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Abstract

A theoretical and experimental study of the spin-over mode induced by the elliptical instability of a flow contained in a slightly
deformed rotating spherical shell is presented. This geometrical configuration mimics the liquid rotating cores of planets when
deformed by tides coming from neighboring gravitational bodies. Theoretical estimations for the growth rates and for the non
linear amplitude saturations of the unstable mode are obtained and compared to experimental data obtained fr@pgleser D
anemometry measurements. Visualizations and descriptions of the various characteristics of the instability are given as function:s
of the flow parameters.
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1. Introduction drical tanks when a small excitation is added to the
flow by the use of a small differentially rotating disc
It is known from the seminal analysis dfelvin immersed in the fluid. Another example can be found in

(1880) that inertial waves whose origin comes from  Aldridge and Toomre (1963yhere some of the eigen-
the restoring effect of the Coriolis force are eigen- modes of a rotating sphere were excited by applying a
modes of rotating fluid flows. These modes, neutral resonant modulation on the rotating velocity. Later, us-
for inviscid flows but damped by viscosity, can how- ing an inner deformable body placed inside a rotating
ever be observed in real flows when an external forcing sphereAldridge et al. (1997jandSeyed-Mahmoud et
is applied. For instanc&reenspan (1968 McEwan al. (2004)described some of the inertial waves of the
(1970)visualized the wave patterns created by these shell with different frequencies and spatial structures.
inertial — or so called Kelvin —waves in rotating cylin-  In this last experiment, some features of the elliptical
instability were also detected. This instability arises
mpondmg author. from_ the resonant intergct_ion of triads _of waves: tWO
E-mail addresslacaze@irphe.univ-mrs.fr (L. Lacaze); Kelvin waves plus the elliptical deformation of the fluid
patrice.legal@irphe.univ-mrs.fr (P. Le Gal). streamlines by the boundari@&aleffe, 1990). In fact,



L. Lacaze et al. / Physics of the Earth and Planetary Interiors 151 (2005) 194—205 195

the elliptical instability has been intensively studied in the planet mantles and the solid inner cores. There-
the context of the transition to turbulence of shear flows fore, it is of some importance to study the effect of
(Widnall and Tsai, 1977; Widnall et al., 1974; Moore inner rotating solid bodies in the development of the
and Saffman, 1975; Pierrehumbert, 1986; Bayly, 1986; elliptical instability in spherical geometry. The present
Bayly et al., 1988)There, the elliptical deformation of  article concerns an extension of our previous work on
the streamlines inside cylindrical vortex cores are in- the spin-over mode of the elliptical instability in a full
duced by other vortices (see for instanaveke and sphere(Lacaze et al., 2004ip the case of a rotating
Williamson, 1998a; Meunier and Leweke, 20@t by shell. In a first part, we present our theoretical model
mean shear fieldd_e Dizes et al., 1996; Leweke and  of the flow contained in the shell. The analysis of the
Williamson, 1998b; Lasheras and Choi, 1988pn- elliptical instability in the inviscid limit and then in the
trary to these last studies relative to three-dimensional viscous case, leads to the determination of the growth
instabilities of rotating cylinders of fluids, the ellipti-  rate ofthe spin-over mode. In a second part, experimen-
cal instability in spherical geometry rises completely tal results are presented. We used the same technique as
different interests as it models the rotating inner liquid before(Lacaze et al., 2004jut this time a solid small
cores of planets subjected to tidal distortions induced inner sphere is suspended by a thin wire in the cen-
by close gravitational bodi€Suess, 1971; Gledzerand ter of a hollow transparent deformable external sphere.
Ponomarev, 1977; Kerswell, 1994 particular the The ration between both sphere radius has been chosen
occurrence of this ‘tidal’ instability together with ther-  equal to 1/3 that is close to the value encountered in the
mal or compositional convection in the molten cores Earth core. Visualizations and measurements by laser
of planets, such as the Earth, might be of prime impor- Doppler anemometry of several characteristics (growth
tance in the generation or in the dynamics of the geo- rates, non linear saturation amplitude, spin-down time)
magnetic fieldgKerswell, 1994; Kerswell and Malkus,  of the spin-over mode of the shell are presented and
1998) Recent measurements of magnetic fields around compared to our theoretical predictions.

relatively small planets such as the Jovian moons lo

and Ganyrede (Kivelson et al., 1996a,binay rein-
force the interest in the study of inertial instabilities
such as the elliptical or the precessional ofMalkus,
1968; Busse, 1968; Noir et al., 2001; Kerswell, 1993
Lorenzani and Tilgner, 2003\Idridge et al. (1997)
and Seyed-Mahmoud et al. (2000, 200Bave per-
formed computations and built as already mentioned,
a rotating deformable shell where they observed the
presence of the elliptical instability. Using the tech-
nigue invented by Malkus in 1988 alkus, 1989)and
more recently used and extended to triangular distor-
tions byEloy et al. (2003)we have applied an elliptical
constraint to a deformable rotating sphétacaze et

al., 2004)and visualized the spin-over mode generated
by the elliptical instability. This mode is a solid body
rotation around an axis aligned along with the stretch-
ing direction. Moreover, from video image processing,
we have measured the growth rates of the instability as
functions of the flow parameters. These experimental
results were finally advantageously compared to pre-
dictions resulting from theoretical linear and non lin-
ear analyzes. However, as it is the case for the Earth, it
may often be that, due to huge pressure forces, planet
inner cores crystallize and leave liquid shells between U = reg, (2.1)

2. Linear stability analysis
» 2.1. Inviscid theory

The stability analysis of an inviscid fluid contained
in a rotating and slightly deformed spherical shell is
considered in this first section. It is assumed that only
the outer sphere is deformed while the inner solid body
remains spherical. Moreover, it is assumed that both
spheres rotate around a vertical axigdogether at the
same rate. This hypothesis is in accordance with our
experimental device which will be presented later and
is also a good approximation as regards to eventual
geophysical applications. The elliptical deformation is
considered to be a small perturbation amplitude param-
etere (¢ < 1).

The zero order problenz, = 0, corresponds to the
case of arotating fluid in a non-deformed spherical shell
for which the main flow can be written in cylindrical
coordinates as:
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which satisfies both boundary conditions

U=Ri s atr = Riy(), 2.2)

U= Ro,x)es atr = Roy(z),

whereRj, (z) = \/ﬁ and Roy, (z) = \/R3 — 22

define the spherical boundaries in cylindrical coordi-
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outer sphere@.2)without inner shear layers. Viscous
damping is therefore expected to be mostly due to vis-
cous boundary layers as for the sph@tellerbach and
Kerswell, 1995) This spin-over mode was found to
be the most unstable mode in a deformed sphere for
our experimental range of parametéksicaze et al.,
2004) Thus it is reasonable to expect this mode to be

nates. The variables have been non-dimensionalized@lso the most unstable in the shell. The experiment of

with the angular velocity of the flui€? and the distance
dbetween the two shell®; andR, are respectively the
inner and outer sphere radii and their ratio is given by
n = Ri/Ro.

The derivation of inviscid normal modes for the ba-
sic elliptical flow is not as trivial as it is in the case
of the full sphergRieutord et al., 2001)For general
rotating flows, the linearized Euler equations can be re-
duced to the so-called PoinéaequationGreenspan,
1968) This equation is hyperbolic and its solutions
are thus sensitive to the applied boundary conditions.
By chance, in the case of the full sphere, a separation
of variables can be achieved which permits to obtain
the normal modes as explained@reenspan (1968)
The new variables are determined with respect to the

Seyed-Mahmoud et al. (200dhd our own experimen-
tal observations presented in the next section confirm
this expectation. Moreover, as iracaze et al. (2004)
the inner shear layers induced by the boundary layer
eruptions at the critical latitud@Hollerbach and Ker-
swell, 1995)are expected not to significantly modify
our results and will not be considered in the following.
The stability analysis of the elliptical instability of
a deformed solid body rotation in a shell is considered
when an ordet deformation of the external boundary
is imposed to the main flow defined by Hg-1). The
deformation, stationary and two-dimensional, has an
azimuthal wavenumber equal to two. As already men-
tioned, the inner sphere remains spherical. Splitting the
flow in three regions, an inviscid solution can thus be

outer surface and are thus no more consistent whenWritten in cylindrical coordinates as follows:

an inner spherical body is added. To the best of our

Ro, (2)* — Ri, (2)*

U, = ercos (D)
Ugp = r — ersin ()

knowledge, no separation of variables have been dis-
covered in the case of the sh&ieutord and Valdettaro
(1997)andRieutord et al. (20013tudied this problem

by considering the flow evolution along the character-
istics of the hyperbolic equation. By this means, they
have been able to obtain an approximate description of
the inertial modes of the shell. In particular they show
that most of them exhibit a complex spatial structure
involving inner shear layers. However, as the spin-over
mode is a solid body rotation whose axis is perpen-
dicular to the main rotating flow axis, it represents a
simple exact solution of the linearized Euler equations
with free-slip boundary conditions on the inner and

R 4
Ur = &r ZH(Z) 7 X (]_ _
Ro, (2)* — Ri(2)
R 4
Ug=r—er OH(Z) X

U = U,e; + Uyey, (2.3)

Ri, (2)*r~*) cos ()
for — Rj <z <R,

(14 Ri, 2)* % sin ()

for R; < |z| < Ro.

In the two polar regions defined % < |z| < Ro,
this flow is equivalent to the main flow in a deformed
rotating full sphergLacaze et al., 2004 Elsewhere,
—R;j < z < R;j, and contrary to the model used in
Seyed-Mahmoud et al. (2004he inner sphere influ-
ences the main flow by inducing a potential flow of
same order as the imposed deformation. This main flow
defined by Eq(2.3)is singular at the poles of the inner
sphere but is regular and continuous elsewhere. More-
over, it satisfies the inviscid boundary condition of non
penetration at both solid surfaces.

Iso-values of the azimuthal velocity, in a merid-
ional plane forp = 1/3 andn = 3/5 are presented in
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Fig. 1. Iso values of azimuthal velocity fgr= 1/3 (a) and; = 3/5
(b). In both cases = 0.125. it
Fig. 1 When the shellis not deformed orinthe case of a oslh
deformed full sphere, these iso-values are vertical lines
in meridional planes. As can be seen, the addition of o
the inner sphere slightly modifies the flow principally
in the vicinity of the core. This modification is due to o5
the potential flow added in Eq2.3). We observe that '
the larger is the inner sphere the more the main flow
structure is deformed. 1
The streamlines of the main flow in horizontal s
planes corresponding to= 0 (equator)z = 0.4 and 45 4 05 0 05 1 15
z = lare shownirFig. 2 They illustrate the basic flow () X

patterns in the equatorial and polar regions as defined
before. The black disc represents a horizontal section
of the inner sphere. IRig. 2a and b, it can be seen that

Fig. 2. Streamline function at= 0 (a),z = 0.4 (b),z = 1 (¢).
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the streamlines exhibit a different structure as that of
Fig. 2c. For the two first cases, the elliptical stream-
line which defines the external boundary progressively
becomes a circle close to the inner sphere contrary to
the third figure where similarly to the case of the full
sphere, the streamlines are concentric ellipses with the
same eccentricity.

As in the case of the full sphei&erswell, 1994)
or the cylinder(Malkus, 1989; Eloy et al., 2003}he
ordere flow induced by the elliptical deformation can
resonate with two Kelvin modes of the spherical shell
if they satisfy the resonant conditioni = w; and
mo = m1 £ 2 ((w1, m1) and @y, m2) are the frequen-
cies and the azimuthal wave numbers associated with
the two considered modes). The third condition speci-
fied by Kerswell (1994)in the case of the full sphere,
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Fig. 3. Evolution of the spin-over growth rate wighin the inviscid
theory. For moderatg, no variation from the full sphere case is

which corresponds to a spatial coherence between eactppserved.

modes in a meridional plane (or the equivalent in a
cylinder: k1 = ko wherek1 andky are the axial wave

numbers of the two modes), is not well defined here due
to the unknown form of the mode basis. However, as

whereJ is the energy of the spin-over modgjs the
surface boundary condition term andis the interac-
tion of the spin-over mode with itself via the order

indicated above, we are interested in the peculiar casecorrection of the main floy2.3). The parametey only

of the resonance of the spin-over mode which corre-
sponds to a combination of the two inertial waves char-
acterized by#f1, m2) = (—1, 1) and 1, w2) = (0, 0)
with the basic elliptical flow. This resonance leads
to an orders exponential growth in time of the two
symmetric modes, which can be written in cylindrical
coordinates

Fiz
Z
+ir

u=e" +C.C

The derivation of the inviscid growth rate is classi-
cal and has already been done many times in different
configurations(Moore and Saffman, 1975; Tsai and
Widnall, 1976; Eloy et al., 2003; Lacaze et al., 2004)
The method consists in applying a condition of solv-
ability for the corrected flow at order This condition
of solvability is then solved by determining the adjoint
modes which is in this case the mode itself corrected
by a boundary condition terf. The inviscid growth
rateoyy is then determined by resolving the relation of
dispersion at ordet. This leads to the general growth
rate expression:

N-T

ONV = )

~ (2.4)

enters Eq(2.4)through the terriVfor —Rj < z < R;.
All the other terms are equivalent to that of the full
sphere case.

We have calculated this inviscid growth ratey for
the spin-over mode. Itis plottedig. 3as a function of
n. We note that for, = 1/3, which is our experimental
configuration, the growth rate is not significantly dif-
ferent from the inviscid growth rateyy = 1/2 of the
full sphere case. The same remark was also formulated
in Seyed-Mahmoud et al. (200@pncerning the fre-
guencies of the Kelvin waves in the sphere and in the
n = 1/3 shell.

2.2. Viscous effect

In the previous section, the inviscid growth rate of
the unstable spin-over mode has been determined. To
allow further comparisons with the experimental re-
sults, we need to take into account the viscous dissipa-
tion terms (or at least the most significant ones). The
ratio between the viscous forces and inertia is mea-
sured by the Ekman numbé# = v/242. The insta-
bility threshold should then be obtained as function of
E andn. As mentioned above, the flow described by
Eq.(2.3)satisfies inviscid boundary conditions but not
the no slip condition (or viscous boundary condition)
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in the region defined by-R; < z < R;. This implies

the existence of Ekman viscous boundary layers both
on the inner and outer shells ferR; < z < R;. It has
already been shown that the Ekman layers have a thick-
ness of ordeY/2 (Greenspan, 1968yith an ordere
correction flow that permits to satisfy the no slip condi-
tion. Therefore, when these Ekman layers are regular,
the viscous correction to the flow implies an ordiér?
damping and an order£1/2 recirculation flow in the
bulk, which can be neglected. Depending on the flow
geometry, volume dissipation effect3(£)) could also
become important if the spatial structure of the mode
is complex. For the cylindeEloy et al. (2003@emon-

strated that these effects were responsible for the damp-

ing of large wavenumber modes. By contrast, for the
sphereZhang et al. (2004howed that volume dissipa-
tion effects were null for each mode, whatever complex
its spatial structure. We do not know whether the shell
satisfies the same property. But, in the present study,
it is not our concern. We consider a single mode (the
spin-over mode) for which the volume dissipation is
identically zero.

Let us remark that spherical Ekman layers possess
a singular behavior at the critical latitudes so that inner

10°,
107
10°

o~
NS

03 04 05 086

n

Fig. 4. Viscous growth rate as function of the Ekman number and
the geometrical parameter

the viscous growth rate close to the threshold reads,
o = E0NY — El/zav.
Fig. 4 shows the evolution of this spin-over mode

viscous growth rate/¢ in the (7, E) plane. For a given
geometryy ande are prescribed and the evolution of

shear layers are spawned from these singular points andr as function ofE is simply given by a vertical cut of

penetrate into the inviscid flow. We can also show that
the viscous correction to the inviscid main flq2.3)
is also singular at the poles of the inner sphere. But
as done in many linear studies, we will not consider
here the dissipation associated with the regularization
of these singularities as they are generally found to be
weak (Hollerbach and Kerswell, 1995However we
should mention that these effects could become impor-
tantin highly non linear regimes at low Ekman number.
These different assumptions permit to give a pre-
diction on the threshold of the elliptical instability. As
shown byHollerbach and Kerswell (1995he damp-
ing of the spin-over mode in a spherical shell is,

oy = 2.62f(n)
L+ 741 —n)
1—7nd ’

where () = (25)

The value 2.62 is the spin-over damping rate in the
case of the full sphere and the functigitn) is the

correction induced by the increase of dissipation in the
inner sphere boundary layer. Thus, the estimation of

Fig. 4. This kind of curves will be used for the forth-
coming comparisons between theory and experiments.

3. Experimental results
3.1. Experimental techniques

The experimental device was already used by
Lacaze et al. (2004(seeFig. 5. The only modifica-
tions in the experimental arrangement come from our
desire to build a hollow shell this time. For this pur-
pose, a ping pong ball has been opened and a small
solid ball introduced inside. This small sphere is rigidly
mounted on a thin 0.2 mm in diameter nylon thread go-
ing through both spheres along their diameters. This
thin wire is also used to position the inner ball in the
middle of the hollow sphere. The ping pong ballis then
closed back and polished to recover its perfect spherical
shape. Itis then inserted in a cylindrical block of liquid
silicone that is cured at a temperature of°B0with
the ping-pong ball inside. Finally, the ping-pong ball
is dissolved by a solution of ethyl acetate and a hollow
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Steady structure (high)

Silicone

Roll 100 mm

Steady structure (low)
Rotating axis

Motor

Fig. 5. Experimental device with the hollow sphere molded in an

elastic and transparent cylindrical block of silicone gel and contain-
ing the inner small sphere. The silicone cylinder is compressed by
two rollers as it rotates around its axis.

sphere molded in a transparent and deformable cylin-

der with a small core inside is obtained. The radii of the
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@)

(b)

Fig. 6. Laser Dppler anemometry arrangement: (a) side view, (b)
top view.

reflective particles allows them to align in the flow and
visualize the velocity field. In particular, the rotation
axis of the flow is clearly visible as shown éiigs. 7

and 8 As the spin-over mode is mainly a solid body
rotation around an axis perpendicular to the entrain-
ment rotation axis, the combination of the main ro-
tation with this mode leads to an axis inclined at an
intermediate angle. lhacaze et al. (2004Xhe mea-
surements of this angle in time permit the determina-
tion of the instability growth rate. Unfortunately, here,
because of the presence of the inner sphere, this simple
technique was not accurate enough and flow veloci-
ties have been measured by lasémppler anemome-
try. This system can measure two projections of the
velocity field in the vertical and azimuthal directions.
For this purpose, the fluid has been seeded with spheri-

outer and inner sphere are respectively 21.75 mm andcal particles of diameter 0m. The two measurement

7.5 mm. These values give a valuermohpproximately
equal to 1/3 which is in accordance with the geophysi-
cal situation relative to the Earth. The silicone cylinder
is mounted on the vertical shaft of the device used in
Lacaze et al. (2004and is compressed between two
vertical rollers. Note that these rollers are always in
place; the device does not offer the possibility to move
them in or out after rotation is started. The distance
separating these rollers gives directly the elliptical de-

directions of the velocity field are shown dfg. 6.
The measurement location point in the middle of the
fluid shell is chosen at the intersection of the equa-
torial plane and the meridional plane perpendicular
to the maximum stretching direction induced by the
rollers (e.g. 45 from this one). On the line defined by
the intersection of these two planes, the flow can be
written as

formation of the outer deformable sphere. Here, avalue U = Vyey + V.e;,

of e = 0.125 is chosen. The study has been done in a

range of angular velocity going from O rpm to 150 rpm
so that the Ekman number varies froml&x 104
to oo.

The flow is visualized using a meridian laser plane
illuminating the sphere that is filled with water seeded

whereVy = r is the flow velocity induced by the rota-
tion andV, = Vore?® is the velocity associated with
the exponentially growing spin-over mode. The initial
amplitudeVy that gives rise to the instability is in fact
not controlled in the experiment. It simply comes from

by kalliroscope flakes. The elongated shape of these experimental fluctuations of the flow.
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Fig. 7. Visualization of the spin-up phase after the start of the shell
(n =1/3;¢ = 0.125).

3.2. Visualizations and measurements

Two shapshots of a typical evolution of the flow in
our deformed spherical shell are presenteéigs. 7
and 8 Thefirst figure presents an image of the flow dur-
ing the spin-up transient. Inner cylindrical shear layers
separating rotating fluid to steady fluid are particularly
well visualized by the two vertical bright lines (inter-
section of a cylinder with the laser vertical plane) that

/ Physics of the Earth and Planetary Interiors 151 (2005) 194—205
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Fig. 9. Velocity time series foE = 4.7 1074,y = 1/3;s = 0.125.
Top: axial velocity §;); bottom: azimuthal velocity¥(y).

gets unstable. As already mentioned, the flow is a com-
bination of the main rotating flow around a vertical axis
and the spin-over mode rotation whose axis is given
by the stretching direction (at least for the considered
range of Ekman numbers).

These two snapshots show the strong similarity be-
tweenthe full sphere case studiedlataze etal. (2004)
and the shell case. As already observedSwgyed-

propagate from the outer boundary towards the axis of Mahmoud etal. (2004}he presence of the inner sphere

rotation. After some minutes, this axis tilts as the flow

Fig. 8. Visualization of the spin-over mode of the elliptical instability
in a slightly deformed rotating shelk = 4.7 1074, 5 = 1/3;¢ =
0.125.

does not strongly modify the structure of the unstable
mode. To get a quantitative description of the instabil-
ity, Laser Dbppler anemometry time series are recorded
and presented faf = 4.7 x 10~ in Fig. 9. Velocities

are non-dimensionalized with the maximum velocity
of the outer spherical boundary along the equator. At
t = 0, the device is set into rotation. As can be seen in
Fig. 9, the azimuthal velocity first grows during the so
called spin-up phase. Then, when the azimuthal veloc-
ity has saturated, the axial velocity which would remain
null without any instability, grows exponentially till a
saturated regime is reached. Lat€r (= 700), the mo-

tor is abruptly stopped and the spin-down phase is also
recorded.

Although the spin up and spin-down regimes are
well-known, experimental verifications of the scaling
law are rare. In our experiments, scaling laws can be
obtained from the azimuthal velocity data, from which
we can estimate the duration of the spin-up phase by
determining the time needed to reach the maximum
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Fig. 10. Spin up characteristic time as function Bf Y2 (3 = Fig. 11. Time series of the vertical velocity fiir= 4.7 x 1074, =
1/3;e = 0.125). 1/3;e = 0.125.

this figure, the experimental measurements are com-
pared with the results calculated from the linear anal-
ysis described in the previous section. The theoretical
curve corresponds to an ellipticity= 0.125 and a ra-
tio n = 1/3, and an excellent agreement between the-
ory and experiment can be observed for most of the
f points. The error bars are estimated from the scatter in
the slope measurements on the velocity time series. As
expected and only for the largest Ekman numbers, the
measure of the experimental growth rate deviates from
the linear theory.

After the linear growth phase, the spin-over mode
saturates and the flow is a steady tilted rotation which

velocity. This time which depends on the Ekman num-
ber, is plotted as a function &~1/2 in Fig. 10 This
scaling has been proposed Byeenspan (1968nd
the straight line which fits the data points, confirms
this E~1/2 behavior. For the lowest values of the Ek-
man number £~%/2 > 45), a bending of the curve is
observed which can be explained by the apparition o
the instability before the end of the spin-up. In fact the
non linear interaction between the main flow and the
unstable mode generates a negative vertical vorticity
(Kerswell, 2002; Lacaze et al., 200#jat invalidates
our time estimation. In the same way, we will see in
the following that the instability growth rate measure-
ments are also affected by this interplay for the two
smallest values of the Ekman number we have con-  004%
sidered. Nevertheless, it is worth mentioning that for 0.04}
E > 4.4 x 1074 (E~1/2 < 45), time scales associated 0.0351
with spin up and instability are well separated. For these
Ekman numbers good estimates for the spin-up scaling
laws and for the instability growth rate are obtained 0.025f
from the anemometric time series. The growth rate is © 002t
extracted from the time series by plotting the data in
a semi-logarithmic graph as illustrated fig. 11 In
this figure, the linear fit which corresponds to the ex- 001y
ponential growth of the instability before its non linear 0.005}
saturation, is superimposed on the experimental mea- 0
surements. The slope of this straight line gives a direct 500
measure of the linear growth rate of the instability. A
systematic measure of this exponential growth rate ver- rig. 12. comparison between measurements of the experimental
sus the inverse Ekman number is giverFig. 12 In growth rates and their theoretical predictions<{ 1/3;¢ = 0.125).

0.031

0.015}

7000 1500 2000 2500 3000 3500
1/E
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Fig. 13. Asymptotic (dotted line) and overshoot maximum of ampli-  Fig. 14. Damping characteristic time of the spin-over mode, mea-
tude (solid line) from numerical simulation of the instability model.  gyred from the vertical velocity (squares), damping time of the main
The heavy curves are computed for the full sphere case and the othersyotation measured from the azimuthal velocity (circles) as functions
for then = 1/3 shell (¢ = 0.125). of E-Y2 (y = 1/3;¢ = 0.125).

is visualized orFig. 8 A slight overshoot whichcomes  cous damping. As can be seen on the right part of
from the non linear interaction between the mode and the curve presented iRig. 11, an exponential decay
the main rotation (at high amplitude, the unstable mode is observed. Both the characteristic damping times of
decreases the amplitude of the main rotation), is visible the azimuthal velocity (associated with the main ro-
on the velocity time series. The asymptotic saturation tation) and of the axial velocity (associated with the
amplitude of the instability is measured through the spin-over mode) are plotted Fig. 14as a function of
saturation of the vertical velocity at large time. Both E~1/2, This figure shows interesting features. We can
saturation and maximum amplitudes are represented infirst notice that the axial velocity damping times align
Fig. 13 In this figure, the measures are also compared on a single straight line for all Ekman numbers satisfy-
with the theoretical predictions obtained from the non ing E~%/? < 45. The damping time increases linearly
linear model used for the sphefleacaze et al., 2004)  with E~/2 as one could expect from classical Ekman
This non linear model has been adapted to the shell layer scalings. The azimuthal velocity damping time
case by multiplying all viscous terms by the function has by contrast a totally different variation with respect
f(n) given in(2.5). The simulation of this model leads, to E~Y2. For smallE~1/2 (E~1/2 < 30), that is close
as it was the case for the full sphere, to a saturation of to threshold, it increases linearly wifir /2 as for the
the spin-over mode. As already noted, the shell case for spin-up time, and is slightly larger than the axial ve-
n = 1/3 and the hollow sphere case are similar. It can locity damping time. In this regime, we think that the
be verified that the experiment and the theoretical anal- spin-over mode is sufficiently small to have a negligi-
ysis for the shell lead to comparable results which are ble influence on the spin-down of the main rotation.
presented ifFig. 13 The major effect of the presence Apparently, this is no longer the case #6r/2 > 30:
of the inner core is to decrease the saturation amplitude the main rotation becomes more rapidly damped than
of the mode. As in the experiments, the model exhibits the spin-over mode. We believe that in this regime the
an overshoot (solid line) that can be measured and com-damping of the main rotation is mostly due to an en-
pared to the experimental points), Inthe sameway,a  ergy transfer towards the spin-over mode. The most
good agreementis found between the asymptotic (largeamazing feature of these data is actually that in the
time) values obtained from the model (dotted line) and regimeE~1/2 > 30 the damping time of the main rota-
from the experiment (+). tion decreases with respect & /2. This means that
When the rotation of the outer sphere is suddenly the faster is the rotation, the shorter its damping. We
stopped, the flow velocity decreases because of vis- have no explanation for this unexpected result.
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4. Conclusion

In this article, we have investigated the elliptical or
tidal instability of a rotating fluid shell subjected to a
stationary elliptic deformation. A model for the main

L. Lacaze et al. / Physics of the Earth and Planetary Interiors 151 (2005) 194—-205

Eloy, C., Le Gal, P, Le Digs, S., 2003. Elliptic and triangu-
lar instabilities in rotating cylinders. J. Fluid Mech. 476, 357—
388.

Gledzer, E.B., Ponomarev, V.M., 1977. Finite dimensional approxi-

mation of the motions of an incompressible fluid in an ellipsoidal
cavity. Isv. Atmos. Ocean. Phys. 13, 565-569.

flow has been first presented. Then its linear stabil- Greenspan, H.P., 1968. The Theory of Rotating Fluids. Cambridge

ity analysis has led to the determination of the growth
rate of the spin-over mode of the rotating fluid shell
as a function of the Ekman number. Visualization and

University Press, Cambridge.
Hollerbach, R., Kerswell, R., 1995. Oscillatory internal shear lay-
ers in rotating and precessing flows. J. Fluid Mech. 298, 327—

anemometry measurements have illustrated the struc-eyin, L., 1880. Vibrations of a columnar vortex. Phil. Mag. 10,

ture and the dynamics of this unstable mode. A good

155-168.

agreement between theory and experiments have beerKerswell, R., 1993. The instability of precessing flow. Geophys. As-

obtained, especially for the growth rate. The saturated .
nonlinear regime has also been analysed and appeare(li(

to be well-predicted by a simple nonlinear model for the
spin-over mode amplitude. Finally, we have described
the flow spin-down when the entrainment is abruptly
stopped. Close to threshold, classical scalingsify?

for the damping times have been obtained. But strange
and unexpected behavior have also been evidenced for

smaller Ekman numbers.
The shell geometry is reminiscent of geophysical

situations where the outer liquid cores of planets are

elliptically deformed by tidal excitations. On Earth, it
is believed Kerswell, 1994}hat the growth rate gener-
ated by the elliptic deformation is approximately bal-

anced by the damping rate associated with Joule dis-

trophys. Fluid Dyn. 72, 107-144.

rswell, R., 1994. Tidal excitation of hydromagnetic waves and

their damping in the Earth. J. Fluid Mech. 274, 219-241.

Kerswell, R.R., 2002. Elliptical instability. Annu. Rev. Fluid Mech.
34,83-113.

Kerswell, R.R., Malkus, W.V.R., 1998. Tidal instability as the
source for lo’s magnetic signature. Geophys. Res. Lett. 25, 603—
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Walker, R.J., Warnecke, J., Bennett, L., Polanskey, C., 1996a.

The magnetic field and magnetosphere of Ganymede. Geophys.

Res. Lett. 24, 2155-2158.

Kivelson, M.G., Khurana, K.K., Russel, C.T., Walker, R.J., War-
necke, J., Coroniti, F.V., Polanskey, C., Southwood, D.J., Schu-
bert, G., 1996b. Discovery of Ganymede’s magnetic field by the
Galileo spacecraft. Nature 384, 537-541.

Lacaze, L., Le Gal, P., Le Dizes, S., 2004. Elliptical instability in a
rotating spheroid. J. Fluid Mech. 505, 1-22.

sipation. There exist also other pIanets as lo where an Lasheras, J.C., Choi, H., 1988. Three-dimensional instability of a

elliptic instability could be possible and therefore play
animportantrole in its core dynamics. Moreover, there
probably exist exo-planets or other astrophysical bi-
nary systems in which such a dynamic might also be
possible.
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