardinality of Sj is at most N (ξ, δj), thus it is ≪ δ−ν
j .

Write

S0 = (S0 \ S1) ∪ (S1 \ S2) ∪ . . . ∪ (Sk−1 \ Sk) ∪ Sk.

Let j be an integer with 1 ≤ j ≤ k. The cardinality of S0 \ S1 is obvi-
ously bounded by N and, if j ≥ 2, the cardinality of Sj−1 \ Sj is ≪ δ−ν

j−1.

Furthermore, for any n in Sj−1 \ Sj, we get

log qn+1

log qn
≤ 1 + δj .

Denoting by d the degree of ξ, we infer from (16) and the Liouville inequality
that

log qn+1

log qn
≤ d

holds for every sufficiently large integer n in Sk. Combining these estimates
with the fact that Sk has ≪ δ−ν

k elements, we obtain that

log qN ≪ log qN

log qN−1
× log qN−1

log qN−2
× . . .× log q3

log q2
≪ (1+δ1)

N
k∏

j=2

(1+δj)
δ−ν
j−1 dδ−ν

k .
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Taking the logarithm, we get

(17) log log qN ≪ N log(1 + δ1) +
k∑

j=2

δ−ν
j−1 log(1 + δj) + δ−ν

k .

We now select δ1, . . . , δk. For j = 1, . . . , k, set

δj = N−(νk−νj−1)/(νk+1−1).

We check that 0 < δ1 < . . . < δk < 1, and we easily infer from (17) that

(18) log log qN ≪ k N (νk+1−νk)/(νk+1−1) = k N (ν−1)/(ν−ν−k).

By (11), we may assume that ε ≤ 1/3. In view of (14), we can take ν =
3/(1− ε). Choosing then for k the smallest integer greater than log ε−1, we
get from (18) that

log log qN ≪ (log ε−1)N ε+2/3,

as claimed. �

5. Auxiliary results

Our Theorems 3.2 and 3.4 rest on the Schmidt Subspace Theorem [19]
(see also [20]), that we recall now.

Theorem 5.1 (W. M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm

be linearly independent linear forms in x = (x1, . . . , xm) with algebraic
coefficients. Let ε be a positive real number. Then, the set of solutions
x = (x1, . . . , xm) in Zm to the inequality

|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

For the reader convenience, we recall here some classical results from the
theory of continued fractions, whose proofs can be found for example in the
book of Perron [17].

Lemma 5.2. Let ξ = [a0; a1, a2, · · · ] and η = [b0; b1, b2, · · · ] be real numbers.
Let n ≥ 1 such that aj = bj for any j = 0, . . . , n. We then have |ξ−η| ≤ q−2

n ,
where qn denotes the denominator of the n-th convergent to ξ.

Lemma 5.3. Let (an)n≥0 be a sequence of positive integers at most equal
to M, let n be a positive integer and set pn/qn = [a0; a1, a2, . . . , an]. Then,
we have √

2
(n−1) ≤ qn ≤ (M + 1)n.

The following innocent-looking formula appears to be the key point in the
proof of Theorem 3.2. In what follows, Equality (19) will be referred to as
the mirror formula.

Lemma 5.4. Let ξ = [a0; a1, a2, · · · ] be a real number with convergents
(pn/qn)n≥1. Then, for any n ≥ 2, we have

(19)
qn

qn−1
= [an; an−1, . . . , a1].
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For positive integers a1, . . . , am, denote by Km(a1, . . . , am) the denomina-
tor of the rational number [0;a1, . . . , am]. It is commonly called a continuant.

Lemma 5.5. For any positive integers a1, . . . , am and any integer k with
1 ≤ k ≤ m − 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1),

Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am)

and

1
2 Km(ak, . . . , am, a1, . . . , ak−1) ≤ Km(a1, . . . , am)

≤ 2Km(ak, . . . , am, a1, . . . , ak−1).

We finish our series of lemmas by an immediate consequence of Roth’s
theorem.

Lemma 5.6. Let (pn/qn)n≥0 denote the sequence of partial quotients of a

real number ξ. Let η be a positive integer. If ξ is algebraic, then qn+1 ≤ q1+η
n

holds for any integer n sufficiently large.

6. Proofs of our main results

Proof of Theorem 3.1. We follow the proof of Theorem 1 from [4], except
that we use Theorem 4.1 instead of (13) and that we suitably apply Lemma
5.5 to get rid of the assumption (2). For completeness, we give the details
of the argument.

Assume that ξ is algebraic of degree d. For any positive integer k, set

ξk := [a0; a1, · · · , ank−1, ank
, . . . , ank+rk−1

︸ ︷︷ ︸

∞

].

Since the height of ξk is at most 2q2
nk+rk−1, the Liouville inequality (see e.g.

[7], Corollary A.2) and Lemma 5.5 give us that

|ξ − ξk| ≫ q−2d
nk+rk−1 ≫ q−2d

nk−1 Krk
(ank

, . . . , ank+rk−1)
−2d.

Here and below, the constants implied by ≪ depend only on ξ. However,
we infer from Lemmas 5.2, 5.3 and 5.5 that

|ξ − ξk| ≪ q−2
nk+λkrk−1

≪ q−2
nk−1 Krk

(ank
, . . . , ank+rk−1)

−2d K2rk
(ank

, . . . , ank+2rk−1)
−λk+2d

≪ q−2
nk−1 Krk

(ank
, . . . , ank+rk−1)

−2d 2−λk/2,

if k is sufficiently large. A combination of the last two inequalities gives that

λk ≪ log qnk
.
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By the assumption (7), we then get that

lim sup
k→∞

log log qnk

n
ε+2/3
k

= +∞,

a contradiction with Corollary 4.2. �

Proof of Theorem 3.2. For any k ≥ 0, set

Kk := Krk
(ank

, . . . , ank+rk−1).

By assumption, there exist a positive real number c and an infinite set of
integers K1, ranged in increasing order, such that λk ≥ cnk for any k in K1.

The proof splits into two parts. Assume first that the sequence (Kk)k∈K1 is
bounded. Since the Kk’s are non-negative integers, it follows that infinitely
of them take the same value. Then, Lemma 5.3 implies that there exist
a positive integer r, positive integers b0, . . . , br−1 and an infinite set K2 of
positive integers such that

rk = r, ank+j = bj , (0 ≤ j ≤ r − 1),

for any k in K2.
Let α denote the real number having the purely periodic continued frac-

tion expansion with period B = (br−1, . . . , b0), that is,

α = [br−1; br−2, . . . , b0, br−1, . . . , b0, br−1, . . .] = [B,B, . . . , B, . . .].

Then, α is a quadratic number. We need to introduce some more notation.
Let us denote by pn/qn (respectively, by rn/sn) the n-th convergent to ξ
(respectively, to α). Then, for any k in K2, set Pk = pnk+λkrk−1, Qk =
qnk+λkrk−1, P ′

k = pnk+λkrk−2, Q′
k = qnk+λkrk−2 and Sk = srλk−1.

By assumption, we already know that ξ is irrational and not quadratic.
Therefore, we assume that ξ is algebraic and we aim at deriving a contra-
diction.

Let k be in K2. By the theory of continued fractions, we have

(20) |Qkξ − Pk| <
1

Qk
and |Q′

kξ − P ′
k| <

1

Q′
k

.

On the other hand, since by assumption

Pk

Qk
= [a0; a1, · · · , ank−1, B,B, . . . , B

︸ ︷︷ ︸

λk

],

we get from the mirror formula (see Lemma 5.4) that

Qk

Q′
k

= [B,B, . . . , B
︸ ︷︷ ︸

λk

, ank−1, · · · , a1].

Then, Lemma 5.2 implies

(21)
∣
∣Q′

kα − Qk

∣
∣ <

Q′
k

S2
k

and we a fortiori obtain that

(22) lim
K2∋k→∞

Qk

Q′
k

= α.
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Consider now the four linearly independent linear forms, whose coeffi-
cients are by assumption algebraic:

L1(X1,X2,X3,X4) = ξX1 − X3,
L2(X1,X2,X3,X4) = ξX2 − X4,
L3(X1,X2,X3,X4) = αX2 − X1,
L4(X1,X2,X3,X4) = X1.

Evaluating them on the quadruple (Qk, Q
′
k, Pk, P

′
k), it follows from (20)

and (21) that

(23)
∏

1≤j≤4

|Lj(Qk, Q
′
k, Pk, P

′
k)| <

1

S2
k

.

Let M be an upper bound for the sequence (q
1/n
n )n≥1. We infer from Lemma

5.3 that Qk ≤ (M + 1)nk+rλk and Sk ≥ (
√

2)rλk−2, for any positive integer
k in K2. It thus follows that

Sk ≥ (M + 1)

(
log

√

2
log(M+1)

)

(rλk−2) ≥ Q

(
log

√

2
log(M+1)

)

·

(
rλk−2

nk+rλk

)

k ,

for any positive integer k in K2. In particular, we get from (23) and (8) that
∏

1≤j≤4

|Lj(Qk, Q
′
k, Pk, P

′
k)| ≤ Q−ε

k

holds for some positive real number ε and for k large enough in K2.
It then follows from Theorem 5.1 that the points (Qk, Q

′
k, Pk, P ′

k) for k
in K2 lie in a finite number of proper subspaces of Q4. Thus, there exist
a nonzero integer quadruple (x1, x2, x3, x4) and an infinite set of distinct
positive integers K3 ⊂ K2 such that

(24) x1Qk + x2Q
′
k + x3Pk + x4P

′
k = 0,

for any k in K3. Dividing (24) by Q′
k, we obtain

(25) x1
Qk

Q′
k

+ x2 + x3
Pk

Qk
· Qk

Q′
k

+ x4
P ′

k

Q′
k

= 0.

By letting k tend to infinity along K3 in (25), we derive from (22) that

x1α + x2 + (x3α + x4)ξ = 0.

Since ξ is not quadratic, it a fortiori cannot lie in Q(α). This implies that
x3α + x4 = 0 and, since α is irrational, it follows that x3 = x4 = 0. Then,
again by using that α is irrational, we get that x1 = x2 = x3 = x4 = 0, which
is a contradiction. This concludes the proof when the sequence (Kk)k∈K1 is
bounded.

Assume now that the sequence (Kk)k∈K1 is unbounded. Then, there exists
an infinite set K4 of integers, ranged in increasing order, such that the
sequence (Kk)k∈K4 increases to infinity.

Recall that (pn/qn)n≥0 denotes the sequence of convergents to ξ and that

M denotes an upper bound for the sequence (q
1/n
n )n≥0. Let d be a positive

integer. Let k be in K4 and large enough in order that λk ≥ d + 1 and

(26) Kk ≥ M2d/c,
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with the constant c defined at the beginning of the proof. Then, the real
number ξ is very close to the quadratic number

ξk := [a0; a1, · · · , ank−1, ank
, . . . , ank+rk−1

︸ ︷︷ ︸

∞

].

Define the polynomial

Pk(X) := (qnk−2qnk+rk−1 − qnk−1qnk+rk−2)X
2

− (qnk−2pnk+rk−1 − qnk−1pnk+rk−2 + pnk−2qnk+rk−1 − pnk−1qnk+rk−2)X

+ (pnk−2pnk+rk−1 − pnk−1pnk+rk−2),

and observe that Pk(ξk) = 0. For any positive integer k, we infer from
Rolle’s Theorem and Lemma 5.2 that

|Pk(ξ)| = |Pk(ξ) − Pk(ξk)| ≪ qnk−1 qnk+rk−1 |ξ − ξk|

≪ qnk−1 qnk+rk−1 q−2
nk+λkrk−1,

since the first nk +λkrk − 1 partial quotients of ξ and ξk are the same. Here
and below, the constants implied in ≪ depend at most on ξ and on d, but
they are independent on k. Now, it follows from Lemma 5.5 that

qnk+λkrk−1 ≥ qnk−1 Kλk

k ,

thus, by (26) and by Lemma 5.5 again, we get

|Pk(ξ)| ≪ K1−2λk

k ≪ K−λk−d
k ≪ (M2nk Kk)

−d ≪ (qnk−1 qnk+rk−1)
−d,

since λk ≥ d + 1. Recalling that ξ is irrational and not quadratic, it then
follows from the Liouville inequality (see e.g. [7], Theorem A.1) that ξ
cannot be algebraic of degree smaller than d. Since d is arbitrary, this
concludes the proof when the sequence (Kk)k∈K1 is bounded. �

Proof of Corollary 3.3. Let us consider the quasi-periodic continued fraction

ξ = [a0; a1, . . . , an0−1, an0 , . . . , an0+r0−1
︸ ︷︷ ︸

λ0

, an1 , . . . , an1+r1−1
︸ ︷︷ ︸

λ1

, . . .],

satisfying the assumption of the corollary, and suppose that we have

(27) lim inf
k→∞

λk+1

λk
> 1.

For k ≥ 1, we get that

nk = n0 +
k−1∑

j=0

rjλj.

Moreover, we infer from (27) that there exist positive real numbers δ and
M such that

λj <
Mλk

(1 + δ)k−j
,
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for any j < k with k large enough. Since the sequence (rk)k≥0 is bounded,
there exists a positive real number r such that

nk < n0 + rλk

∑

j≥1

M

(1 + δ)j

and thus

lim sup
k→∞

λk

nk
≥ 1

n0 + rM
(∑

j≥1 (1 + δ)−j
) > 0,

for k large enough. Applying Theorem 3.2, this concludes the proof. �

Proof of Theorem 3.4. For any k ≥ 0, set

Kk := Krk
(ank

, . . . , ank+rk−1).

In view of Corollary 3.3, there is no restriction in assuming that the sequence
(Kk)k≥0 is unbounded. Then, there exists an infinite set K5 of integers,
ranged in increasing order, such that the sequence (Kk)k∈K5 increases to
infinity and such that, for any k in K5 and any integer j with 0 ≤ j < k, we
have Kj < Kk.

Let k be in K5. The real number ξ is very close to the quadratic number

ξk := [a0; a1, · · · , ank−1, ank
, . . . , ank+rk−1

︸ ︷︷ ︸

∞

].

Let jk be the largest integer < nk such that ajk
6= ajk+rk

. Choosing k
sufficiently large, jk is well defined, since (ak)k≥0 is not ultimately periodic.
Observe that

ξk := [a0; a1, · · · , ajk
, ajk+1, . . . , ajk+rk
︸ ︷︷ ︸

∞

].

Let η ≤ 1 be a positive real number. We then assume that ξ is algebraic
and we proceed as in the proof of Theorem 2 from [1].

Define the polynomial

Pk(X) := (qjk−1qjk+rk
− qjk

qjk+rk−1)X
2

−(qjk−1pjk+rk
− qjk

pjk+rk−1 + pjk−1qjk+rk
− pjk

qjk+rk−1)X

+(pjk−1pjk+rk
− pjk

pjk+rk−1),

and observe that Pk(ξk) = 0. For any positive integer k in K5, we infer from
Rolle’s Theorem and Lemma 5.2 that

|Pk(ξ)| = |Pk(ξ) − Pk(ξk)| ≪ qjk
qjk+rk

|ξ − ξk| ≪ qjk
qjk+rk

q−2
jk+λkrk

,

since the first jk + λkrk partial quotients of ξ and ξk are the same.
Since ξ is assumed to be algebraic, it follows from Lemma 5.6 that

|(qjk−1qjk+rk
− qjk

qjk+rk−1)ξ − (qjk−1pjk+rk
− qjk

pjk+rk−1)| ≪ qjk
q−1+η
jk+rk

and

|(qjk−1qjk+rk
− qjk

qjk+rk−1)ξ − (pjk−1qjk+rk
− pjk

qjk+rk−1)| ≪ q−1+η
jk

qjk+rk
,
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if k in K5 is large enough. Furthermore, we have as well the obvious upper
bound

|qjk−1qjk+rk
− qjk

qjk+rk−1| ≤ qjk
qjk+rk

.

Consider now the four linearly independent linear forms with algebraic
coefficients:

L1(X1,X2,X3,X4) = ξ2X1 − ξ(X2 + X3) + X4,
L2(X1,X2,X3,X4) = ξX1 − X2,
L3(X1,X2,X3,X4) = ξX1 − X3,
L4(X1,X2,X3,X4) = X1.

Evaluating them on the quadruple

zk := (qjk−1qjk+rk
− qjk

qjk+rk−1, qjk−1pjk+rk
− qjk

pjk+rk−1,

pjk−1qjk+rk
− pjk

qjk+rk−1, pjk−1pjk+rk
− pjk

pjk+rk−1),

we find that

Π :=
∏

1≤j≤4

|Lj(zk)| ≪ (qjk
qjk+rk

)2+η q−2
jk+λkrk

.

Now, it follows from the last assertion of Lemma 5.5 that

qjk+λkrk
≥ qjk

(Kk/2)
λk ,

thus, by Lemma 5.5 again,

Π ≪ q2+2η
jk

(2Kk)
2+η (Kk/2)

−2λk ≪ K
2(1+η)(λ1+...+λk−1+k)
k (Kk/2)

−2λk .

Using hypotheses (10) and choosing η small enough, we infer from the pre-
ceding inequality that there exists a positive real number ε such that

Π ≪ K
−2(λ1+...+λk−1+k)ε
k ≪ (qjk

qjk+rk
)−ε.

It then follows from Theorem 5.1 that the points zk for k in K5 lie in a
finite number of proper subspaces of Q4. Thus, there exist a nonzero integer
quadruple (x1, x2, x3, x4) and an infinite set of distinct positive integers K6 ⊂
K5 such that

x1(qjk−1qjk+rk
− qjk

qjk+rk−1) + x2(qjk−1pjk+rk
− qjk

pjk+rk−1)

+x3(pjk−1qjk+rk
− pjk

qjk+rk−1) + x4(pjk−1pjk+rk
− pjk

pjk+rk−1) = 0.

for any k in K6. We then argue exactly as in the proof of Theorem 2 from
[1]. This is made possible by our choice of jk. We then reach a contradiction,
which concludes the proof of our theorem. �
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