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ABSTRACT 

The behavior of high mass ratio flexible filaments freely hanging in steady horizontal uniform flows is 

experimentally and theoretically investigated. When the flow velocity is small, static equilibrium states, 

where the filaments are inclined to the flow, are observed. Then, above a critical value of the wind velocity, 

the filaments exhibit periodic oscillations in the vertical plane. The problem is theoretically addressed 

considering the beam theory equations for the filament dynamics where the action of the flowing fluid is 

modeled using semi-empirical expressions. These equations are first solved for the stationary equilibrium 

states. Then, the stability of these steady solutions relatively to small perturbations is analyzed. A good 

agreement between experimental and theoretical results is found. 



I. INTRODUCTION 
Interactions of flows with flexible elongated structures are encountered in many industrial fields such as 

ocean engineering (towing cables, mooring lines, risers) or civil engineering (cables of suspension bridges or 

of hanging roofs). Moreover, because they can induce structure vibrations that are a potential cause of 

damage, they have received considerable attention. Flow-induced vibrations can arise from different 

mechanisms which were classified by Blevins1. For steady flows, efforts have mainly concerned the vortex-

induced vibrations (referred to, hereafter, as VIV) and comprehensive reviews were published by Bearman2 

and more recently by Williamson and Govardhan3. Most of the studies devoted to flow-induced vibrations of 

elongated bodies are motivated by ocean engineering applications for which the mass ratio µ is usually less 

than 15. This parameter µ is defined as the ratio of the “oscillating mass”, including the mass of the structure 

and the added fluid mass, divided by the displaced fluid mass. The mass ratio µ is the primary parameter of 

VIV (e.g. Ref. 2): the lower µ, the higher the susceptibility of structures to VIV. 

On contrary, in the present study, we consider flexible filaments freely hanging in a wind. This 

configuration leads to a high value of µ of the order of 1000. Note that similar investigations have recently 

been reported (Facchinetti et al.4) for a mass ratio µ slightly above 2. Comparison with our results will 

emphasize the strong influence of µ on the filament dynamics. 

Finally, we should also mention the extensive work of Païdoussis and co-workers, whose references can 

be found in the recent article of Païdoussis et al.5, devoted to the stability of a flexible cylinder in an axial 

flow, that is with an initial incidence angle equal to zero. The theoretical analysis reported in the present 

paper generalizes these studies to the case of a flexible cylinder inclined to the flow, i.e. for arbitrary angles 

of incidence. 

In the following section (§II.), details on the experimental setup and on our experimental observations are 

presented. In Section III., we derive the governing equations describing the filament equilibrium and 

dynamics. A theoretical linear stability analysis is also performed whose results are compared with 

experiments. Finally, brief complementary discussions are given in Section IV together with the conclusion. 



II. EXPERIMENTS 

A. Experimental setup 

Our experiments are performed in a low turbulence wind tunnel. Its horizontal working section is 1 m long 

and has a square cross-section of 0.5 × 0.5 m2. The free stream velocity U is measured with a conventional 

Pitot tube and can be continuously varied up to 25 m s-1. The quality of the tunnel has been quantified, prior 

to this study, with a constant temperature hot wire anemometer. At 25 m s-1 the free stream uniformity was 

better than 0.5% over 80% of the tunnel width and the turbulence level measured on the tunnel axis was 

close to 0.1%. The filaments are made of silicone and have a circular and constant cross-section A = πd2/4 

and a variable length l. 

To be maintained in the wind, each filament is inserted in a steel tube having the same inner diameter d. 

This support is fixed outside of the test section and crosses perpendicularly the wind tunnel top wall. It is 

bent at right angle in such a way that its final part is parallel to the free stream, this part is 10 cm long. The 

filament freely hangs at this tube end. This setup assures a clamped boundary condition at the upstream end 

with the filament parallel to the free stream, the other filament end being free. 

For the present study, visualizations of the filament are performed through the transparent side walls of the 

wind tunnel test section. Images are captured with a video camera operating at 60 Hz and then processed to 

get quantitative results. For instance, the flapping frequencies of the filament are obtained by a FFT analysis 

of space-time images. 

All the filaments are made of silicone with a Young’s modulus E = 2.5 MPa. Their flexural rigidity is EI 

where I = πd4/64. Extensive experiments are carried out for filaments of diameters d = 1.2 and 1.8 mm, but 

some measurements have been validated with filaments of diameter d = 1.6 mm. The length l of these 

filaments is varied up to about 30 cm. The density ρ of  silicone is about 950 kg m-3 and experiments are 

performed at a temperature close to 20°C in such a way that the values νfl = 15×10-6 m2 s-1 and  

ρfl = 1.2 kg m-3 are considered for the kinematical viscosity and density of the flowing air, respectively. This 

results in a mass ratio µ of about 800. Note that for a non-confined cylinder the added fluid mass is equal to 



the displaced fluid mass (see the detailed analysis of Lopes et al.6) in such a way that the mass ratio simply 

writes µ = (ρ+ρfl)/ρfl. 

B. Experimental observations 

The first experiments consist in gradually increasing the free stream velocity U for a given filament (i.e. 

for given d and l). For low wind velocities, the filament appears to be stationary. Then, when U exceeds a 

well-defined critical value Uc, it exhibits a flapping motion. A visual inspection reveals that this motion takes 

place in a vertical plane, at least for the wind velocities considered here. 

The static equilibrium positions mainly correspond to the balance between the gravity force and the fluid 

load. Therefore they depend on the flow velocity U. Figure 1 presents superimposed views of steady 

positions of a filament of diameter d = 1.2 mm, length l = 12 cm and for ten values of U ranging from 0 to 

13.6 m s-1 . For this particular filament, we find Uc = 13.7 m s-1. For all these static equilibria, the filament 

axis is totally contained in a vertical plane (parallel to gravity and free stream). As U is increased, the 

filament tends to align with the free stream, so its incidence angle decreases. Moreover, images of Fig. 1 

show that except close to the clamped end, the filament is nearly rectilinear. 

Unsteady behavior of the filament spontaneously takes place when the free stream velocity U exceeds a 

threshold Uc. Critical values Uc are determined for numerous combinations of d and l and are reported on 

Fig. 2 for d = 1.2 mm and 1.8 mm. It appears that Uc depends on the length l and diameter d of the 

considered filament. We first note the increase of Uc with d. Besides, for both diameters, we can observe that 

the threshold Uc strongly decreases with l for short filaments, whereas the dependence of Uc on l is weaker 

for l larger than 15 cm 

The unsteady behavior consists in a regular periodic flapping of the filament in a vertical plane i.e. a plane 

parallel to free stream and gravity. These vertical oscillations are illustrated by Fig. 3 which shows pictures 

of ten superimposed successive views captured at 60 Hz during flapping motion. In contrast to short 

filaments [Fig. 3(a)], one node can be distinguished in the envelope of the flapping motion of long filaments. 

One of these nodes has been marked by an arrow in Fig. 3(b). But the motion amplitude being quite small, 

except at the free end, it was not always possible to determine precisely if one or more nodes are present 



along the filaments and consequently to measure accurately the boundary between zero- and one-node 

flapping. 

The flapping of the filament is periodic. In Fig. 4, its frequency f is plotted as a function of U for various 

filaments. Frequency f is calculated by the spectral analysis of sequences of 360 images captured at 60 Hz. 

This gives a resolution of about 0.17 s-1. The frequency is found to be constant along the filament. In Fig. 4, 

it appears that f increases with U and decreases for increasing d or l. Note also that plateaus are sometimes 

observed at threshold. As already mentioned and in contrast to the VIV where vibrations are mainly 

transverse to the free stream, and perpendicular to the gravity, in the present study strictly vertical, i.e. 

parallel to the gravity, oscillations are always observed at threshold. 

III. THEORETICAL ANALYSIS 

A. Static equilibrium states 

We introduce the curvilinear coordinate s along the filament axis, with s = 0 at the free end and s = l at the 

upstream extremity. The incidence angle θ(s) is the local angle between the free stream and the filament axis. 

We consider a small filament element ds; forces and moments acting on this small element are displayed in 

Fig. 5. They consist in a tension T and a shear Q in a cross section, a bending moment M, the gravity force 

and the fluid dynamics load. We consider separately the inviscid force F and the viscous force of 

components L and N. F, L and N are forces per unit length. We assume that a cross section of the straight 

filament remains plane during all deformations in such a way that the Bernoulli-Euler beam theory can be 

applied. Moreover, because no notable lengthening is detected during experiments, the center line of the 

filament is considered as inextensible. 

The force balance for static equilibrium writes in the s-wise and transverse direction respectively, 
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where the second equality results from the expression of M given by the Bernoulli-Euler beam theory. 

Because the curvature radius of the filament is very large relatively to its diameter d, the flow is 

considered as locally two-dimensional. Therefore, for both components N and L of the viscous force, we use 

the semi-empirical expressions deduced by Taylor7 from force measurements on a smooth circular cylinder 

set at various incidence angles in a wind: 
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where Re = Ud/νfl is the Reynolds number and the pressure drag coefficient CD is treated as an adjustable 

parameter of the model. 

The inviscid fluid dynamic force F is equal in magnitude but opposite to the rate of change of the fluid 

momentum. Using the expression deduced from an elongated-body potential flow theory by Lighthill8, we 

find that  

θθρ 22 cosd
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where ρflA is the added mass of fluid per unit length of filament (e.g. Lopes et al.6). Thus F is proportional to 

the filament curvature dθ/ds. It results that the drag of a straight cylinder in a potential flow is zero, this is 

known as the d’Alembert’s paradox. 

At the clamped end the filament is maintained parallel to the wind so that 

( ) 0== lsθ . (7)

Forces and moment acting on the free end cross section are supposed to be negligible giving 

( ) 00 ==sT , ( ) 00 ==sQ , (8, 9)
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The above equation system (1-3) together with the force expressions (4-6) and the boundary conditions (7-



10) are solved numerically using a shooting method with a standard Runge-Kutta integration scheme. The 

shape θ(s) of the filament axis is thus deduced as a function of the control parameter U. Calculations are 

repeated for various values of the only free parameter CD. Results obtained for the same conditions as that of 

the experiments of Fig. 1 (l = 12 cm and U from 0 to 13.6 m s-1) and calculated with CD = 0.8 and 0.9 are 

plotted in Fig. 6. 

Beyond the qualitative agreement revealed by comparing Figs. 1 and 6, a systematic quantitative 

comparison between the experiments and the theory is performed to determine the suitable value of the drag 

coefficient CD. For this purpose, the incidence angle at the free end θ(s = 0) is used and experimental data are 

compared to the theoretical results obtained for various values of CD. The good agreement between theory 

and experiments is illustrated by the example in Fig. 7 where l = 12 cm, d = 1.2 mm and CD = 0.8 and 0.9 for 

the calculations. It allows to validate the Taylor’s semi-empirical expressions (4, 5) used for the viscous fluid 

load. Comparisons are repeated for several combinations of d, l and U and the best agreement is found for CD 

ranging between 0.8 and 0.9. In the following these two values of the drag coefficient will be considered. 

B. Linear stability analysis 

By contrast to VIV, the observed flapping motion results directly from an instability and not from a 

structural response to hydrodynamical forcing. Linear stability analysis of the static equilibrium positions is 

then performed to determine the theoretical critical values of the free stream velocity and flapping 

characteristics at, or close to, the threshold. 

1. Governing equation for small displacements 
We first derive the governing equation for the filament element ds and undergoing a small displacement 

y(s,t) as seen in Fig. 8. y(s,t) is measured from the stationary position defined by θ(s) the solution of 

equations (1-3) at a given U. According to the experimental observations, only vertical motions are 

considered. In this case, the normal and tangential components of the fluid velocity relative to the filament 

are respectively, 
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The incidence angle θi between the free stream and the filament axis is then 
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The structural damping of the filament material is neglected here in such a way that the forces and moment 

acting on the filament element are the same as listed in § III.A (see also Fig. 5). Therefore, to first order in y, 

Newton’s second law projected onto the y-direction writes  
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and moment balance is 
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where upper case letters T, Q, F, N, L and M denote the quantities (functions of s only), to order zero in y, 

given by the static equilibrium equations (1-6). Lower case letters q, f, n and m correspond to the 

supplementary terms appearing at first order in y, and are functions of s and t. 

Combining the derivative of equation (15) with (2), relation (14) becomes 
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The inviscid fluid force is (Lighthill8) 
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where the normal velocity vN(s,t) is given by (11); hence 
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In equation (16) n is the first order term of expression (4) in which θ has been replaced by the incidence 

angle θi given by (13) and U by 2
1

22 )vv( TN +  where the two velocity components are given by (11,12). It 

results that 
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An equation similar to (16) has been derived by Païdoussis9,10 to describe the small lateral motions of a 

filament in an axial flow, i.e., small displacements around the static equilibrium state θ(s) = 0 for all s 

between 0 and l. In this case, and contrary to the present configuration, the governing equation (16) can be 

linearized with respect to the (small) incidence angle θ. This situation has been extensively studied and 

references can be found in the recent series of articles by Païdoussis and co-workers (Païdoussis et al.5, 

Lopes et al.6, Semler et al.11). 

Moreover, it should be pointed out that, for the lengths considered here, the filaments in static equilibrium 

are rectilinear on most of their length, specially close to the flapping threshold (Figs. 1 and 6). Hence, in the 

following we restrict our stability analysis to a filament having a constant incidence angle equal to the value 

at free end θ(s = 0). From equations (1) and (5), it results a linear variation of the tension T along the 

filament. 

2. Results and comparisons 

For the analysis we consider periodic perturbations of the form 

]e)(e[),( i tsYtsy ωℜ= , (20)

where ω is a complex frequency. 

Assuming the filament is initially rectilinear (i.e. θ is constant therefore T is linear in s) and using the 

filament length l to make dimensionless the spatial variables (let l
s=ξ  and l

Y=η ) the governing equation 

for small displacements (16) becomes 
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where the coefficients a, b, c1, c2, e1 and e2 depend non linearly on U and θ, their expressions are given in the 

Appendix. A dramatic simplification occurs when θ = 0, which corresponds to the classical case of a filament 



in an axial flow (e.g. Païdoussis9,10). For the situation considered here, the coefficient c1 is non zero; this 

induces a new destabilizing term which effect has never been into account before. The boundary conditions 

at the clamped end, ξ = 1, are 

0d
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and at the free end, ξ = 0, 
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To solve the whole governing equation (21) we use a Galerkin method involving the eigenfunctions φi(ξ) 

of the filament without flow. This is applicable because we assume that the fluid load is negligible at the free 

end in such a way that the boundary conditions (22, 23) are identical with or without flow. Then, the method 

consist to approximate the filament displacement η(ξ) by the truncated series 
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From the boundary conditions (22, 23) we deduce that to obtain nontrivial solutions, the wavenumbers ki 

must verify . Relations (24) and (25) are substituted into the governing equation (21), then 

the resulting equation is projected onto the free modes φ

1chcos −=
ii

kk

i. The complex eigenfrequencies ω are then 

determined from the solvability condition of the linear system obtained. Each eigenfrequency ω corresponds 

to a specific eigenmode of the instability made of a combination of the free modes φi. The real part ℜe[ω] is 

the angular frequency 2πf and its temporal growth rate is given by -ℑm[ω]. It follows that a negative value of 

ℑm[ω] for at least one mode is indicative of a flapping instability of the filament. The computations are 

repeated with an increasing number n of modes in (24) in order to ensure the convergence of the solution 

with a good enough accuracy. The theoretical results of Figs. 9 and 10 are obtained with n = 23 resulting in 

angular frequencies ℜe[ω] and growth rates -ℑm[ω] evaluated with an accuracy better than 0.2 s-1 for 



l = 35 cm, and better than 0.1 s-1 for l < 20 cm. For shorter filaments the convergence could be achieved with 

a decreasing number of modes (typically n < 10 for l < 10 cm). 

The theoretical values for the critical velocity Uc are plotted in Fig. 9 as a function of the filament 

length l for the diameters d = 1.2 mm [Fig. 9(a)] and 1.8 mm [Fig. 9(b)]. A comparison with experimental 

results is also shown and reveals in both cases a good qualitative and quantitative agreement. It is noteworthy 

that this agreement is obtained without adjustable parameter. However, a slight shift of the calculated curves 

towards the lower length values can be noted. This may be due to the fact that the filament is considered as 

rectilinear on its whole length l whereas the actual rectilinear part is shorter. 

The instability mode destabilized at the threshold Uc depends on the filament length l. Thus, the 

characteristic lobes of the theoretical curves Uc(l) in Fig. 9 correspond to various instability modes that differ 

in their shapes and frequencies. Note that these instability modes are combinations of the Galerkin modes φi 

(and should not be confused with them). 

Theoretical and experimental measurements of flapping frequencies are also compared in Fig. 9 for three 

filaments (l = 12 and 20 cm for d = 1.2 mm, l = 12 cm for d = 1.8 mm). In all cases, and although they are of 

the same order of magnitude, we note that the frequencies predicted by the model are systematically 

overestimated when compared to the experimental results. In the same manner, their dependence with the 

filament length, as it is observed during the experiments, is not fully recovered by the model. Nevertheless  

qualitative agreements can be found such as the dependence of the frequency ω on the free stream velocity U 

which is predicted with a very good approximation. Also, when considering results for filaments of a given 

length (l = 12 cm) but of different diameters (d = 1.2 and 1.8 mm) we can see that, in agreement with the 

experimental observations, the theory gives a flapping frequency ω that decreases as d is increased. 

IV. DISCUSSIONS AND CONCLUSION 

A. Effect of mass ratio 

Although the mass ratio µ has not been varied in the present experiments, a comparison with the recent 

study of Facchinetti et al.4 invalidates a VIV scenario to interpret our observations. These authors present 



indeed results on a freely hanging flexible cable of aspect ratio l/d = 250, towed in a water tank with a mass 

ratio µ of about 2.07. They report the observations of waves propagating along the cable and consisting in 

traveling transverse (i.e. perpendicular to the free stream) displacements of the cable. These waves appear as 

soon as the Reynolds number Re = Ud/ν exceeds the critical value of the appearance of the vortex-shedding 

(of about 50) and consequently are locked on these vortex shedding. These are evidences that these waves 

are excited by the periodic vortex shedding and a model of these VIV emphasises the resonance of the 

structure with the periodic fluid loading. 

By contrast, for the same aspect ratio (a filament with l = 30 cm and d = 1.2 mm for instance, resulting in 

an aspect ratio l/d of 250) we observe a critical value Rec ≈ 610 (see Fig. 2) with vertical displacements of the 

filament. This flapping frequency appears clearly not to be locked on the vortex shedding frequency that 

would correspond to a Strouhal number St = fd/U of 0.21 (see e.g. the recent review by Norberg12), while St 

is only of about 4×10-3 for the flapping oscillations (considering the total excursion of the free end of the 

filament instead of the filament diameter as length scale, we obtain a Strouhal number of order 10-1); in this 

estimation, the incidence of the filament versus the flow has been taken into account with the cosine 

correction proposed by Williamson13. Therefore the flow-induced vibrations presented here appear to be 

clearly of a different nature that of the classical VIV. Our theoretical study shows that the flapping of the 

filaments results directly from a loss of stability of the filament stationary states under the action of external 

steady forces. Besides, this is also consistent with the VIV models (e.g. Facchinetti et al.4) that predict the 

narrowing of the synchronization domain when the mass ratio is increased. In our case, the VIV resonance 

domain is negligibly small and can not be invoked to explain our observations. 

B. Beyond the linear regime 

Finally we should also mention that our experiments show that the transition from a static state to flapping 

exhibits hysteresis and bistability. Actually, when experiments, as described in § II.B, are repeated with a 

decreasing velocity U, the flapping motion persists up to a value Uc- lower than Uc. This is illustrated in 

Fig. 11 that shows the angular frequency of the flapping for increasing and decreasing U, for the filament 

d = 1.2 mm and l = 20cm. While flapping appears at a critical value Uc of the wind velocity between 9.4 and 



9.6 m s-1, it is maintained to Uc- between 8.7 and 8.9  m s-1 when U is decreased. 

In the bistability domain [Uc-, Uc], the filament can easily be forced to either a static state or flapping by 

external perturbations. For U < Uc- and U > Uc all attempts to change the spontaneous state of the filament 

are fruitless. Such an hysteretical cycle has also been observed in numerous flow-induced vibration problems 

as for in experiments on a filament in an axial flow (Païdoussis et al.5) or in a flowing soap film (Zhang et 

al.14). This bistability is supposed to be responsible for the dispersion of the experimental critical velocities 

observed in Fig. 2. 

 

C. Conclusion 

Observations of flow-induced vibrations for a filament freely hanging in a vertical plane are reported. In 

contrast to low mass ratio situation, no VIV have been observed. The persistence of steady states up to 

Reynolds number of several hundreds, results in the appearance of another kind of instability where the 

filaments oscillate in the vertical plane. We have shown that this flapping results from a loss of stability of 

the filament static equilibrium states under the action of the steady fluid flow loads. Our theoretical results 

confirm the appearance of this instability and in particular the threshold values for its observation. The 

different characteristics of the flapping are also correctly predicted by the model and in particular the 

exchanges between different flapping modes when the length of the filaments is increased. Finally, a strong 

nonlinear behavior with the existence of a bistable regime has been detected experimentally. This would 

demand a nonlinear theoretical analysis in order to describe the saturation of flapping amplitude as U is 

increased and the observed hysteretical behavior at threshold.  



APPENDIX 

Expressions of the coefficients of equation (21): 
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FIGURE CAPTIONS 

FIG. 1. Superimposed views of steady states of the filament l = 12 cm, d = 1.2 mm for U from 0 to 13.6 m s-1 

(U = 0.0, 1.1, 2.2, 3.4, 4.5, 6.0, 7.5, 9.5, 11.5 and 13.6 m s-1, flow from right to left). 

FIG. 2. Experimental thresholds Uc for the appearance of flapping as function of the filament length l for 

d = 1.2 mm (+) and 1.8 mm ( ). 

FIG. 3. Superimposed successive views of the flapping filament for l = 12 cm, d = 1.2 mm, U = 16.9 m s-1 (a) 

and l = 21 cm, d = 1.8 mm, U = 14.7 m s-1 (b). Flow from right to left. 

FIG. 4. Flapping frequency f as function of the free stream velocity U for l = 12 cm ( , ), l = 16 cm( , ), 

l = 20 cm ( , ), l = 24 cm ( , ). Open and filled symbols are for d = 1.2 mm and d = 1.8 mm, respectively. 

FIG. 5. Forces and moment acting on a steady filament element ds. 

FIG. 6. Theoretical static equilibrium shapes of the filament calculated for CD = 0.8 (solid line) and CD = 0.9 

(dashed line). Same conditions as experiments of Fig. 1. 

FIG. 7. Experimental (+) and theoretical (with CD = 0.8 (solid line) and CD = 0.9 (dashed line)) values of the 

incidence angle at the free end θ(s = 0), for the filament l = 12 cm and d = 1.2 mm, as function of the free 

stream velocity U. 

FIG. 8. Scheme of a filament element ds undergoing a small displacement y(s,t) from its static equilibrium 

position (dashed line). 

FIG. 9. Experimental (+) and theoretical (Galerkin approximation with CD = 0.8 (solid line) and CD = 0.9 

(dashed line)) values of the critical velocity Uc as function of the length l for the filament of diameter 

d = 1.2 mm (a) and d = 1.8 mm (b). 



FIG. 10. Comparison of experimental and theoretical values of the flapping frequency ω. Experiments: 

l = 12 cm and d = 1.2 mm ( ), l = 20 cm and d = 1.2 mm ( ), l = 12 cm and d = 1.8 mm ( ). Theory: 

l = 12 cm, d = 1.2 mm, CD = 0.8 (solid line) and CD = 0.9 (dashed line), l = 20 cm, d = 1.2 mm, CD = 0.8 

(dotted line), l = 12 cm, d = 1.8 mm, CD = 0.8 (dash-dot line). 

FIG. 11. Flapping frequency ω for increasing ( ) and decreasing ( ) free stream velocity U (l = 20 cm, 

d = 1.2 mm). 
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