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Abstract

Solid-liquid separation is an operation that starts with a dispersion of solid particles in a liquid,
and removes some of the liquid from the particles, producing a concentrated solid paste and a
clean liquid phase. From a conceptual point of view, it is similar to thermodynamic processes
where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance
to this compression depends on interactions between the dispersed particles.

The first part of this work deals with dispersions of repelling particles, which are either silica
nanoparticles or synthetic clay platelets, dispersed in aqueous solutions at high pH and low ionic
strength. In these conditions, each particle is surrounded by an ionic double layer, which repels
other double layers. This results in a structure with strong short-range order. At high particle
volume fractions, the overlap of double layers generates large osmotic pressures; these pressures
may be calculated, through the cell model, as the cost of reducing the volume of each cell. The
variation of osmotic pressure with volume fraction is the equation of state of the dispersion.

The second part of this work deals with dispersions of particles that attract each other. The
particles are silica nanoparticles, dispersed in water and flocculated by addition of multivalent
cations. This produces large bushy aggregates, with fractal structures that are maintained through
interparticle surface-surface bonds. As the paste is submitted to increasing osmotic pressures,
most bonds are retained, but reordering processes at the scale of 2-20 diameters cause the
structure to collapse. The final structure is made of dense grains immersed in a nearly
homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume
fraction is the compression law of the paste; it has been calculated through a numerical model
that consists of spheres connected by springs, which bind to their surfaces. The response of such
networks to osmotic pressure follows some scaling laws, which depend only on the nature of the
springs (elastic vs. dissipative). According to these predictions, the response of aggregated pastes
to applied stress may be controlled through the manipulation of interparticle adhesion.
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Introduction
Dispersions of fine solid particles in a liquid are commonly used to manufacture coatings,
composite materials and ceramics. They are also encountered in foods, pharmaceuticals and
biotechnological processes. Lastly they constitute the bulk of industrial and city effluents. In
many cases, it is at some point necessary to separate the particles from the liquid. This is
achieved through a variety of industrial processes, including drying, slip casting, pressure
filtration, and centrifugation (Table I). In all these processes, it is generally recognized that the
success of the operation depends on the control of interactions between particles. In many cases,
however, there is no quantitative model for the relations between colloidal interactions and the
properties of the final product.

Table I. Industrial solid-liquid separation processes

Industry Ceramics Coatings Paper Waste disposal Drilling fluids

Starting
material

Mineral paste Fluid
dispersion

e.g. paint

Aqueous
suspension

(coating
colors)

Sludge Clay
dispersion

Final material Green body Dry coating Dry coating Solid waste Cake

Process Pressure
filtration

Casting in a
porous mold

Evaporation

Slip casting

Drainage +
evaporation

Pressure
filtration

Centrifugation

Pressure
filtration,
Drainage

Criteria Final volume
fraction

Absence of
porosity

Surface
quality
(nanostructure
of deposit)

R a t e  o f
drainage

Retention of
fines

Cost

Final volume
fraction

Rate of fluid
loss

References 1-4 5-7 8 9-12 13-14

Basic processes

In each of these solid-liquid separation processes, the driving force is osmotic pressure. However,
it is applied in different ways.

 There is a family of experiments where pressure is applied to the boundaries of the system (the
dispersion) in order to reduce its volume. In mechanical compression, the dispersion is placed in
a pressure cell equipped with pistons that are permeable to the liquid phase [4]. Pressure is
applied to the pistons and the network collapses while some liquid phase is forced out through the
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membranes (Figure 1). In osmotic stress experiments, the dispersion is placed inside a dialysis
bag, and immersed in a large volume of an aqueous polymer solution, of known osmotic pressure
[15, 16]. The liquid is then extracted through its affinity for the external solution. Finally, in
evaporation, the liquid is driven out from the outer surface through the chemical potential
difference between the vapor and the liquid, and in this way the volume occupied by the
dispersion is again reduced.

Then there is another family of experiments where a force is applied to each particle in the
dispersion. For instance, in centrifugation, a force is applied to all particles [3, 4]. These forces
are transmitted through the particle network, so that the osmotic pressure is highest at one end of
the sediment and lowest at the other. The direction of the gradient depends on the sign of the
density increment. As a result of this pressure, the sediment is compressed, and its height is seen
to decrease (Figure 1). Similarly, in filtration, the flow of the continuous phase pushes the
aggregates towards the membrane where they form a cake [17]. In the cake, each particle is
submitted to a hydrodynamic force from the permeating liquid. These forces are transmitted
through the network of interparticle contacts. As a result, the total force exerted on the aggregates
located at the bottom of the cake is the sum of hydrodynamic forces exerted on all particles in the
cake (Figure 1). Conversely, the force exerted on particles located at the top of the cake is the
local hydrodynamic force only. Consequently there is an osmotic pressure gradient throughout
the cake: the osmotic pressure is highest at the bottom of the cake, and it vanishes at the top.

Figure 1. Summary of methods used for solid-liquid separation. Left: methods where an osmotic pressure
is applied to the boundaries of the system, and transmitted as a uniform pressure through the network of
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particles. Right: methods where a force is applied to each particle, producing a pressure gradient
throughout the dispersion.

Relation to thermodynamics

Regardless of their differences, all these methods rely on the application of an osmotic pressure
(e.g. a difference in the chemical potential of the liquid within and outside the dispersion) to
extract the liquid phase and reduce the volume occupied by the dispersion. In this way they
resemble classical methods in thermodynamics, where a physical system responds with a change
in its volume to an applied external pressure. Such thermodynamics processes are characterized
by an equation of state, which can be followed in both directions (compression and
decompression) and which depends only on the characteristics of the interacting atoms,
molecules etc. It would be useful to know to what extent the compression behavior of a colloidal
system can be described in the same terms. For this purpose, it is necessary to examine the
behavior of model systems, where the characteristics of the particles may be controlled and their
interactions may be varied systematically.



6

Model systems
A number of osmotic compression experiments have been performed already on model colloidal
dispersions, using osmotic stress, mechanical compression or centrifugation [3, 4, 15-18]. The
present paper reviews recent experiments in which aqueous dispersions of nanometric silica or
clay particles were used as starting materials for the production of concentrated dispersions,
aggregated suspensions, pastes (concentrated aggregated suspensions) and cakes (solid pastes). It
also presents a reinterpretation of the data, using the cell model in the case of repelling particles,
and a numerical model with spheres connected by springs in the case of aggregated suspensions.

The choice of nanometric particles was important for two reasons. Firstly, they formed cakes that
were not dense but highly compressible. Secondly, the relative positions of these particles could
be determined by small angle neutron scattering (SANS). Therefore they were suitable for the
study of the mechanisms by which cakes may rearrange their structures and collapse.

Repelling particles

Two types of aqueous silica dispersions were used. The main source was LUDOX HS 40
aqueous dispersions. These dispersions contain a high concentration (40 % wt) of globular silica
particles. According to neutron scattering (see below), the number average diameter of the
particles is 2a =15 nm, and the z-average is 24 nm. Each particle carries about 350 ionized SiO–

sites on its surface that are compensated by Na+ counterions located in a diffuse layer surrounding
the particle. The other silica dispersions were made in the laboratory though neutralization of
sodium silicate by sulfuric acid. These particles had a mean size of 20 nm, and a narrow
distribution of diameters around this value. Each particle carried about 200 ionized SiO– sites on
its surface, compensated by Na+ counterions located in a diffuse layer around the particle [16].

The other source of nanoparticles was LAPONITE XLG aqueous dispersions. These dispersions
contain synthetic clay platelets; the thickness of the platelets is 2H = 1.35 nm and their diameter
is 2R = 30 nm. Each face of the particle carries about 500 ionized sites, which are compensated
by Na+ counterions located in a diffuse layer surrounding the particle [18].

Aggregated particles

Aggregation of the silica particles was promoted through addition of salt solutions
(“flocculants”) to dilute silica dispersions (initial pH = 8). The first flocculant solution was a
solution of divalent (Ca2+) cations. These cations accumulate on the silica surfaces, and therefore
suppress the ionic repulsions of the silica particles. At high surface charge densities, the
correlations between ions located on neighboring surfaces create an attraction between these
surfaces [19]. However, the silica particles also repel through hydration forces; in these
conditions, only a small fraction of the collisions between silica particles cause them to
aggregate [20, 21]. At longer times, the aggregates may be reinforced through direct Si-O-Si
bonds between the silica surfaces [22].

The other flocculant solution was made by the hydrolysis of an AlCl3 solution. This hydrolysis
was produced by slow (5h) addition of NaOH at a ratio OH/Al = 2.2; the final pH was 4 ± 0.25
and the Al concentration was 0.1 M. In these conditions, it is known that the Al3+ cations react
with the added OH– to form polycations, of which the dominant ones are the [Al13 O4 (OH)24]

7+

polycations (hereafter abbreviated Al13
7+) [23]. The flocculant solution was equilibrated over
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24h, and then added to the silica suspension; the final silica weight fraction was 1 % and the final
Al concentration was 0.05M.

These polycations can react with the SiO– surface sites of the silica surfaces, and in this way
compensate the surface charge. At the isoelectric point, all the original counterions of the surface
(Na+) have been displaced; consequently the repulsions caused by the overlap of electrical
double layers have vanished. The particles may then aggregate through electrical attractions of
positive and negative surface charges.

The use of these two flocculant solutions made it possible to produce silica aggregates in which
the particles were held either by relatively weak bonds (screening of surface charges by Ca2+) or
by very strong bonds (bridging by Al13

7+).

Results for dispersions of repelling particles
This section presents the compression behavior of dispersions in which the particles repel each
other through the overlap of their ionic double layers. This is the case for silica dispersions and
clay dispersions at high pH and low ionic strength.

Compression laws

The compression laws have been obtained by submitting the dispersions to a set of increasing
osmotic pressures, and at each pressure measuring the volume occupied by the dispersion after
osmotic and mechanical equilibria have been reached. For particles that interact through their
diffuse layers of counterions, the resistance to compression reflects the free energy cost of the
overlap of these layers that is caused by the compression.

Silica nanoparticles

The compression curves of two different silica dispersions are presented in Figure 2. The
dispersions were made of silica particles of the same mean diameters, but they were synthesized
in separate experiments. Also, the compression curves were obtained by different researchers,
both using the osmotic stress technique [16, 24]. The good agreement of both sets of data implies
that the measured compression curve is uniquely determined by the characteristics of the
particles. It is also remarkable that these compression curves cover a range of 2 decades in silica
volume fractions and 5 decades in pressures. Finally, some experiments have been performed in
the reverse direction, reswelling the concentrated silica dispersions. It was found that the
dispersions that were compressed up to a volume fraction φ = 0.5 could be reswelled in a
reversible way. Consequently, the part of the compression that extends form the lowest volume
fractions (φ = 0.02) up to φ = 0.5 is an equation of state of the silica dispersions.
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Figure 2. Compression curves of aqueous dispersions of silica nanoparticles, obtained through the
osmotic stress technique. (): data from Chang et al. [9]. (O): data from Persello [17]. Full line: calculation
according to the cell model (equation 8).

Laponite clay particles

Aqueous laponite dispersions have been deswelled (i.e. compressed) and reswelled through
different techniques. The results are presented in Figure 3. Equilibrium states of compression
were obtained through the osmotic stress technique; the data obtained in two laboratories are in
good agreement with each other, and also with the calculated ionic pressure of platelets [25-27].
Fast compression was achieved through centrifugation [28]: for a given pressure, these data are at
a lower volume fraction than the osmotic pressure data, indicating that the dispersion had not
reached equilibrium compression. Reswelling was obtained by centrifugation at high speed
followed by centrifugation at a lower speed [28]: these data provide the true equilibrium equation
of state of the dispersion. As in the case of the nanometric silica dispersion, such data
demonstrate that the experiments measure the equation of state of the dispersion.
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Figure 3. Deswelling and reswelling of aqueous Laponite dispersions. (Δ): deswelling by osmotic stress,
data from Mourchid et al. [18, 19]. (): deswelling by osmotic stress, data from Lelièvre et al. [20]. (O):
deswelling by centrifugation, data from Martin et al. [21]. (): Reswelling during centrifugation, data from
Martin et al. [21]. Full line: calculated ionic pressure of parallel platelets with thickness 1 nm (equation 5).

Structures

Displacements of particles caused by compression

In a most general way, the resistance to any force applied to the dispersion originates from forces
that oppose the relative displacements of particles. During compression, the particles are
displaced and pushed closer together. In order to analyze the resistance to compression, it is
necessary to have some information on these displacements. This can be obtained through
scattering techniques, which measure a Fourier transform of the distribution of distances between
particles.

We have used Small Angle Neutron Scattering, through experiments performed on the instrument
D11 at the ILL. Compressed dispersions were recovered from compression cells, centrifugation
tubes or dialysis bags and placed in scattering cells. In the case of centrifugation, where the
forces applied to the particles produce a gradient of osmotic pressure, the content of the
centrifugation tube was sliced to give a set of disks, each with a different osmotic pressure. In the
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case of osmotic stress, the dialysis bags were also pulled out of the stressing solution and placed
directly on the beam; the results were identical to those obtained using the other procedure.

Scattered intensities

Figure 4 presents the scattered intensities from dilute and concentrated silica dispersions. The
intensities from the dilute dispersion match the scattering curve of independent polydisperse
spheres. This was expected, since at low concentrations the silica particles do not interact with
each other. In contrast, the scattered intensities from the concentrated dispersion are depressed at
low Q values (corresponding to large distances) due to destructive interferences between rays
scattered by distinct particles [29-32]. For a perfectly ordered concentrated dispersion, the
intensity would be concentrated within a few Bragg peaks, with no scattering outside the peaks
[29, 30]. The concentrated silica dispersion is not quite so well ordered: it has a scattering curve
typical of liquid like order, with a broad peak at the average interparticle distance. According to
this average distance, the number average diameter of the particles is 15 nm.

Figure 4. Scattering curves from silica dispersions. Horizontal scale: scattering vector Q, in Å-1. Vertical
scale: scattered intensities, normalized by the scattering of a 1 mm thick water sample. (): concentrated
(40 % wt) dispersion. The depression of the intensity at low Q values results from a liquid-like ordering of
silica particles, caused by interparticle repulsions. The peak position corresponds to the distance between
planes of particles in this structure. According to this distance, the number average diameter of the
particles is 15 nm. (Δ): dilute (1 % wt) dispersion. The fit (full line) corresponds to polydisperse non-
interacting spheres; according to the curvature at low Q of this fit, the z-average diameter of the particles
is 24 nm.
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Structure factors

In concentrated dispersions, it is useful to compute the structure factor S(Q), which is the ratio of
the intensity scattered by the dispersion with respect to that scattered by a single particle. This
measures how the spatial distribution of the particles departs from the fully random distribution
of a perfect gas. Specifically, at each Q value, S(Q) measures the magnitude of concentration
fluctuations in the dispersion. For totally uncorrelated particles (the “perfect gas” case) S(Q)
would be unity at all Q. For repelling particles, S(Q) is depressed at low Q values, because the
long wavelength concentration fluctuations are suppressed. The limiting value of S(Q) at Q = 0 is
the osmotic compressibility of the dispersion [9, 26]. Then, at Q values corresponding to nearest
neighbor distances, S(Q) has a peak, because concentration fluctuations are quite strong at that
scale (Figure 5).

Figure 5. Structure factor S(Q) of a concentrated (40 % wt silica dispersion). At each Q value, S(Q)
measures the magnitude of concentration fluctuations in the dispersion. The depression of S(Q) at low Q
expresses the fact that the dispersion is homogeneous at large scales: a volume of diameter 2π/Q
contains the same number of particles regardless of its location in the dispersion. The depression is
deeper than that of a dispersion of “hard spheres”, because the silica particles repel through diffuse ionic
layers [31, 32].

In the case of dispersions of particles that repel as hard spheres, there exists an analytical
expression of S(Q). This expression is obtained through the Percus-Yevick approximation to the
Ornstein-Zernike integral equation, which is accurate at moderate volumes fractions (i.e. volume
fraction that are below the fluid-solid transition). This structure factor is also shown in Figure 5:
it has the same peak as the silica dispersions, indicating that the shell of nearest neighbors has a
similar organization in both types of dispersions. On the other hand, the structure factor of the
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silica dispersions is much lower at low Q values, because the long-range ionic repulsions
suppress most of the long-range concentration fluctuations. Accurate approximations that yield
S(Q) for dispersions with ionic repulsions have been given by Ottewill, Hayter, Ramsay and
coworkers [30-33].

In the case of laponite platelets, the scattering pattern of concentrated dispersions consists of two
diffraction spots located on either side of the beam. Accordingly, the organization of the particles
is quite simple: they are parallel to each other and spaced at regular intervals along the normal to
the platelets.

Cell model and the equation of state

Since the dispersions are ordered, they can be modeled as arrays of particles sitting in identical
cells (Figure 6). In this model, the osmotic compression of the dispersion is equivalent to the
compression of a single cell. The resistance to this compression originates from the gas of
counterions that surround the particle in each cell; it may be calculated through the Poisson-
Boltzmann cell model [15, 34].

Figure 6. Two-dimensional model of the dispersion as an array of cells, and resistance to compression of
a single cell.

Laponite dispersions

Since the particles are parallel to each other and regularly spaced, it is sufficient to consider, as a
cell, one half of the volume that separates two particles. The counterions of the particle are
confined in this layer, which has a thickness h, determined by the laponite volume fraction φ and
by the particle half thickness H through:

φ =
H

h + H
(1)

For concentrated dispersions (0.1 < φ < 0.4), this yields half separations that are in the range 1 nm
< h < 6 nm. This range must be compared with the two characteristic lengths that characterize the
variations of the electrical potential in the vicinity of charged surfaces (λ) and in the aqueous
solution away from the surfaces (κ-1) [35-37]. The Gouy-Chapman length λ that gives the scale of
variations of the electric potential in the vicinity of charged surfaces is:
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λ =
2 kT ε

0
ε
r

σ e2
(2)

The Gouy-Chapman length for Laponite surfaces (σ  = 0,7 charge /nm2) is λ  = 0,32 nm.
Consequently, h >> λ, and therefore most counterions are condensed on the particle surfaces. On
the other hand, the screening length κ-1 that gives the scale of variations of the electric potential
due to background salt is:

κ−1 = 4π lB z j
j

∑ c j

 

 
 
 

 

 
 
 

−1/2

(3)

where zj and c j are the charge number and concentration of each ionic species and lB is the
Bjerrum length defined as:

l
B

=
e
2

4π ε
0
ε
r
kT

(4)

For the laponite dispersions, this yields κ-1 = 4 nm, and therefore h < κ -1 over most of the
concentrated range. In these conditions, passive salt is excluded from the interstitial solution that
separates neighboring platelets, but the counterions are not uniformly distributed within this
interstitial solution. Instead, they accumulate near the charged surfaces, giving a pressure that is
independent of the surface charge density and decays as the inverse square of separation [35-37]:

Π =
π

2

kT

l
B

1

2h

 

 
 

 

 
 
2

(5)

The pressures calculated according to this equation have been plotted on Figure 3. It can be seen
that they match exactly the osmotic pressures that have been measured through reswelling
experiments, which are believed to be true equilibrium values. Since there are no adjustable
parameters in equation (5), the agreement can be considered as excellent.

Silica dispersions

In this case, the cell can be approximated as a spherical volume surrounding the particle.  Since
the particle surfaces have a high surface charge density, their counterions are not uniformly
distributed within this volume. Instead, they accumulate near the surfaces, and compensate most
of the surface charge. Let Z be the number of charges carried by the surface of a particle, Z1 the
number of condensed counterions, and Zeff = Z – Z1 the number of counterions that are actually
dispersed in the cell. This effective charge can be evaluated using the prescription of Trizac et al
[37]

Zeff =
a

lB
1+ κa( ) (6)

For the silica dispersions used in this work, Zeff = 30 charges per particle.
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The cell radius Rc must also be compared with the characteristic length that characterizes the
variations of the electrical potential in the aqueous solution away from the surfaces (κ-1). In the
case of the silica dispersions, Rc is related to particle radius a and to volume fraction φ by:

R
c

= a φ−1/3 (7)

For the silica dispersions prepared through osmotic stress, this yields 10 nm < Rc < 75 nm. The
screening length of these dispersions is κ-1 = 10 nm, hence κ-1 < R c over the whole range of
volume fractions, which means that the added salt is effective in screening the surface charges.
In these conditions, the osmotic pressure of the dispersion is inversely proportional to the square
of the volume v of the cell:

Π = kT nP +
Zeff

2v

 

 
 

 

 
 

2

1

ns

 

 
 

 

 
 

 

 

 
 








(8)

where nP is the concentration of particles, and ns the bulk concentration of cations from the added
salt. The pressures calculated according to this equation have been plotted on Figure 2. It can be
seen that they match exactly the osmotic pressures that have been measured through osmotic
stress experiments, which are believed to be true equilibrium values. Since there are no adjustable
parameters in equation (8), the agreement can be considered as excellent. Note that for these
globular particles, as well as for platelets (equation 5), the pressure varies as the inverse square
volume of the interstitial solution that separates particles.

Conclusions for repelling particles

At this stage we may conclude that dispersions of repelling particles have a unique compression
behavior, which only depends on the characteristics of the particles. This is the equation of state
of the dispersion. Accordingly, the compression behavior of dispersions of repelling particles can
be described according to the laws of thermodynamics.

However most applications of colloidal dispersions involve particles that stick to each other
rather than repel. In ceramic pastes the compressed cake must have a sufficient cohesion to retain
its shape after molding and until the firing stage. In the deposition of paper coatings, and in the
conditioning of sludge, the cake must retain a sufficient porosity to ensure fast drainage of the
liquid that it contains. Thus, it is useful to examine whether the compression behavior of such
dispersions can also be described by something that resembles an equation of state.

Results for dispersions of aggregated particles
Dispersions of aggregated particles also oppose a strong resistance to osmotic compression, even
though the particles do not repel each other. This resistance originates from the mechanical
rigidity of the aggregates. The pressures that are needed to reach substantial volume fractions can
be quite high, especially in the case of nanometric particles. Some examples from previous work
on a variety of mineral dispersions are given below.
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Compression laws

Previous work

Zukoski and coworkers made aggregated dispersions of mineral particles by bringing the pH of
the aqueous phase to the isoelectric point (i.e.p.) of the particles, and performed compression
experiments on these pastes [4]. They compared the effects of different compression techniques:
osmotic stress (dialysis), centrifugation and mechanical compression. For each dispersion, the
compression curves from different techniques were identical, demonstrating that the compression
resistance was a material property, uniquely determined by the characteristics of the dispersion.
When particles of different sizes were compared, the resistance was much higher for the smaller
particles: with the same applied pressure (105 Pa or 1 atm), the dispersions of larger particles
(139 nm) reached a volume fraction of about 0.13, whereas smaller ones (57 nm) reached only
0.1, and the smallest ones (8 nm) remained at 0.06. For the smallest particles, these resistances
are quite high (compare with the pressures of non aggregated dispersions, shown in Figure 2).

Lange and coworkers compared the mechanical properties of dispersions of particles that were
aggregated in different ways [38, 39]. They found an enormous difference between a dispersion
that was flocculated by adjusting the solution pH to the i.e.p. of the particles, as in Zukoskis’s
work, and a dispersion that was coagulated by the addition of salt. The latter yielded much easier
to applied stress than the former. Therefore the strength of interparticle forces is the most
important factor determining the mechanical resistance of dispersions of aggregated particles.

From such experiments, it may be concluded that the mechanical properties of dispersion of
aggregated particles are governed by the strength of interparticle forces, and by characteristics of
the individual particles such as shape and size.

Silica nanoparticles aggregated by Ca2+ and by Al13
7+

In the present work, aqueous dispersions of silica nanoparticles were aggregated at high pH (far
from the i.e.p. of the particles) by the addition of divalent cations (Ca2+) or polycations (Al13

7+).
These aggregated dispersions were made mainly for the purpose of studying the structure,
porosity and connectivity of the compressed cakes. However, some compression resistances
were also measured. They were on the order of 105 Pa for dispersions that were held together by
strong forces (at φ = 0.125), i.e. of the same order of magnitude as those measured by Zukoski
and coworkers for particles of comparable sizes.

Structures

Displacements of particles caused by compression

When dispersions of aggregated particles are submitted to osmotic compression, the aggregates
build a continuous network (Figure 7). Any deformation of this network requires some shifts of
interparticle contacts, and is opposed by cohesive forces acting on these contacts. If the applied
osmotic pressure is lower than the corresponding yield stress, the cake is not compressed.
However, if the applied pressure exceeds this threshold, the cake yields and shrinks to a smaller
volume, releasing some of the liquid phase. This compression is accomplished through
deformation of the aggregates and partial collapse of their voids. These relative displacements of
the particles can be observed through Small Angle Neutron Scattering.
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Figure 7. The resistance to compression of a network of aggregated particles originates from forces
exerted at the points of contact of neighboring particles. These forces are non-central. The contacts may
also be disrupted, leading to dissipation of energy and irreversible deformation of the network.

Scattered intensities

Before compression, the structures of the aggregates in silica suspensions are characteristic of
large bushy, fractal objects [31, 32, 40, 41 ]. Indeed, the scattering curves of both suspensions
show high intensities at low Q values, demonstrating the presence of large aggregates, and a
power law decay (exponent – 2.15), reflecting the fractal structure of the aggregates (Figure 8).
After compression, the scattered intensities are strongly depressed (they are 10 to 100 times
weaker), indicating that the cakes are much more homogeneous than the suspensions.
Qualitatively, it is easy to understand that this depression is caused by the collapse of the voids
that separate the aggregates. Quantitatively, it is necessary to calculate the structure factors in
order to analyze this effect.

Figure 8. Upper curves: scattering from aggregated suspensions. (Δ): silica particles aggregated by
addition of Al13

7+ polycations. (): silica particles aggregated by addition of Ca2+. The power-law decay
reflects the self-similar structure of the aggregates; the fractal exponent, deduced from the slope of the
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plots, is –2.15. The absence of a peak at the distance of nearest neighbors indicates that each silica
particle has a low number of nearest neighbors (definitely not larger than 4). Lower curves: scattering from
compressed cakes. (o): silica particles aggregated by addition of Al13

7+ polycations. (): silica particles
aggregated by addition of Ca2+. The depression of the intensity is caused by the collapse of the voids that
separate the aggregates.

Structure factors

The structure factors of aggregated dispersions are defined in the same way as those of repelling
dispersions: at each Q value, S(Q) measures the magnitude of concentration fluctuations in the
dispersion. They are, however, strikingly different: S(Q) has a very high value (S(Q) = 100) at
low Q values (Q = 0.001 Å–1), and then decays towards S(Q) = 1 at high Q values (Figure 9). This
is in contrast with the depression of S(Q) at low Q that was observed in dispersions of repelling
particles (compare with Figure 5).

Figure 9. Structure factor of a suspension containing silica nanoparticles aggregated by addition of Al13
7+

polycations. The power-law decay at low Q reflects the fractal structure of the aggregates. The absence of
a peak at the distance of nearest neighbors (high Q) indicates that each silica particle has a low number of
nearest neighbors (3 to 4).

The high values of S(Q) at low Q result from concentration fluctuations produced by the presence
of aggregates in the suspension (a given volume of suspension may contain a whole aggregate, or
no particles at all). The decay that follows reflects the internal structure of the aggregates: the
exponent (– 2.15) indicates that the number of particles included in a volume of radius R around
a given particle scales as N(R) = C R2.15. Accordingly, the structure of these aggregates is mostly
full of voids – since a dense structure would be characterized by N(R) = C R3.

At high Q values, corresponding to distances between neighboring particles, the structure factor
of the aggregates simply goes to unity instead of having a peak as was the case for the ordered
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dispersions of repelling particles (compare with Figure 5). This feature indicates that the
coordination number of the aggregated particles is low, typically 3-4, as is commonly the case in
bushy aggregates [42]. Indeed, if each particle had a complete coordination shell (8 to 12
neighbors), there would be a strong peak at the nearest neighbor distance, as in concentrated
dispersions and colloidal crystals [30-32].

From this structure factor, it may be concluded that the aggregated silica suspensions are made of
large aggregates which contain voids at all scales – from nearest neighbor distances to scales that
are at least 100 times larger. The spatial distribution of these voids is self-similar (fractal
dimension df = 2.15). This is exactly the type of structure that is produced by aggregation of
clusters, in the regime where only a small fraction of all the collisions are successful and lead to
permanent sticking (RLCA).

The structure factors of the compressed dispersions are shown in Figure 10. They show a
substantial depression of S(Q) at low Q values, and no changes at high Q. As the applied
pressure is increased, the depression becomes deeper and broader. Now, a depression of S(Q)
indicates that concentration fluctuations with the relevant wavelengths have been suppressed, i.e.
the concentration of particles has become more uniform at those scales [16, 33]. Since the
aggregated dispersion has been compressed, these regions of uniform density must result from
the collapse of voids that separate the aggregates. It is possible to evaluate the characteristics of
these regions from the depth and width of the depression in S(Q). As shown in figure 10, the
depression produces values of S(Q) that are below unity when the applied pressure reaches 2
atm. This is the minimal pressure that is required to force interpenetration or compression of the
outer regions of the aggregates. The width of the depression increases with applied pressure; at
the highest pressures, it extends down to Q values that correspond to distances on the order of 20
particle diameters: this is the typical dimension of these regions of uniform particle density.
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Figure 10. Structure factors from the suspension aggregated by Al13
7+ ( ) and from cakes made by

compression in the oedometer cell (pressures indicated on the graphs). The depression of S(Q) in the
intermediate range of Q reflects the loss of pores with diameters corresponding to these Q values.

There are also interesting features on either side of the depression. At the lowest Q values (Q = 1
x 10–3 Å–1 and below), the cakes still scatter large intensities, indicating the presence of strong
heterogeneities in the concentration of particles. A priori, these concentration fluctuations could
be either e.g. macropores (concentration lower than the average) or grains (concentration higher
than the average. Scattering does not discriminate between both possibilities (the intensity is
proportional to the square of the fluctuation in scattering density). However, it is obvious that
large macropores would have collapsed under the effect of the applied pressure. Indeed, the
permeability of the cakes is lower than that of a random array of spheres at the same volume
fraction, rather than higher, as would be the case if the cake contained macropores. Hence, the
large-scale concentration fluctuations that have remained in the cakes must be dense grains,
lumps or films originating from the collapse of weaker structures.

The correspondence with a structure made of dense lumps dispersed in a uniform matrix can be
examined quantitatively by using the structure factor from an equilibrium hard sphere liquid,
which could approximate the matrix, and adding a contribution that represents the scattering
from the lumps. Indeed, at volume fractions that match those of the cakes, hard sphere liquids
have theoretical structure factor that is depressed low Q, due to the suppression of long wave
length fluctuations by interparticle repulsions (see Fig 5). On the other hand, the scattering from
the frozen concentration fluctuations (dense lumps) can be represented by a power-law decay at
low Q. In this way, the experimental S(Q) of cakes compressed at 2 atm (φ = 0.1) can be
reproduced by the linear combination of a Q–2 decay and the S(Q) for hard spheres at the same
volume fraction. Similarly, the S(Q) of cakes compressed at 4 atm (φ = 0.23) is matched by the
linear combination of a Q-4 decay and the theoretical structure factor for the hard sphere liquid at
a somewhat lower volume fraction (φ = 0.14) (Figure 11).
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Figure 11. Structure factors from the suspension aggregated by Al13
7+ () and from the cakes made by

compression of this suspension in the oedometer cell. (+): Cake compressed at 1 atm; fit by the structure
factor of hard spheres at volume fraction φ = 0.1 (full line) and by the same structure factor with an
additional Q–2 contribution from the cores of the aggregates (dashed line). (): Cake compressed at 4
atm; fit by the structure factor of hard spheres at volume fraction φ = 0.14 (full line) and by the same
structure factor with an additional Q–4 contribution from the cores of the aggregates (dashed line).

Finally, at the highest Q values, corresponding to distances between neighboring particles, the
structure factor of the compressed dispersions remains close to that of the original aggregates.
The absence of a peak at this position indicates that the particles have retained their original
coordination instead of acquiring a complete coordination shell. Hence the collapse of the cake
results from small relative motions of the particles that leave the local coordination unchanged.

Taken together, these features give a fairly precise image of what happened during compression
of the aggregated silica dispersions. The particles had very small relative displacements that led
to the large-scale changes in the structure of the cake. This structure was made of dense regions
dispersed in a less dense matrix. As the pressure was increased, the dense regions first retained a
bushy structure (fractal dimension 2), and then became dense lumps (fractal dimension 3).
Meanwhile, the concentration in the matrix became more uniform; at the higher pressures, the
average dimension of the regions of uniform concentration reached 20 particle diameters.

Comparison of different aggregated dispersions

With this detailed picture, it becomes possible to determine whether different aggregated
dispersions go through the same structural stages or through different stages during the
compression process. For this purpose, dispersions of silica particles that have been aggregated
with respectively Al13

7+ and Ca2+ may be compared (Figures 10 and 12).
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Figure 12. Structures factors from the suspension aggregated by Ca2+ () and from the cakes made by
compression of this suspension in the filtration cell (pressures indicated on the graphs). The very strong
depression of S(Q) in the intermediate range of Q reflects the collapse of all pores with diameters
corresponding to these Q values.

With the Ca2+ cakes, stronger compressions are obtained at much lower pressures; however, the
set of curves appears similar to those obtained with the Al13

7+ cakes. If both dispersions go
through the same structural stages during compression, then for structure of one set of cakes
there must be a corresponding cake in the other set with an identical structure factor. This
comparison is shown in Figure 13, where the structure factors obtained at 2 atm for the Al13

7+

cakes and at 0.2 atm for the Ca2+ cakes appear to match exactly. Accordingly, both dispersions
go through the same structural stages, the only difference being in the scales of pressures that are
required to reach these stages.

Figure 13. Comparison of the structure factors of dispersions flocculated with Al (Δ) and with Ca (), and
of the cakes made at pressures that give matching structures: Π = 2 atm for Al (O) and 0.2 atm for Ca ().

Since different aggregated dispersions go through the same structural stages during the
compression process, it may be that this compression behavior is general for all dispersions of
aggregated spherical particles. This general behavior may not be recovered from a classical
thermodynamic analysis, since the dispersions are in a “frozen” state rather than in a state at
thermodynamic equilibrium. On the other hand, a numerical model with a minimal set of
ingredients may be able to reproduce this general behavior. The next section presents a search
for such a model.
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Numerical model

The resistance to compression of a network of aggregated particles originates from forces exerted
at the points of contact of neighboring particles. These forces are non-central. Also, the effects of
these forces on the mechanical resistance of the whole network depend on the connectivity of the
network (which particles ate bound to which ones) and on its structure (which particles are next
to which other ones). This makes a calculation of the resistance more difficult than in the case of
repelling particles, where it was sufficient to consider a single cell containing one particle.
Indeed, in the case of particle networks, the resistance will depend on the initial structure of the
network. A further difficulty lies in the fact that the contacts may be disrupted, leading to
dissipation of energy and irreversible deformation of the network; consequently the resistance
may also depend on the history of compression. Thus, the prediction of the compression
resistance of a network of aggregated particles is a formidable problem. Given these difficulties,
it may be appropriate to examine the behaviors that can be obtained through numerical
experiments on simplified aggregates.

Model

A simple numerical model has been devised recently [43]. It consists of a 3-dimensional system
of spheres with a stiff hard-core repulsion and with pins on their surfaces, to which harmonic
springs may be connected (Figure 14). The number of pins on the surface of a sphere has to be
large enough that two neighboring spheres are connected by a large number of springs, producing
non-central forces that give a resistance to bending. Springs are automatically created by the
algorithm if two pins from distinct spheres come within a minimal distance la; they are
automatically destroyed if this distance is stretched beyond a maximal length ld; their length at
rest is l0, which is conveniently set at l0 = la (the dimer and higher aggregates are created with the
spheres at their equilibrium distance).

Figure 14. “Spheres and springs” model of the colloidal aggregates. Non-central forces between the
particles in the aggregates are produced by springs attached to pins located on the particle surfaces.

In order to generate a numerical “paste”, a RLCA process us used to create aggregates of these
spheres, with fractal dimension df = 2. These aggregates are then sedimented in a box where they
connect to each other, forming the paste. The box has periodic boundary conditions in the y and z
directions, so that when a particle leaves the box in one of these directions it reenters on the
opposite side. In the x direction, however, the boundaries are impenetrable walls. Pressure is
applied to the upper x boundary, as a force applied to the highest particles. Since the resistance
against this force originates from the springs, the unit of force is the spring constant multiplied by
the length of a spring at rest.
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Algorithm

A compression step is performed as follows: when the external force Fext is applied to the top
particles, they are displaced by an amount ∂x = α  Fext. The rest of the system is then relaxed
according to the forces transmitted by the springs, i.e. the other particles are displaced by ∂x = α
Fint. This relaxation step is repeated many times in order to ensure proper propagation of stresses
throughout the aggregates. Numerical simulations of the deformation of simple aggregates (rod-
like aggregates) demonstrated that complete propagation of stress was achieved with a cycle
containing 5000 internal relaxation steps. This full transmission of stresses corresponds to the
quasi-static deformation of the system. Alternatively, the choice of incomplete propagation of the
stresses would result in accumulation of particles on the impenetrable boundaries. This could
mimic violent deformations of the structure.

The final volume of the box at the end of a compression step is taken as measure of the volume
fraction of the dispersion in a quasi-static mechanical equilibrium condition. Another
compression step is then performed, and in this way whole compression curve is recovered as a
succession of quasi-static steps at mechanical equilibrium. Some pictures of the box at
intermediate stages of compression are shown in Figure 15. Note that these pictures are
projection images of the box onto a plane that is parallel to the compression direction; hence, the
projection images of many particles do overlap, and the aggregates do appear denser than they
really are.  Nevertheless, these pictures are useful to verify that the aggregated dispersion has
indeed been uniformly compressed.

Figure 15. Projection images of the aggregated dispersion, taken at various stages of compression. The
original locations of the impenetrable walls are indicated as dashed vertical lines. The volume fractions of
particles in the box are respectively 0.06 (left), 0.3 (middle) and 0.63 (right, full compression).

Quasi-static compression curves

Many aggregated dispersions have been generated, and for each one a compression experiment
has been performed as a succession of quasi-static equilibria at increasing applied pressures.
Remarkably, the compression curves obtained for aggregates generated with different initial
conditions but identical spring parameters are the same. Consequently, the compression behavior
of these aggregated dispersions is uniquely determined by interparticle forces, as was found in the
real systems (see above).

When interparticle forces (spring parameters) are changed, the compression curves are changed
as well (Figure 16). The parameters that characterize a spring are the spring constant, equilibrium
length and maximum stretching length. The first two parameters determine the unit of force, so
that their values can be used to match the scale of applied pressures to those of the real system.
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The maximum stretching length ld/l0 (or stretching energy Ed = (ld/l0)
2 ) determines how the

network of springs responds to stress. At very high values of ld/l0 (or Ed), the springs do not break
at all, and the network has a purely elastic response to the applied stress. In this regime, the
pressure rises a power law of the volume fraction with a high exponent (4.4). This power law
matches theoretical predictions [44] and also experimental compression data obtained on
dispersions of mineral particles [4]. At intermediate values of ld/l0 (or Ed), the springs do break
when the pressure exceeds a certain threshold, and the network has a plastic response to the
applied stress. In this regime, the pressure also rises a power law of the volume fraction, but with
a much lower exponent (1.7). This power law has been observed in silica dispersions that have
been aggregated by multivalent cations and compressed through osmotic stress [45]. Finally, at
low values of ld/l0 (or Ed), the springs break quite readily, and the network is very fragile: as soon
as pressure is applied, many springs are broken and the system is unable to create a network that
would support the applied pressure; hence it collapses to maximum density (here about 0.64).

Figure 16. Compression curves of model aggregates, obtained through numerical simulation. The steep
rise of pressure (Π ≈ φ4.4) in the upper set of data (Δ, bond rupture energy Ed> 360) corresponds to an
elastic response of the particle network; the slower power law (Π ≈ φ1.7) in the intermediate sets of data (♦,
Ed = 9, and o, Ed = 4) to a plastic respond where bonds are continuously broken and created; the lower
sets (full lines, Ed = 0.04) to a fragile network that is unable to withstand any applied pressure.

A remarkable feature of these numerical simulations is that they show only two well-defined
regimes (elastic and plastic response), and within each one the compression curves are similar.
For instance, all the compression curves obtained in the plastic regime can be made to overlap
through a shift in pressure scales (Figure 17). Some theoretical arguments can be constructed to
explain why the compression response of aggregated dispersions follows such simple laws [43].
It is also a feature of the experimental compression laws that the exponents seem to be either
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close to 4.4 or to 1.7 [4, 45]: thus, the numerical model provides an explanation for these two
behaviors, in terms of elastic vs. plastic deformation

Figure 17. Master curve obtained for the plastic response of numerical dispersions. The individual sets
data correspond to dispersions with the same spring parameters (1<Ed<9) but different aggregates, or with
different spring parameters.

The numerical model also reproduces some structural features of the compressed cakes. Indeed,
the structure factor S(Q) of the numerical array of spheres shows a depression at intermediate Q
values, that matches the corresponding depression in the S(Q) of the aggregated silica cakes
(Figure 18). Although the precision of the numerical S(Q) is poor, due to the finite size of the
box, this depression appears to reflects the presence of regions of nearly uniform concentration,
as in the silica cakes. Conversely, the numerical model makes it possible to visualize the dense
regions, or, more interestingly, the “active” regions in which some spheres have been brought
into direct contact with each other by the applied stress. It is found that these “active” spheres are
gathered in dense lumps that are separated by the less dense “matrix”. Thus, the numerical model
brings an explanation of the respective functions of two types of regions that were found in the
structures of the aggregated silica cakes. The dense regions (i.e. the “lumps” that give the steep
decay of S(Q) at low Q) form a skeleton that carries most of the load. The less dense regions (i.e.
the “matrix” that gives the depression of S(Q) at intermediate Q values) uses the spaces that lie
between “columns” of this skeleton, and generate weak forces that maintain the lateral stability of
these columns [43].
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Figure 18. Comparison of the structure factor of numerical aggregates with that of silica cakes. (o),
numerical aggregates compressed to a  volume fraction φ = 0.175.  silica dispersions aggregated by
Al13

7+ polycations and compressed  to φ = 0.23 (4 atm). In both sets of data, the depression at intermediate
Q values originates from regions of the cake that have a low, nearly uniform concentration. The steep
decay at very low Q originates from dense regions (lumps) that carry most of the applied pressure. The
oscillations at high Q reflect the average coordination shell of a particle, which is more regular in the
numerical aggregates than in the actual dispersion, due to polydispersity and non-sphericity of the silica
particles.
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Conclusions
Aggregated and non-aggregated dispersions resist osmotic compression through entirely different
mechanisms.

In non-aggregated dispersions, made of particles that repel through the osmotic pressure of their
ionic layers, all particles take equal part in the resistance to compression. Consequently, the
resistance of the dispersion equals the resistance of a single cell made of one particles with its
counterions. This resistance is thermodynamic in its nature: at each applied pressure, the volume
of the cell is determined by the equilibrium of applied pressure with the osmotic pressure of the
ionic layers. Changes in pressure may lead to either compression or expansion of the cell. These
changes follow an equation of state in which the pressure varies as square of volume fraction (or
rather, as the inverse square of the volume of interstitial solution within the cell).

In aggregated dispersions, a small fraction of the particles makes a dense skeleton that bears
most of the load, while the others form a less dense matrix that fills the spaces between the
columns of the skeleton and contributes to the lateral stability of these columns. This resistance is
non-thermodynamic in its nature: at each increment in pressure, the skeleton undergoes plastic
deformation until its yield stress matches the applied forces. This leads to a (non reversible)
compression law, in which the pressure varies as a power law of volume fraction, with an
exponent (φ1.7) that is similar to the exponent for repelling particles (φ2).

For practical applications, it is often necessary to make the resistance as low as possible. This
leads to the choice of dispersions that are either weakly repulsive or weakly aggregated. In this
work, the choice was nanometric silica particles that either repelled through layers of monovalent
cations or aggregated through addition of multivalent cations. Surprisingly, both choices lead to
osmotic resistances that are of the same order of magnitude, even though the mechanisms of
resistance are entirely different, and the interparticle forces do not have the same strengths.

This coincidence may be actually caused by a compensation between the strengths of interparticle
forces, and the numbers of particles that develop such forces. For non-aggregated dispersions,
there is a limit to how weak the interparticle forces can be. Indeed, if the particles are quite small,
low ionic pressures lead to aggregation of the particles [46]. On the other hand, for aggregated
dispersions, the interparticle forces are much stronger, but, as shown in this work, the skeleton
that bears the load contains only a small fraction of all the particles. Given these constraints,
weakly aggregated and non-aggregated dispersions have similar resistances to solid-liquid
separation, and this resistance is quite substantial in the case of nanometric particles.

This absence of an easy path to compression may have serious consequences for the production
of nanometric ceramics. Indeed, the sintering processes of mineral dispersions require volume
fractions that are at least 0.5 in order to produce a 3-dimensional solid that is free of voids. There
may be no easy way to reach such high volume fractions with nanometric dispersions that are
stabilized through ionic forces only. Thus, it may be useful to look for other methods of
stabilization [46].
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