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The knowledge of the inelastic double differential scattering cross section (DDSCS) is of utmost
importance for microanalysis in Electron Energy Loss Spectrometry (EELS) in the electron micro-
scope and for the investigation of electron energy loss near edge structure (ELNES). Calculations

are usually based on a non-relativistic first order Born approximation.

Relativistic corrections

were thought to be important only for primary beam energies much higher than 300 keV. A semi-
relativistic correction taking into account the relativistic mass change of the probe electron was con-
sidered sufficient!. We review the relativistic expression of the inelastic double differential scattering
cross section (DDSCS) originally given by Mgller®. We show that the virtual photon exchange® need
not be considered separately. The interference terms between longitudinal and transverse exitations
cannot be neglected in anisotropic systems. This explains the surprisingly small magic angle.

I. INTRODUCTION

The recent progress in instrumentation has made Elec-
tron Energy Loss Spectrometry (EELS) in the Transmis-
sion Electron Microscope (TEM)an important method of
solid state spectrometry. Spectrometers or energy filters
of the last generation in combination with monochroma-
tors and field emission sources allow the study of the
electronic structure of materials with unprecedented ac-
curacy. Of prime interest in this context are low energy
losses and the energy loss near edge structure of ioniza-
tion edges (ELNES). The fine structure can now be mea-
sured with an energy resolution of ~ 0.1 eV, comparable
to what synchrotrons provide, but on a length scale of
nanometers.

Although the anisotropic electronic structure was in-
vestigated very early with EELS* the method was only
used extensively when parallel recording spectrometers
bacame available, and when the ELNES could be calcu-
lated with sufficient accuracy®3.

The local environment of an ionized atom defines its
electronic structure and thus its ELNES, allowing iden-
tification of phases by fingerprinting (i. e. comparison
with ELNES spectra of standard specimens). A typi-
cal example is the carbon K-edge ELNES in various car-
bon containing compounds. The fundamental question is
then if there exist experimental conditions where finger-
printing would not be superimposed or made impossible
by anisotropy effects. The same problem occurs in the
determination of the sp2/sp3 ratio in various modifica-
tions of carbon, in particular in diamondlike amorphous
carbon®17,

Therefore much work has been devoted to the deter-
mination of experimental conditions where the effect of
anistropy is cancelled®!'"1®. A simple geometric rea-
soning shows that these conditions are realized when
a particular collection angle for the inelastically scat-

tered electrons is chosen The angle at which the effects
of anisotropy are cancelled was called magic angle as a
referring to X Ray absorption spectroscopy.

The theoretical values found for the magic angle in
these works varies from 1.364. (Paxton et al.) to 44,
(Souche et al. and Menon et al.) Daniels et al. found a
theoretical value of 29, but their derivation was shown to
contain an error - the correct value is also 49.'4. Paxton
et al.'? claimed to find 1.369, but their calculation must
contain a trivial mistake since the theoretical derivation
is correct and gives also 49,.

The only detailed experimental work was published by
Daniels et al.'®. Their finding (with a magic angle close
to 20.) was verified independently!.

These recent experiments suggested that theory must
have missed an essential point. Various possibilities were
proposed such as neglect of non-dipole transitions, in-
tensities coming from other Bragg spots or channeling
effects’™.

Recently the weak point in theory was discovered'*.
It could be shown that the usual relativistic correction
based on the papers by Mgller, Bethe, Fano, repeated in
textbooks and used in numerous studies of the DDSCS
applies only to isotropcic systems. In anisotropic sys-
tems, the corrections for the contributions parallel and
perpendicular to the incident electrons’ trajectory must
be treated separately.

The very reason for this unexpected behaviour is the
relativistic change of the electic field of the fast probe
electron. The electric field of a moving charge is no longer
spherically symmetric but "‘compressed"’ in the direction
of motion'”. As a consequence, the Coulomb coupling
o ¢~ occurring in the double differential inelastic scat-
tering cross section (DDSCS) becomes anisotropic. The
coupling to transitions with momentum transfer paral-
lel to the electrons’ trajectory becomes fainter, and the
coupling to transitions perpendicular to the trajectory
becomes stronger. Since these changes act in opposite



ways, their effect on the magic angle is dramatic.

These findings were published in a seminal short
paper'S. The derivation given there could have been con-
sidered incomplete for two reasons: first, reference was
made to an article by Bethe written in German'®, with-
out giving any details; second, only the Lorentz transform
of the momentum transfer Aq from the probe electron’s
frame to the rest frame of the scatterer was considered.
The virtual photon exchange at relativistic speeds de-
scribed by Fano® was not taken into account explicitely.
In'® it was speculated that the remaining discrepancies
between theory and experiment could be explained by
this transverse virtual photon exchange. But there was
also indications that the inclusion of this effect yields the
same result!®.

In the present paper we put the previous findings onto
firm ground by following the original approach of Mgller?
in a form adapted to a beam of unpolarized probe elec-
trons. We can then discard the electron spin and need not
use Dirac spinors. This simplification makes the deriva-
tions much shorter and facilitates the understanding of
the underlying physics. We shall see that the expression
for the scattering amplitude given by Fano - including
transverse photon exchange - is identical to our previous
one, and no further correction need be done.

On the other hand, Fano’s statement that the longi-
tudinal and transverse contributions to the DDSCS can
be added incoherently - which can be traced back to the
work of Bethe?® and has been repeated several times?!22
- turns out to be wrong for anisotropic systems. This sur-
prising discovery bears important consequences on the in-
vestigation of relativistic DDSCSs of anisotropic systems,
including reliable values for the calculation of ELNES. In
the end, Fano’s statement seems to have been at the very
heart of the magic angle problem.

II. FULLY RELATIVISTIC BETHE THORY

In this section, we derive a relativistic expression for
the DDSCS based on Bethe’s theory'® for inelastic elec-
tron scattering. We express the perturbing potential
in the transition matrix element by the electromagnetic
scalar and vector potentials of the fast probe electron.
The advantage of the present approach is that contrary
to the original work of Mgller? we do not need Dirac ma-
trices or spinors, thus clarifying the underlying physical
principles. Still the result is exact in first order for non
magnetic materials.

In first order plane wave Born approximation the dou-
ble differential scattering cross section (DDSCS) for in-
elastic electron scattering on matter reads?>
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where m is the electron mass, |k; ¢) are plane waves de-
scribing the incident and outgoing probe electron, and |7),

|f) are initial and final states of the scatterer connected
by the transition induced by the perturbation. F,; are
the energies of the closed system before and after scatter-
ing, and V is the perturbation in the Hamiltonian of the
system. In the following, we restrict ourselves to a one-
electron model, that is we assume that only one electron
of the scatterer is involved in a transition at a time. This
is a good approximation whenever correlation is a minor
effect or can be treated approximately, such as in DFT
theory for inner shell ionization, or in the low energy loss
region when the joint density of states is an appropriate
model for intra- and interband transitions.

The unperturbed Hamiltonian of the scatterer with
eigenfunctions i), |f) is
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where p is the momentum operator and V; is the self con-
sistent potential of the scatterer. We shall use the "hat"
symbol for operators only in cases where confusion with
3- or 4-vectors could render the reading more difficult.

The probe electron moving at speed vy adds scalar
and vector potentials ®, A to the system. The perturbed
Hamiltonian is

H= (b= SA) 4 eV + ). (3)

T 2m

Comparison of Egs.2 and 3 shows that the perturbation
- 29
is
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Although the electric and magnetic fields responsible
for the perturbation are gauge invariant it is convenient
to use the Lorentz gauge since the differential equations
for the potentials are then Lorentz invariant??. In this
case the vector potential relates to the scalar one by

A="g (5)

c
Inserting Eq.5 into Eq.4, and retaining only the leading

terms up to order ¢~2 gives

V= e (1 — PYO) (6)

mc?

for the perturbation in first order Born approximation.
Note that V' is a function of the distance between probe
electron at position r and target electron at R.

The matrix element (k;|V|k) can now be calculated,
using the shift theorem for Fourier transforms, as

(kilV k) = ﬁ/d?’r eiqu(r—R) = (271r)3 V(q)eiqR.

(7)
where V(q) is the Fourier component of the perturbation
for wave vector q = k; — ky. In the Lorentz gauge, the




scalar potential ® of the probe electron obeys the field
equation

1 0%®

In the rest frame of the scatterer, p = ed3(r — vgt) rep-
resents the moving electron.

In order to solve Eq.8 we switch to the (q,w) repre-
sentation: Here, the field equation becomes a simple al-
gebraic equation

2

w
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with solution
& —4red(w —2qv0). (10)
s

The term w?/c? in the denominator is a direct conse-
quence of retardation in the relativistic description of the
Coulomb interaction. This term is responsible for the in-
creased Coulomb coupling. The delta function relates a
particular energy loss £ = Aw of the incident electron to
a momentum transfer

hq, = E/ vy, (11)
that is, it selects a characteristic (and minimum) momen-
tum transfer in the transition. For convenience we have
defined a coordinate system with the z-axis parallel to
the incident particle’s trajectory vg. Inserting Egs.10, 7
and 6 into Eq.1 we obtain for the DDSCS

d*c . 2yme? o2
OEOQ - [( h2 )] (qa

(12)
The delta function still describes energy conservation of
the closed system. Its argument has been rewritten such
that the energy loss E of the probe electron occurs ex-
plicitely. It must equal the energy gain E; — F; of the
scatterer. The relationship between q and the scattering
angle is given by the scattering geometry

=k} + k? — 2k;k; cos V)

For small ¥, the cosine can be expanded to quadratic
order, and with k; ~ k; we obtain

¢ =k +

For medium acceleration voltages < 400 keV the ob-
servable momentum transfers in inelastic electron scat-
tering are <~ 10°/m. In this momentum range gag < 1,
so the dipole approximation is valid. This simplifies ex-
pression 12 further. Expanding the operator the leading
terms (linear in R) are

PVvo
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The constant term does not contribute to the matrix el-
ement according to orthogonality of the initial and final
states. Observing

(i|p|f) = iwis (i|R|f) (14)

1

m
the fourth term is of order R? and will be neglected.
In other words, the dipole approximation corresponds to
taking only the second and third term in Eq.13 when cal-
culating the matrix element of Eq.12. With the boundary
condition Eq.11 this is

Rvy ve

|f> = i(q — q:z€; 6_2)<Z|R|f>

(i|iqR — iw; ¢ (15)

o2

We can bring eq.12 in a final form. Inserting the ma-
trix element eq.15, and the boundary condition eq.11 we
obtain

0o 442 k
5m0 = g7 & oW ) (16)
with30
qz
q= y (17)
qz
0
d=q-| 0 (18)
q,zﬂ
and the abbreviation
Q =q% — 24

§)|/B>|Z_5(T%jt*ﬂz‘tlﬂfg) relativistic factor. The dynamic form

factor (DFF) in dipole approximation is

Saip(d', E) = Y [(fla'R|)[*§(Es — Ei — E).
if

(19)

This is exactly the equation given by Mgller?, but for
non-magnetic materials.

Some comments are in place on Eq. 16. The prefactor
has decreased, that is the DDSCS has increased. This
was due to the use of retarded potentials. One also re-
marks that the denominator is a relativistic 4-scalar and
as such Lorentz invariant?®>. The argument of the DFF
has also decreased but only for transitions with q vectors
in z-direction. The combined effect tends to increase the
DDSCS for scattering angles close to

. E
9, =L

ki 24T

where T is the classical kinetic energy of the probe elec-
. . 12 .

tron. For isotropic systems, Sg;p o< ¢'~ we obtain

8%c

9% 4+ 92(1 — p2)?
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(77 + 21— 7))
(20)
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This function is shown in fig. 1 for 100, 200, 400, and
1000 keV, scaled to #,. At high energy the DDSCS has a
dip in forward direction. Such behaviour was predicted
on the basis of dielectric theory?® and experimentally

confirmed?”.
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FIG. 1: DDSCS as a function of incident energy (from bottom
to top 100, 200, 400, 1000 keV). Abscissa in units J..

III. THE VIRTUAL PHOTON EXCHANGE

We can rewrite Eq.16 as

( )| (S amin| ey

3E39
which is exactly the form given by Mgller.

We separate the term containing e, into longitudinal
and transverse components where the "transverse'" unit
polarization vector t of the virtual photon is perpendic-
ular to the "longitudinal" momentum transfer, t 1 q.

€:q

e;=—qte;t
q?

After minor algebra eq.21 reads

o 27\ 2 e,
aéméf(i%) '(q%—m)“f‘m\ (22)
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When we replace the prefactor by
2

2 2 4k?
(=) & 23
ag he 32
we obtain the expression given by Fano?
The first term is a pure Coulomb interaction term, i.e.

longitudinal and not retarded. The relativistic effect is
visible as an additional term that can be interpreted as

the exchange of a virtual photon with polarization per-
pendicular to q. In fact, this form is obtained directly
when instead of the Lorentz gauge the Coulomb gauge is
used for the potentials. The equivalence that we proved
above is a consequence of gauge invariance. The expres-
sion given in!® is correct. We have thus excluded that
virtual photon exchange can explain the remaining dis-
crepancies between theory and experiment.

IV. THE MAGIC ANGLE

We generalize here the derivation given in'® for uniax-
1al anisotropy. With the transition matrix

R ={R;}

Rji =Y (i|Rj|f){fIR|i)S(E — E; + Ey)
i, f
the DFF Eq.19 is
Saip(d, E) = q'Rq’. (24)

It can be shown that under very general conditions®! the
transition matrix is diagonal in its natural coordinate sys-
tem (i. e. where the scatterer has the highest symmetry)

R = A(R;;) (25)

We note in passing that Sy, is a quadratic form.

check the consistent use of q' (the relativ. corrected q)
and zyz wnstead of z1,2,3

By definition, the magic angle is that collection angle
© at which the partial cross section

2 27
Ao(T,0,F) = 2L kf/ / S S E) sy (26)

is independent of the specimen’s orientation. Let T' be
the tilt of the axis R3 with respect to the incident elec-
tron’s trajectory z over axis x, and let the angle between
the axes R; and z be W. The rotation relating the two
coordinate systems is then described by the unitary ma-
trix

. cosU —cosT'sin¥ sin[sinW¥
U= | sin¥ coslcos¥ —cosWUsinl
0 sinI cos

In the laboratory system {z,y,z} the transition matrix
reads

R = O(0) " A(R:)O(T). (27
Preparing for the angular integrations over azimuth ¢
and scattering angle ¥, we use the momentum transfer q
from Eq.18 in the small angle approximation

ki0sing
q = kiVcosyp (28)
kiﬁe/’Yz



With Eqgs. 27 and 28 the DFF, Eq.24 can be expressed

in terms of angles ¢, 9, ' With these prerequisites, 4
the ¢ integral in the partial cross section Eq.26 can 35
be performed first. The terms containing sin ¢, cos ¢ or 3
sin @ cos ¢ vanish according to orthogonality. After some
algebra we obtain 25
2
Ay* 7 kg 15
Ac(l',0,F) = - '
o(l,®, B) agk; ki 1
{R11 [a(cos® T sin? ¥ + cos? ¥) 4 csin? T'sin? B+
+ Ras [a (Cos2 I'cos? ¥ + sin? U)+ec sin? T cos? \11]0—4
+ Ras [c cos’T + a sin? F]}
with
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The result has a remarkable structure. It is a linear com-
bination of the three transition matrix elements R;; with
I'- and W-dependent coefficients. The factors a and ¢
can be interpreted as the coupling constants of the probe
electron to transitions with momentum transfers perpen-
dicular and parallel to the trajectory. For I' = 0 these
coincide with transitions involving matrix elements Ri;
(OI‘ R22) and R33.

In the non-relativistic limit, Q@ — ¢?,v — 1. It is evi-
dent from Eq. 30 that the relativistic correction increases
the coupling by the common denominator (92 + 92 /4?)?,
but the coupling to transitions Rss is diminished by the
relativistic factor y~* which counteracts the first effect.

Expression 29 is independent of the tilt angles ¥, T if
R11 = Rzg = R33 or if

a=c. (31)

The first condition means isotropy and need not be dis-
cussed further. The second condition defines the magic
angle. Fig. 2 shows the functions ¢ (thick line) and a (thin
line) as a function of O, for 200 keV incident energy. The
crossing of the curves defines the magic angle. The solu-
tion of Eq. 31 turns out to be a function of ¥/4., so the
abscissa is given in units of ¥, here and in the following.

In the non-relativistic limit, ) = ¢%,4 — 1 we obtain
the dashed lines. Now the reason for the dramatic effect
of the relativistic correction is visible: it has diminished
the coupling constant ¢ and increased the constant a,
thus changing the crossing of the curves significantly.

Fig. 3 shows the magic angle as a function of incident
energy. At 200 keV it is found numerically to be 1.46 9..
The non-relativistic value is 3.97 9,

The table gives values obtained by solving Eq.31 with
the Newton algorithm.

4.5 T T T T T T T T

_ -Qu\ 1 1 1 1 1 1 1 1
0( O} . . .

FIG. 2: Prefactors a and ¢ of the functions R;; and Ras,
Eq. 30. thick lines: c, thin lines a. The crossing defines the
magic angle. Dashed: non-relativistic factors. Abscissa in
units 9Y..

Magic angle/¥.

0 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Incident Energy [keV]

FIG. 3: Magic angle (in units 9.) as a function of incident
energy. Abscissa in keV.

V. INCOHERENT SUMMATION

Fano® argues that in the Coulomb gauge the longi-
tudinal and transverse terms can be added incoherently
since they belong to different selection rules. In fact, if
a longitudinal perturbation in direction z, say, induces
an s— p, transition, then the transverse component is
ineffective for this transition (it rather induces s — py).

A closer inspection shows however that this is only true
for isotropic systems. Indeed, in the Coulomb gauge the
matrix element of Eq.22 can be rewritten

1

(q peest gla—COGIRIA. (32)
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magic angle [9.]

Eo [keV] ¥

0 1.
50 1.09785
100 1.19569
150 1.29354
200 1.39139
250 1.48924
300 1.58708
350 1.68493
400 1.78278
500 1.97847
1000 |2.95695

The DFF, Eq.24 is then

Saip(q', E) = (q—Ct)f{(q—Ct) = qfiq—}—C%fit—ZCﬂ%[th].

(33)
The first term is the non-relativistic DFF in dipole ap-
proximation, the second one is the relativistic correction
from the exchange of the virtual photon, and the last
term describes interference between the two terms. It is,
in general, not zero since the vector Rt is not perpen-
dicular to q. Only when the matrix elements R;; are all
equal this term vanishes according to the orthogonality
of q and t.

The statement of Fano corresponds to the DFF

Srano (d', E) = qRq + tR¢ (34)
that is, neglecting the interference term. This expression
is correct for isotropic systems. tR# is the only correction
term.

When we calculate the prefactors a and ¢ with Eq.34
we obtain the results shown in fig. 4. The magic angle is
now 4.27 9.

(The results shown in figs. 4 to 7 relate
to an incident energy of 200 keV).

Obviously this approach to the calculation of the magic
angle is wrong. Referring to Eq.19 the DDSCS can be
separated into terms stemming from transitions involv-
ing the operators &, y and z. When the specimen is
oriented with its axes Ry, R, R3 parallel to the labora-
tory system xz, y, z the cross terms between zy, zz, yz
vanish. The factors a and ¢ can then be interpreted
as the angular integrals over the DDSCSs for transi-
tions involving operators & and y perpendicular to the
incident beam direction, and Z parallel to the incident
beam. The ELNES of the graphite K edge is a good
example (assuming that at given energy loss only ¢* or
7* final states are available). For uniaxial anisotropic
systems, [(2)]? ) # |[(2)|* where 7 is some
general position vector in the x-y plane, we can

define two DDDSCSs

4’72 kf 2 2V /502

g1 =

(35)

o = i k—quz
[ aZQ? k; " ¢

(&)

(36)

3.98
2.92
2.25
1.790
1.46
1.22
1.04
0.89
0.78
0.61
0.25

-05 L L L L L L I I I
25 3 35 4 4.5 5

9/0e

FIG. 4: Full lines: prefactors a and ¢, Eq. 30 compared with
calculations neglecting interference, based on Eq.34 (dashed),
for 200 keV incident energy. thick lines: ¢, thin lines: a.
The crossing defines the magic angle which is 4.27 9. in the
Fano approach. Abscissa in units 9..

They are shown in fig.5, normalized to 1. They can be
visualized as angular scattering distributions when the
scatterer allows only transitions s — p,, or s — p, with
p-orbitals oriented parallel to the respective axes of the
laboratory frame, i, e. p, has its axis parallel to the
incident electron trajectory. o is dashed, o} is dotted.
The thin lines are non-relativistic values, i. .e. the first
term in Eq.34, the thick lines include the second term.
It seems that the corrections are indeed small. The full
lines show the sum of o) and o). This sum correctly
describes the relativistic correction for isotropic systems,
as already shown in fig.1.

The interference term —2C’qf{t in Eq.33 is shown
in fig. 6, again separated into perpendicular and z-
components. The terms are of order 20 %, with a max-
imum attained below the magic angle. The terms have
equal value, but opposite sign.

It is the very interference that explains the small magic
angle. Fig.7 shows o and o} with and without interfer-
ence term.

Without interference terms, all corrections are posi-
tive, and the magic angle changes only slightly. The
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FIG. 5: Normalized DDSCS, Egs.35, 36 o1 (dotted) and o
(dashed) , and their sum (full lines). Thin lines are non-
relativistic, thick lines in the Fano approximation, Eq.34. Ab-
scissa 1s In units of ¥Y..
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FIG. 6: Interference term for oy (dashed) and o (dotted).
Abscissa in units 9.

correct treatment including interference causes a strong
negative correction for oy and an even stronger positive
correction for o). The angular integrals become then
equal at much smaller ©. Interference explains also why
in isotropic systems the correction to the DDSCS is small:
In the sum over o; and o the corrections with different
sign cancel completely.

The relativistic correction in the Coulomb gauge al-
lows another interesting insight: it acts as an additive
term in the amplitude, of order ~ BE/he ~ q,(3% (see
the boundary condition for ¢;, Eq. 11). Therefore the
interference term is of order ~ 32 whereas the direct cor-
rection term is of order ~ B%. It is only due to the fact
that the interference term vanishes for isotropic systems
that the relativistic correction is only of order ~ 8*. But

1 9\ T T - T - T
N o, with interference term --------
i o Fano -r-erece
\“. owith interference term —------
08 - o Fano =-------
0
?
Q 06 ]
[a)
°
@
N
g o4l |
£
S
P
0.2+ "'.' \ |
0 i . R
0 4 5

FIG. 7: Comparison of normalized DDSCSs for o1 (dotted)
and o) (dashed). Thick lines are Fano-corrected (Eq.34), thin
lines exact expression including interference terms. The per-
pendicular component is increased, the parallel component is
decreased.

for anisotropic ones - and this is most surprising - it is of
order ~ 2.

It can be cautiously presumed that some relativistic
corrections published in earlier work are not reliable.

For instance, the meticulous experimental
work of Daniels et. al.'®suggested nearly the
same magic angle for 100 and for 200 keV but
this may have been biased by their erroneous
theoretical premise and the considerable
experimental noise. To finally clarify the
situation it is therefore mandatory to perform
experiments at various incident energies under
the same geometry and with significantly
reduced noise. Work is in progress on this
subject.

It also means that the semi-relativistic or classical ap-
proximations used for the calculation of ELNES (which
were thought to be sufficient according to the negligible
relativistic effect in the medium voltage range) do not
hold for anisotropic systems. A thorough recalculation
will probably show some unexpected result.

VI. SEMI-RELATIVISTIC CORRECTION OF 9.

In the limit ¢ — oo Eq.12reduces immediately to
the non-relativistic expression for the scattering cross
section'®23, A well known form is

O [2me2

_ 2ky
BN (hq)2] B @ E)

(37)

The often applied semi relativistic correction accounts
only for the effect of the relativistic increase of mass
on the characteristic scattering angle. This angle 9.



defines the FWHM of the angular scattering distribu-
tion for given energy loss. In the dipole approxima-
tion, S(q, E) o ¢?, so the scattering distribution is a
Lorentzian in ¢,

8o 1
1o
OEOQ — q2+q2

(38)
and the FWHM is defined by

Az = 4z

v = qx/ki = QZ/ki = Ap/pi

where Ap is the momentum transferred in an exact for-
ward scattering event. For small energy losses, £ < Ejy

dp
Ap = — .
P dFE B,

The kinetic energy for fast particles Eq = p2/(2ym) de-

viates from the classical quadratic p? behaviour?, and

dE p
—_— = —— = .
dp  ymo
Therefore
_Ap E E

9, = (39)

Po povo  ymug’

or! ¥, = E/(2yT) with the classical kinetic energy
T = mv? /2 of the incident electron. This is a good ap-
proximation for incident energies up to 300 keV.

It should be noted that the relativistically corrected
characteristic angle stems from the scattering kinemat-
ics which are different for fast particles according to
the relativistic mass increase. They even apply to
the non-relativistic cross section, Eq.37. According to
the Lorentzian character of the angular distribution, ¥,
serves as a scaling unit. It is often convenient to use di-
mensionless scattering angles ¥/9.. In principle, both the

classical and the relativistic scaling angles can be used.
It is however more reasonable to use the latter one since
it defines the experimental FWHM. We have used this
unit in all calculations.

One could think of using a characteristic
scattering angle relativistically corrected
such that the magic angle would always be
~ 49,. This would however be in evident
contradiction to the basic definition of the
characteristic scattering angle (as defining
the angular half width at half maximum). The
contradiction becomes evident in isotropic
systems.

VII. CONCLUSION

A thorough derivation of relativistic corrections to
the DDSCS in first order plane wave Born approxima-
tion, based on the relativistically correct scalar and vec-
tor potential of the fast probe electron occurring in the
interaction Hamiltonian shows that the virtual photon
exchange® need not be considered separately. It only oc-
curs in the Coulomb gauge. In the Lorentz gauge used
in our previous theory® it is implicitely included.

Interference terms play an important role and turn out
to be of order B? for anisotropic systems, acting oppo-
sitely for transitions involving momentum transfers par-
allel and perpendicular to the probe electron’s trajectory.
This explains the small magic angle found experimen-
tally. We showed that the standard corrections of order
B* routinely applied in EELS are only valid for isotropic
systems whereas in anisotropic ones the correction is of
order A?. This finding bears important consequences
for the correct interpretation of ELNES in anisotropic
systems and may explain previous discrepancies between
theory and experiment.
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