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Abstract

A theoretical and experimental study of the spin-over mode induced by the elliptical instability of a flow contained in a slightly
deformed rotating spherical shell is presented. This geometrical configuration mimics the liquid rotating cores of planets when
deformed by tides coming from neighboring gravitational bodies. Theoretical estimations for the growth rates and for the non
linear amplitude saturations of the unstable mode are obtained and compared to experimental data obtained from Laser Döppler
anemometry measurements. Visualizations and descriptions of the various characteristics of the instability are given as functions
of the flow parameters.
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. Introduction

It is known from the seminal analysis ofKelvin
1880) that inertial waves whose origin comes from
he restoring effect of the Coriolis force are eigen-
odes of rotating fluid flows. These modes, neutral

or inviscid flows but damped by viscosity, can how-
ver be observed in real flows when an external forcing

s applied. For instance,Greenspan (1968)or McEwan
1970)visualized the wave patterns created by these
nertial – or so called Kelvin – waves in rotating cylin-
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drical tanks when a small excitation is added to
flow by the use of a small differentially rotating d
immersed in the fluid. Another example can be foun
Aldridge and Toomre (1969)where some of the eige
modes of a rotating sphere were excited by apply
resonant modulation on the rotating velocity. Later
ing an inner deformable body placed inside a rota
sphere,Aldridge et al. (1997)andSeyed-Mahmoud
al. (2004)described some of the inertial waves of
shell with different frequencies and spatial structu
In this last experiment, some features of the ellip
instability were also detected. This instability ar
from the resonant interaction of triads of waves:
Kelvin waves plus the elliptical deformation of the fl
streamlines by the boundaries(Waleffe, 1990). In fac



L. Lacaze et al. / Physics of the Earth and Planetary Interiors 151 (2005) 194–205 195

the elliptical instability has been intensively studied in
the context of the transition to turbulence of shear flows
(Widnall and Tsai, 1977; Widnall et al., 1974; Moore
and Saffman, 1975; Pierrehumbert, 1986; Bayly, 1986;
Bayly et al., 1988). There, the elliptical deformation of
the streamlines inside cylindrical vortex cores are in-
duced by other vortices (see for instanceLeweke and
Williamson, 1998a; Meunier and Leweke, 2001) or by
mean shear fields(Le Dizès et al., 1996; Leweke and
Williamson, 1998b; Lasheras and Choi, 1988). Con-
trary to these last studies relative to three-dimensional
instabilities of rotating cylinders of fluids, the ellipti-
cal instability in spherical geometry rises completely
different interests as it models the rotating inner liquid
cores of planets subjected to tidal distortions induced
by close gravitational bodies(Suess, 1971; Gledzer and
Ponomarev, 1977; Kerswell, 1994). In particular the
occurrence of this ‘tidal’ instability together with ther-
mal or compositional convection in the molten cores
of planets, such as the Earth, might be of prime impor-
tance in the generation or in the dynamics of the geo-
magnetic fields(Kerswell, 1994; Kerswell and Malkus,
1998). Recent measurements of magnetic fields around
relatively small planets such as the Jovian moons Io
and Ganym̀ede(Kivelson et al., 1996a,b)may rein-
force the interest in the study of inertial instabilities
such as the elliptical or the precessional ones(Malkus,
1968; Busse, 1968; Noir et al., 2001; Kerswell, 1993;
Lorenzani and Tilgner, 2003). Aldridge et al. (1997),
and Seyed-Mahmoud et al. (2000, 2004)have per-
f ned,
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the planet mantles and the solid inner cores. There-
fore, it is of some importance to study the effect of
inner rotating solid bodies in the development of the
elliptical instability in spherical geometry. The present
article concerns an extension of our previous work on
the spin-over mode of the elliptical instability in a full
sphere(Lacaze et al., 2004)to the case of a rotating
shell. In a first part, we present our theoretical model
of the flow contained in the shell. The analysis of the
elliptical instability in the inviscid limit and then in the
viscous case, leads to the determination of the growth
rate of the spin-over mode. In a second part, experimen-
tal results are presented. We used the same technique as
before(Lacaze et al., 2004)but this time a solid small
inner sphere is suspended by a thin wire in the cen-
ter of a hollow transparent deformable external sphere.
The ratioη between both sphere radius has been chosen
equal to 1/3 that is close to the value encountered in the
Earth core. Visualizations and measurements by laser
Döppler anemometry of several characteristics (growth
rates, non linear saturation amplitude, spin-down time)
of the spin-over mode of the shell are presented and
compared to our theoretical predictions.

2. Linear stability analysis

2.1. Inviscid theory
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ormed computations and built as already mentio
rotating deformable shell where they observed

resence of the elliptical instability. Using the te
ique invented by Malkus in 1989(Malkus, 1989), and
ore recently used and extended to triangular di

ions byEloy et al. (2003), we have applied an elliptic
onstraint to a deformable rotating sphere(Lacaze e
l., 2004)and visualized the spin-over mode genera
y the elliptical instability. This mode is a solid bo
otation around an axis aligned along with the stre
ng direction. Moreover, from video image process
e have measured the growth rates of the instabili

unctions of the flow parameters. These experime
esults were finally advantageously compared to
ictions resulting from theoretical linear and non
ar analyzes. However, as it is the case for the Ea
ay often be that, due to huge pressure forces, p

nner cores crystallize and leave liquid shells betw
The stability analysis of an inviscid fluid contain
n a rotating and slightly deformed spherical she
onsidered in this first section. It is assumed that
he outer sphere is deformed while the inner solid b
emains spherical. Moreover, it is assumed that
pheres rotate around a vertical axisez together at th
ame rate. This hypothesis is in accordance with
xperimental device which will be presented later

s also a good approximation as regards to eve
eophysical applications. The elliptical deformatio
onsidered to be a small perturbation amplitude pa
terε (ε � 1).

The zero order problem,ε = 0, corresponds to th
ase of a rotating fluid in a non-deformed spherical s
or which the main flow can be written in cylindric
oordinates as:

= reθ, (2.1)
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which satisfies both boundary conditions

U = RiH (z)eθ at r = RiH (z),

U = RoH (z)eθ at r = RoH (z),
(2.2)

whereRiH (z) =
√

R2
i − z2 andRoH (z) = √

R2
o − z2

define the spherical boundaries in cylindrical coordi-
nates. The variables have been non-dimensionalized
with the angular velocity of the fluidΩ and the distance
dbetween the two shells.Ri andRo are respectively the
inner and outer sphere radii and their ratio is given by
η = Ri/Ro.

The derivation of inviscid normal modes for the ba-
sic elliptical flow is not as trivial as it is in the case
of the full sphere(Rieutord et al., 2001). For general
rotating flows, the linearized Euler equations can be re-
duced to the so-called Poincaré equation(Greenspan,
1968). This equation is hyperbolic and its solutions
are thus sensitive to the applied boundary conditions.
By chance, in the case of the full sphere, a separation
of variables can be achieved which permits to obtain
the normal modes as explained inGreenspan (1968).
The new variables are determined with respect to the
outer surface and are thus no more consistent when
an inner spherical body is added. To the best of our
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outer spheres(2.2)without inner shear layers. Viscous
damping is therefore expected to be mostly due to vis-
cous boundary layers as for the sphere(Hollerbach and
Kerswell, 1995). This spin-over mode was found to
be the most unstable mode in a deformed sphere for
our experimental range of parameters(Lacaze et al.,
2004). Thus it is reasonable to expect this mode to be
also the most unstable in the shell. The experiment of
Seyed-Mahmoud et al. (2004)and our own experimen-
tal observations presented in the next section confirm
this expectation. Moreover, as inLacaze et al. (2004),
the inner shear layers induced by the boundary layer
eruptions at the critical latitude(Hollerbach and Ker-
swell, 1995)are expected not to significantly modify
our results and will not be considered in the following.

The stability analysis of the elliptical instability of
a deformed solid body rotation in a shell is considered
when an orderε deformation of the external boundary
is imposed to the main flow defined by Eq.(2.1). The
deformation, stationary and two-dimensional, has an
azimuthal wavenumber equal to two. As already men-
tioned, the inner sphere remains spherical. Splitting the
flow in three regions, an inviscid solution can thus be
written in cylindrical coordinates as follows:

U = Urer + Uθeθ, (2.3)
∣∣∣∣∣∣∣
Ur = εr

RoH (z)4

RoH (z)4 − RiH (z)4
× (1 − RiH (z)4r−4) cos (2θ)

RoH (z)4

z)4
× 4 −4

for − Ri < z < Ri,
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nowledge, no separation of variables have been
overed in the case of the shell.Rieutord and Valdettar
1997)andRieutord et al. (2001)studied this problem
y considering the flow evolution along the charac

stics of the hyperbolic equation. By this means, t
ave been able to obtain an approximate descripti

he inertial modes of the shell. In particular they sh
hat most of them exhibit a complex spatial struc
nvolving inner shear layers. However, as the spin-

ode is a solid body rotation whose axis is perp
icular to the main rotating flow axis, it represen
imple exact solution of the linearized Euler equat
ith free-slip boundary conditions on the inner a

∣∣Uθ = r − εr
RoH (z)4 − RiH (

∣∣∣∣∣
Ur = εr cos (2θ)

Uθ = r − εr sin (2θ)
(1 + RiH (z) r ) sin (2θ)

for Ri < |z| < Ro.

In the two polar regions defined byRi < |z| < Ro,
his flow is equivalent to the main flow in a deform
otating full sphere(Lacaze et al., 2004). Elsewhere
Ri < z < Ri , and contrary to the model used
eyed-Mahmoud et al. (2004), the inner sphere influ
nces the main flow by inducing a potential flow
ame order as the imposed deformation. This main
efined by Eq.(2.3)is singular at the poles of the inn
phere but is regular and continuous elsewhere. M
ver, it satisfies the inviscid boundary condition of n
enetration at both solid surfaces.

Iso-values of the azimuthal velocityUθ in a merid-
onal plane forη = 1/3 andη = 3/5 are presented
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Fig. 1. Iso values of azimuthal velocity forη = 1/3 (a) andη = 3/5
(b). In both casesε = 0.125.

Fig. 1. When the shell is not deformed or in the case of a
deformed full sphere, these iso-values are vertical lines
in meridional planes. As can be seen, the addition of
the inner sphere slightly modifies the flow principally
in the vicinity of the core. This modification is due to
the potential flow added in Eq.(2.3). We observe that
the larger is the inner sphere the more the main flow
structure is deformed.

The streamlines of the main flow in horizontal
planes corresponding toz = 0 (equator),z = 0.4 and
z = 1 are shown inFig. 2. They illustrate the basic flow
patterns in the equatorial and polar regions as defined
before. The black disc represents a horizontal section
of the inner sphere. InFig. 2a and b, it can be seen that

Fig. 2. Streamline function atz = 0 (a),z = 0.4 (b),z = 1 (c).
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the streamlines exhibit a different structure as that of
Fig. 2c. For the two first cases, the elliptical stream-
line which defines the external boundary progressively
becomes a circle close to the inner sphere contrary to
the third figure where similarly to the case of the full
sphere, the streamlines are concentric ellipses with the
same eccentricity.

As in the case of the full sphere(Kerswell, 1994)
or the cylinder(Malkus, 1989; Eloy et al., 2003), the
orderε flow induced by the elliptical deformation can
resonate with two Kelvin modes of the spherical shell
if they satisfy the resonant condition:ω2 = ω1 and
m2 = m1 ± 2 ((ω1, m1) and (ω2, m2) are the frequen-
cies and the azimuthal wave numbers associated with
the two considered modes). The third condition speci-
fied byKerswell (1994)in the case of the full sphere,
which corresponds to a spatial coherence between each
modes in a meridional plane (or the equivalent in a
cylinder: k1 = k2 wherek1 andk2 are the axial wave
numbers of the two modes), is not well defined here due
to the unknown form of the mode basis. However, as
indicated above, we are interested in the peculiar case
of the resonance of the spin-over mode which corre-
sponds to a combination of the two inertial waves char-
acterized by (m1, m2) = (−1, 1) and (ω1, ω2) = (0, 0)
with the basic elliptical flow. This resonance leads
to an orderε exponential growth in time of the two
symmetric modes, which can be written in cylindrical
coordinates

u
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Fig. 3. Evolution of the spin-over growth rate withη in the inviscid
theory. For moderateη, no variation from the full sphere case is
observed.

whereJ is the energy of the spin-over mode,I is the
surface boundary condition term andN is the interac-
tion of the spin-over mode with itself via the orderε

correction of the main flow(2.3). The parameterη only
enters Eq.(2.4)through the termN for −Ri < z < Ri .
All the other terms are equivalent to that of the full
sphere case.

We have calculated this inviscid growth rateσNV for
the spin-over mode. It is plotted inFig. 3as a function of
η. We note that forη = 1/3, which is our experimental
configuration, the growth rate is not significantly dif-
ferent from the inviscid growth rateσNV = 1/2 of the
full sphere case. The same remark was also formulated
in Seyed-Mahmoud et al. (2000)concerning the fre-
quencies of the Kelvin waves in the sphere and in the
η = 1/3 shell.

2.2. Viscous effect

In the previous section, the inviscid growth rate of
the unstable spin-over mode has been determined. To
allow further comparisons with the experimental re-
sults, we need to take into account the viscous dissipa-
tion terms (or at least the most significant ones). The
ratio between the viscous forces and inertia is mea-
sured by the Ekman numberE = ν/Ωd2. The insta-
bility threshold should then be obtained as function of
E andη. As mentioned above, the flow described by
Eq.(2.3)satisfies inviscid boundary conditions but not
t on)
= e±iθ
∣∣∣∣∣

∓iz

z

±ir

+ C.C

The derivation of the inviscid growth rate is clas
al and has already been done many times in diffe
onfigurations(Moore and Saffman, 1975; Tsai a
idnall, 1976; Eloy et al., 2003; Lacaze et al., 200.

he method consists in applying a condition of so
bility for the corrected flow at orderε. This condition
f solvability is then solved by determining the adjo
odes which is in this case the mode itself corre
y a boundary condition termI. The inviscid growth
ateσNV is then determined by resolving the relation
ispersion at orderε. This leads to the general grow
ate expression:

NV = N− I
J

, (2.4)

he no slip condition (or viscous boundary conditi
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in the region defined by−Ri < z < Ri . This implies
the existence of Ekman viscous boundary layers both
on the inner and outer shells for−Ri < z < Ri . It has
already been shown that the Ekman layers have a thick-
ness of orderE1/2 (Greenspan, 1968)with an orderε
correction flow that permits to satisfy the no slip condi-
tion. Therefore, when these Ekman layers are regular,
the viscous correction to the flow implies an orderE1/2

damping and an orderεE1/2 recirculation flow in the
bulk, which can be neglected. Depending on the flow
geometry, volume dissipation effects (O(E)) could also
become important if the spatial structure of the mode
is complex. For the cylinder,Eloy et al. (2003)demon-
strated that these effects were responsible for the damp-
ing of large wavenumber modes. By contrast, for the
sphere,Zhang et al. (2004)showed that volume dissipa-
tion effects were null for each mode, whatever complex
its spatial structure. We do not know whether the shell
satisfies the same property. But, in the present study,
it is not our concern. We consider a single mode (the
spin-over mode) for which the volume dissipation is
identically zero.

Let us remark that spherical Ekman layers possess
a singular behavior at the critical latitudes so that inner
shear layers are spawned from these singular points and
penetrate into the inviscid flow. We can also show that
the viscous correction to the inviscid main flow(2.3)
is also singular at the poles of the inner sphere. But
as done in many linear studies, we will not consider
here the dissipation associated with the regularization
o o be
w
s por-
t ber.
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Fig. 4. Viscous growth rate as function of the Ekman number and
the geometrical parameterη.

the viscous growth rate close to the threshold reads,

σ = εσNV − E1/2σV .

Fig. 4 shows the evolution of this spin-over mode
viscous growth rateσ/ε in the (η, E) plane. For a given
geometry,η andε are prescribed and the evolution of
σ as function ofE is simply given by a vertical cut of
Fig. 4. This kind of curves will be used for the forth-
coming comparisons between theory and experiments.

3. Experimental results

3.1. Experimental techniques

The experimental device was already used by
Lacaze et al. (2004)(seeFig. 5). The only modifica-
tions in the experimental arrangement come from our
desire to build a hollow shell this time. For this pur-
pose, a ping pong ball has been opened and a small
solid ball introduced inside. This small sphere is rigidly
mounted on a thin 0.2 mm in diameter nylon thread go-
ing through both spheres along their diameters. This
thin wire is also used to position the inner ball in the
middle of the hollow sphere. The ping pong ball is then
closed back and polished to recover its perfect spherical
shape. It is then inserted in a cylindrical block of liquid
silicone that is cured at a temperature of 50◦C with
t all
i llow
f these singularities as they are generally found t
eak(Hollerbach and Kerswell, 1995). However we
hould mention that these effects could become im
ant in highly non linear regimes at low Ekman num

These different assumptions permit to give a
iction on the threshold of the elliptical instability.
hown byHollerbach and Kerswell (1995), the damp

ng of the spin-over mode in a spherical shell is,

σV = 2.62f (η)

wheref (η) = (1 + η4)(1 − η)

1 − η5 .
(2.5)

he value 2.62 is the spin-over damping rate in
ase of the full sphere and the functionf (η) is the
orrection induced by the increase of dissipation in
nner sphere boundary layer. Thus, the estimatio
he ping-pong ball inside. Finally, the ping-pong b
s dissolved by a solution of ethyl acetate and a ho
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Fig. 5. Experimental device with the hollow sphere molded in an
elastic and transparent cylindrical block of silicone gel and contain-
ing the inner small sphere. The silicone cylinder is compressed by
two rollers as it rotates around its axis.

sphere molded in a transparent and deformable cylin-
der with a small core inside is obtained. The radii of the
outer and inner sphere are respectively 21.75 mm and
7.5 mm. These values give a value ofη approximately
equal to 1/3 which is in accordance with the geophysi-
cal situation relative to the Earth. The silicone cylinder
is mounted on the vertical shaft of the device used in
Lacaze et al. (2004)and is compressed between two
vertical rollers. Note that these rollers are always in
place; the device does not offer the possibility to move
them in or out after rotation is started. The distance
separating these rollers gives directly the elliptical de-
formation of the outer deformable sphere. Here, a value
of ε = 0.125 is chosen. The study has been done in a
range of angular velocity going from 0 rpm to 150 rpm
so that the Ekman number varies from 3.14× 10−4

to ∞.
The flow is visualized using a meridian laser plane

illuminating the sphere that is filled with water seeded
by kalliroscope flakes. The elongated shape of these

Fig. 6. Laser D̈oppler anemometry arrangement: (a) side view, (b)
top view.

reflective particles allows them to align in the flow and
visualize the velocity field. In particular, the rotation
axis of the flow is clearly visible as shown onFigs. 7
and 8. As the spin-over mode is mainly a solid body
rotation around an axis perpendicular to the entrain-
ment rotation axis, the combination of the main ro-
tation with this mode leads to an axis inclined at an
intermediate angle. InLacaze et al. (2004), the mea-
surements of this angle in time permit the determina-
tion of the instability growth rate. Unfortunately, here,
because of the presence of the inner sphere, this simple
technique was not accurate enough and flow veloci-
ties have been measured by laser Döppler anemome-
try. This system can measure two projections of the
velocity field in the vertical and azimuthal directions.
For this purpose, the fluid has been seeded with spheri-
cal particles of diameter 10�m. The two measurement
directions of the velocity field are shown onFig. 6.
The measurement location point in the middle of the
fluid shell is chosen at the intersection of the equa-
torial plane and the meridional plane perpendicular
to the maximum stretching direction induced by the
rollers (e.g. 45◦ from this one). On the line defined by
the intersection of these two planes, the flow can be
written as

U = Vθeθ + Vzez,

whereVθ = r is the flow velocity induced by the rota-
tion andV = V reεσt is the velocity associated with
t tial
a ct
n om
e

z 0
he exponentially growing spin-over mode. The ini
mplitudeV0 that gives rise to the instability is in fa
ot controlled in the experiment. It simply comes fr
xperimental fluctuations of the flow.
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Fig. 7. Visualization of the spin-up phase after the start of the shell
(η = 1/3;ε = 0.125).

3.2. Visualizations and measurements

Two snapshots of a typical evolution of the flow in
our deformed spherical shell are presented inFigs. 7
and 8. The first figure presents an image of the flow dur-
ing the spin-up transient. Inner cylindrical shear layers
separating rotating fluid to steady fluid are particularly
well visualized by the two vertical bright lines (inter-
section of a cylinder with the laser vertical plane) that
propagate from the outer boundary towards the axis of
rotation. After some minutes, this axis tilts as the flow

Fig. 8. Visualization of the spin-over mode of the elliptical instability
in a slightly deformed rotating shell.E = 4.7 10−4; η = 1/3;ε =
0.125.

Fig. 9. Velocity time series forE = 4.7 10−4; η = 1/3;ε = 0.125.
Top: axial velocity (Vz); bottom: azimuthal velocity (Vθ).

gets unstable. As already mentioned, the flow is a com-
bination of the main rotating flow around a vertical axis
and the spin-over mode rotation whose axis is given
by the stretching direction (at least for the considered
range of Ekman numbers).

These two snapshots show the strong similarity be-
tween the full sphere case studied inLacaze et al. (2004)
and the shell case. As already observed bySeyed-
Mahmoud et al. (2004), the presence of the inner sphere
does not strongly modify the structure of the unstable
mode. To get a quantitative description of the instabil-
ity, Laser D̈oppler anemometry time series are recorded
and presented forE = 4.7 × 10−4 in Fig. 9. Velocities
are non-dimensionalized with the maximum velocity
of the outer spherical boundary along the equator. At
t = 0, the device is set into rotation. As can be seen in
Fig. 9, the azimuthal velocity first grows during the so
called spin-up phase. Then, when the azimuthal veloc-
ity has saturated, the axial velocity which would remain
null without any instability, grows exponentially till a
saturated regime is reached. Later (Ωt = 700), the mo-
tor is abruptly stopped and the spin-down phase is also
recorded.

Although the spin up and spin-down regimes are
well-known, experimental verifications of the scaling
law are rare. In our experiments, scaling laws can be
obtained from the azimuthal velocity data, from which
we can estimate the duration of the spin-up phase by
determining the time needed to reach the maximum
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Fig. 10. Spin up characteristic time as function ofE−1/2 (η =
1/3;ε = 0.125).

velocity. This time which depends on the Ekman num-
ber, is plotted as a function ofE−1/2 in Fig. 10. This
scaling has been proposed byGreenspan (1968)and
the straight line which fits the data points, confirms
this E−1/2 behavior. For the lowest values of the Ek-
man number (E−1/2 > 45), a bending of the curve is
observed which can be explained by the apparition of
the instability before the end of the spin-up. In fact the
non linear interaction between the main flow and the
unstable mode generates a negative vertical vorticity
(Kerswell, 2002; Lacaze et al., 2004)that invalidates
our time estimation. In the same way, we will see in
the following that the instability growth rate measure-
ments are also affected by this interplay for the two
smallest values of the Ekman number we have con-
sidered. Nevertheless, it is worth mentioning that for
E > 4.4 × 10−4 (E−1/2 < 45), time scales associated
with spin up and instability are well separated. For these
Ekman numbers good estimates for the spin-up scaling
laws and for the instability growth rate are obtained
from the anemometric time series. The growth rate is
extracted from the time series by plotting the data in
a semi-logarithmic graph as illustrated inFig. 11. In
this figure, the linear fit which corresponds to the ex-
ponential growth of the instability before its non linear
saturation, is superimposed on the experimental mea-
surements. The slope of this straight line gives a direct
measure of the linear growth rate of the instability. A
systematic measure of this exponential growth rate ver-
sus the inverse Ekman number is given inFig. 12. In

Fig. 11. Time series of the vertical velocity forE = 4.7 × 10−4; η =
1/3;ε = 0.125.

this figure, the experimental measurements are com-
pared with the results calculated from the linear anal-
ysis described in the previous section. The theoretical
curve corresponds to an ellipticityε = 0.125 and a ra-
tio η = 1/3, and an excellent agreement between the-
ory and experiment can be observed for most of the
points. The error bars are estimated from the scatter in
the slope measurements on the velocity time series. As
expected and only for the largest Ekman numbers, the
measure of the experimental growth rate deviates from
the linear theory.

After the linear growth phase, the spin-over mode
saturates and the flow is a steady tilted rotation which

Fig. 12. Comparison between measurements of the experimental
g
rowth rates and their theoretical predictions (η = 1/3;ε = 0.125).
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Fig. 13. Asymptotic (dotted line) and overshoot maximum of ampli-
tude (solid line) from numerical simulation of the instability model.
The heavy curves are computed for the full sphere case and the others
for theη = 1/3 shell (ε = 0.125).

is visualized onFig. 8. A slight overshoot which comes
from the non linear interaction between the mode and
the main rotation (at high amplitude, the unstable mode
decreases the amplitude of the main rotation), is visible
on the velocity time series. The asymptotic saturation
amplitude of the instability is measured through the
saturation of the vertical velocity at large time. Both
saturation and maximum amplitudes are represented in
Fig. 13. In this figure, the measures are also compared
with the theoretical predictions obtained from the non
linear model used for the sphere(Lacaze et al., 2004).
This non linear model has been adapted to the shell
case by multiplying all viscous terms by the function
f (η) given in(2.5). The simulation of this model leads,
as it was the case for the full sphere, to a saturation of
the spin-over mode. As already noted, the shell case for
η = 1/3 and the hollow sphere case are similar. It can
be verified that the experiment and the theoretical anal-
ysis for the shell lead to comparable results which are
presented inFig. 13. The major effect of the presence
of the inner core is to decrease the saturation amplitude
of the mode. As in the experiments, the model exhibits
an overshoot (solid line) that can be measured and com-
pared to the experimental points (×). In the same way, a
good agreement is found between the asymptotic (large
time) values obtained from the model (dotted line) and
from the experiment (+).

When the rotation of the outer sphere is suddenly
stopped, the flow velocity decreases because of vis-

Fig. 14. Damping characteristic time of the spin-over mode, mea-
sured from the vertical velocity (squares), damping time of the main
rotation measured from the azimuthal velocity (circles) as functions
of E−1/2 (η = 1/3;ε = 0.125).

cous damping. As can be seen on the right part of
the curve presented inFig. 11, an exponential decay
is observed. Both the characteristic damping times of
the azimuthal velocity (associated with the main ro-
tation) and of the axial velocity (associated with the
spin-over mode) are plotted inFig. 14as a function of
E−1/2. This figure shows interesting features. We can
first notice that the axial velocity damping times align
on a single straight line for all Ekman numbers satisfy-
ing E−1/2 < 45. The damping time increases linearly
with E−1/2 as one could expect from classical Ekman
layer scalings. The azimuthal velocity damping time
has by contrast a totally different variation with respect
to E−1/2. For smallE−1/2 (E−1/2 < 30), that is close
to threshold, it increases linearly withE−1/2 as for the
spin-up time, and is slightly larger than the axial ve-
locity damping time. In this regime, we think that the
spin-over mode is sufficiently small to have a negligi-
ble influence on the spin-down of the main rotation.
Apparently, this is no longer the case forE−1/2 > 30:
the main rotation becomes more rapidly damped than
the spin-over mode. We believe that in this regime the
damping of the main rotation is mostly due to an en-
ergy transfer towards the spin-over mode. The most
amazing feature of these data is actually that in the
regimeE−1/2 > 30 the damping time of the main rota-
tion decreases with respect toE−1/2. This means that
the faster is the rotation, the shorter its damping. We
have no explanation for this unexpected result.
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4. Conclusion

In this article, we have investigated the elliptical or
tidal instability of a rotating fluid shell subjected to a
stationary elliptic deformation. A model for the main
flow has been first presented. Then its linear stabil-
ity analysis has led to the determination of the growth
rate of the spin-over mode of the rotating fluid shell
as a function of the Ekman number. Visualization and
anemometry measurements have illustrated the struc-
ture and the dynamics of this unstable mode. A good
agreement between theory and experiments have been
obtained, especially for the growth rate. The saturated
nonlinear regime has also been analysed and appeared
to be well-predicted by a simple nonlinear model for the
spin-over mode amplitude. Finally, we have described
the flow spin-down when the entrainment is abruptly
stopped. Close to threshold, classical scalings inE−1/2

for the damping times have been obtained. But strange
and unexpected behavior have also been evidenced for
smaller Ekman numbers.

The shell geometry is reminiscent of geophysical
situations where the outer liquid cores of planets are
elliptically deformed by tidal excitations. On Earth, it
is believed(Kerswell, 1994)that the growth rate gener-
ated by the elliptic deformation is approximately bal-
anced by the damping rate associated with Joule dis-
sipation. There exist also other planets as Io where an
elliptic instability could be possible and therefore play
an important role in its core dynamics. Moreover, there
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