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Low lying twisting and acoustic modes of a rotating Bose-Einstein condensate
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(Dated: February 10, 2006)

We present a calculation of the low lying spectrum of a rotating Bose-Einstein condensate. We
show that in a cylindrical geometry, there exist two linear branches, one associated with usual
acoustic excitations, the other corresponding to a twisting mode of the vortex lattice. Using a
hydrodynamical approach we derive the elasticity coefficient of the vortex lattice and calculate the
spectrum of condensate in a three dimensional harmonic trap with cylindrical symmetry.

PACS numbers: 03.75.-b, 03.75.Kk, 03.75.Lm

By contrast with classical hydrodynamics, a quantum
fluid cannot rotate like a solid body. Instead, it car-
ries quantized vortices self organizing along a triangu-
lar Abrikosov lattice when the rotation is fast enough.
Vortices constitute a universal characteristic of quantum
fluids and were directly observed in systems as different
as liquid helium [1], superconductors [2], gaseous Bose-
Einstein condensates (BEC) [3, 4, 5, 6] and very recently
fermionic superfluids [7]. The study of the excitations of
a vortex lattice was initiated by the work of Tkachenko
[8] that was restricted to the study of the propagation
of waves transversely to the rotation axis in an incom-
pressible superfluid. The full understanding of these ex-
citations in the case of dilute gases remains a challenge,
due to the non trivial interplay between the elasticity of
the vortex lattice and the phonon modes associated with
the compressibility of these systems. Partial results were
obtained in the case of a single vortex line [9, 10], two-
dimensional systems [11, 12, 13], fast rotating systems
[14, 15, 16] or using the rotational hydrodynamics for-
malism [17, 18, 20], but a complete theory remains to be
found.
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FIG. 1: Left: Structure of the twiston mode for a cylindri-
cal BEC carrying three vortex lines. Right: arrangement of
the vortex lattice in the planes defined by the shaded areas.
The vortex lattice is rotated by an angle θ(z) depending on
the axial position along the trap. This twisting induces the
propagation of an elastic wave along the condensate axis.

In this letter, we present a study of the low lying modes
propagating along the axis of an elongated vortex lattice.
Up to now, these modes have only been considered for
homogeneous and unbounded fluids [16]. In the more
realistic case of a trapped gaseous BEC, we show that
these modes can be understood as Goldstone modes aris-
ing from U(1) and O(2) broken symmetries, associated
respectively with the choice of the phase of the macro-
scopic wave function of the condensate and of the direc-
tion of the vortex lattice. These two broken symmetries
thus give rise to two low energy excitation branches as-
sociated respectively to a modulation of the phase of the
wave function and of the direction of the vortex lattice
in the z direction. Since the gradient of the phase is
proportional to the velocity of the BEC, the first branch
is associated with an acoustic wave propagating along
the cloud (“phonon” branch). The second mode corre-
sponds to the twisting of the vortices and is related to
the elasticity of the lattice (“twiston” branch, Fig. 1).
This scheme will be worked out first using a perturba-
tive resolution of the Bogoliubov-de Gennes equations
in a cylindrical trap, a method already used in the sta-
bility analysis of solitons [19]. We will show that this
solution can be interpreted in a macroscopic framework,
leading to elasto-hydrodynamical equations for the mo-
tion of the BEC in the presence of the vortex lattice. In
particular, we propose the first derivation of the elastic
response coefficient of the vortex lattice, starting from
first principles. Finally, local density approximation will
allow for the calculation of the lowest energy modes in
the presence of an axial trapping.

We consider a dilute Bose-Einstein condensate rotating
at an angular velocity Ω0 along the z axis. At rest, the
system is described in the mean-field approximation by
a macroscopic wave-function ψ0 solution of the Gross-
Pitaevskii equation

(
ĥ0 + g|ψ0|2

)
ψ0 = 0. (1)

where the single particle hamiltonian ĥ0 is given by

ĥ0 = − h̄2

2m∇2 +V (x, y)−Ω0L̂z − µ0. V is the transverse

trapping potential, L̂z the angular momentum in the z
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direction, µ0 the chemical potential and g the coupling
constant characterizing the 2-body interactions. We as-
sume for the moment there is no confining potential in
the z direction. Nevertheless, we impose periodic bound-
ary conditions in this direction, with period L, to allow
for the normalisation of the wave-function.

In the linear regime, we write function ψ of the con-
densate is given by ψ = ψ0 + δψ. δψ is then solution of
the Bogoliubov de-Gennes equations ih̄∂tΦ = L̂Φ, with
Φ = (δψ, δψ∗) and

L̂ =

(
ĥ0 + 2g|ψ0|2 gψ2

0

−gψ∗
0

2 −ĥ0 − 2g|ψ0|2

)
. (2)

We recall a few properties of L̂ relevant for the dis-
cussion [21, 22]. First, although L̂ is not hermitian, it
is orthogonal for the quadratic form with signature (1,-

1) defined by (Φ1|Φ2) =
∫
d3

rΦ
†
1
σ̂3Φ2, where σ̂3 is the

diagonal Pauli matrix. Second, the eigenvectors Φα of
L̂ do not constitute a complete basis. Indeed, one can
show that each zero energy mode is associated with an
anomalous Jordan mode Φ

′
α such that L̂Φ

′
α = Φα. In the

case under study here, we assume there are only two zero
energy modes associated respectively with the U(1) and
O(2) freedom of choice of the phase of the wave function
and the orientation of the vortex lattice. The associated
eigenvectors are respectively denoted by Φp (phase sym-
metry) and Φr (rotational symmetry) and are given by
[21, 22]

Φp =

(
ψ0

−ψ∗
0

)
Φ

′
p =

(
∂µψ0

∂µψ
∗
0

)

Φr =

(
L̂zψ0

−(L̂zψ0)
∗

)
Φ

′
r =

(
∂Ωψ0

∂Ωψ
∗
0

)
,

(3)

Let us now proceed with the calculation of the long
wavelength modes of L̂. Using the translational in-
variance of the system we can write Φα(x, y, z) =

Φ̄α(x, y)eikαz . We therefore see that L̂ = L̂0 + δL̂,

where L̂0 acts on the transverse degrees of freedom only,
δL̂ = ǫkα

σ̂3, with ǫkα
= h̄2k2

α/2m.
Since we only care for long wavelength eigenmodes,

we have ǫkα
vanishingly small and we can treat δL̂ as

a perturbation of L̂0. However, starting the perturba-
tion expansion from the zero energy modes Φr and Φp

of L0 associated with the rotational and phase symme-
tries gives rise to linear excited branches. Indeed, due
to the non diagonalizability of L̂0 the first order term

of the low momentum expansion scales like ǫ
1/2

kα

rather
than ǫkα

[23]. This singularity can be proven rigorously

by diagonalizing the projection of δL̂ on the vector space
spanned by the zero energy and anomalous modes. Phys-
ically, this result corresponds to the fact that one should

recover a linear phonon dispersion law Eα ∝ kα ∝ ǫ
1/2

kα

associated with usual acoustic waves.
Working out the perturbative expansion in power of√
ǫkα

yields

Φ̄α = (arΦr + apΦp) + Eα(arΦ
′
r + apΦ

′
p) + ..., (4)

where Eα is solution of the eigenequation

∑

γ=r,p

(ǫkα
Aβγ − E2

αBβγ)aγ = 0, (5)

with β ∈ {r, p}, Aβγ = (Φβ |σ̂zΦγ)/L, and Bβγ =
(Φβ |Φ′

γ)/L. L is introduced here so that A and B are
defined as 1D linear quantities that we can use in a lo-
cal density approach as demonstrated later in this paper.
Using Eq. 3 yields the simple expressions

(Φp|σ̂zΦp) = 2N (Φp|Φ′
p) = ∂µ0

N

(Φr|σ̂zΦr) = 2〈L̂2
z〉 (Φr|Φ′

r) = ∂Ω0
〈L̂z〉

(Φp|σ̂zΦr) = 2〈L̂z〉 (Φp|Φ′
r) = ∂Ω0

N

(Φr|σ̂zΦp) = 2〈L̂z〉 (Φr|Φ′
p) = ∂µ0

〈L̂z〉,

(6)

where N is the total atom number [24]. The set of
two equations (5) yields two different linear excitation
branches. The highest branch has a non-zero velocity
for vanishing Ω0 and can therefore be identified with a
phonon mode. The other branch has a vanishing velocity
at small Ω and is therefore the twiston mode.

It is striking that the coefficients of Eq. (5) can be
expressed as simple combinations of macroscopic quanti-
ties such as the atom number or the angular momentum.
Similarly to superfluid hydrodynamics, this suggests that
the formalism developed here can be expressed in term
of an elasto-hydrodynamical theory. In order to clarify
this link, we first note that the frequency of the long
wavelength modes we are interested in is much smaller
than the frequencies characterizing the evolution of the
transverse degrees of freedom. This means in particular
that the dynamics in the (x, y) plane is frozen and that
we can therefore define local chemical potential µ(z, t),
angular velocity Ω(z, t), phase of the wavefunction χ(z, t)
and angle of the vortex lattice θ(z, t). In other word, the
wave function can be written as

ψ(x, y, z, t) = ψ0(µ(z, t),Ω(z, t), χ(z, t), θ(z, t), x, y) (7)

where ψ0 is the solution of the Gross Pitaevskii equation
(1). Expanding the macroscopic quantities around their
equilibrium values yields

δψ = δµ∂µ0
ψ0 + δΩ∂Ω0

ψ0 + δχ∂χ0
ψ0 + δθ∂θ0

ψ0, (8)
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where µ = µ0+δµ, Ω = Ω0+δµ, etc. Noting further that
δψ is the first component of Φα and that ∂χψ0 = iψ0 and

∂θψ0 = −iL̂zψ0/h̄, we see that Eqn. (8) is equivalent to

Φ = iδχΦp − i
δθ

h̄
Φr + δµΦ′

p + δΩΦ
′
r. (9)

Comparing to Eq. (4) this leads to the identification

ar = −iδθ/h̄ = δΩ/Eα (10)

ap = iδχ = δµ/Eα, (11)

which gives, using the identity ∂t = −iEα/h̄,

∂tδθ = δΩ (12)

h̄∂tδχ = −δµ (13)

The interpretation of these two relations is straight-
forward. Indeed, eq. 12 is the analogue of the Kelvin-
Helmholtz theorem [25] and implies that the vortex lat-
tice rotates at the same speed as the local velocity flow.
As for eq. 13, it is a version of the Bernoulli theorem,
with h̄δχ/m playing the role of the velocity potential.

Starting from the identification of the ar,p coefficient,
we now show that the eigensystem (5) can be interpreted
as conservation laws for the system. Indeed, the conser-
vation of particle number, momentum and angular mo-
mentum in the z direction yield at first order in pertur-
bation the very general set of equations

∂tδn+ ∂z(n0v) = 0 (14)

mn0∂tv + ∂zf = 0 (15)

∂tδℓz + ∂zΓ = 0 (16)

where n0 is the linear particle density, v is the local ve-
locity in the z direction, ℓz is the angular momentum per
unit length. f and Γ are respectively the 1D momentum
and angular momentum currents, which can be identified
with a force and a torque and will be calculated from the
microscopic formalism presented above.

Combining Eq. (14) and (15) and using a generalized
Gibbs-Duhem relation [26] for a rotating system df =
n0dµ+ ℓ0zdΩ yields

∂2

t [δµ∂µ0
n0 + δΩ∂Ω0

n0] =
1

m
∂z

[
n0∂zδµ+ ℓ0z∂zδΩ

]

(17)
where we have used the adiabatic following of the trans-
verse degrees of freedom to set δn = δµ∂µ0

n0 + δΩ∂Ω0
n0.

After making the replacement h̄∂t = −iEα and ∂z =
ikα, we see that Eq. (17) is strictly equivalent to the
α = p component of Eq. (5).

A similar analysis shows that the α = r component of
Eq. (5) is equivalent to the angular momentum conser-
vation if the current Γ is taken to be

Γ = ℓ0zv − κ∂zδθ, (18)

where κ = ∆L2
z/Lm, and ∆L2

z = 〈L̂2
z〉 − 〈L̂z〉2/N is

the fluctuation of the angular momentum. The term of
Γ proportional to the local velocity v corresponds the
convective part of the angular momentum current. The
second term is associated with the elastic response of the
vortex lattice to a torsion and κ is therefore the elastic
modulus of the lattice.

The hydrodynamical formalism developed above can
be used to extend our calculation to the case of a weak
trapping in the z direction. In this case, local den-
sity approximation can be applied. At equilibrium, the
angular velocity is still uniform along the cloud. By
contrast, the local chemical potential is now given by
µ0(z) = µc −mω2

zz
2/2, where µc is the chemical poten-

tial at the center of the trap. This permits to define local
matrices A(z) and B(z) and yields the equation for the
vector X(z, t) = (δµ(z, t), δΩ(z, t))

2m∂2

t [B(z) · X(z, t)] = ∂z [A(z) · ∂zX(z, t)] (19)

In general, A and B must be calculated using a numer-
ical resolution of the Gross-Pitaevskii equation. How-
ever, in the regime of fast rotation, quantities appearing
in Eq. (19) can be evaluated assuming a classical rota-
tionnal flow v = Ω0 × r. We have first checked that at
zero angular velocity we could recover the spectrum of
an elongated condensate studied in [27]. We have also
verified that the center of mass was indeed evolving at a
frequency ωz, in accordance with Kohn’s theorem. The
other eigenfrequencies ωα are evaluated using a varia-
tional method. We indeed note that the ω2

α are the

eigenvalues of the operator T̂ = B−1 · ∂z(A · ∂z·)/2m
which is hermitian for the scalar product defined by
〈Y |X〉 =

∫
Y

†(z) · B(z) · X(z) dz. We have calculated
the ωα using polynomial trial wave functions of order 5.
The variation of ωα for the two lowest twiston modes –
corresponding respectively to odd and even symmetries
[28] – is displayed in Fig. 2.

In conclusion, we have demonstrated the existence of
two low energy excitation branches of a rotating elon-
gated Bose-Einstein condensate. The validity of our cal-
culation is limited by two conditions. First the applica-
bility of the hydrodynamical formalism to evaluate the
matrix elements of A and B requires a dense vortex lat-
tice, hence a large rotation frequency. Using an imagi-
nary time evolution of 2D Gross-Pitaevskii equation [29],
we have checked it was true for Ω0

>∼ 0.8ω⊥. Second
the breakdown of the perturbation expansion will hap-
pen when the ωα become comparable with the frequency
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FIG. 2: Low lying twiston spectrum of a trapped rotating
Bose-Einstein condensate. The two branches correspond to
the frequency of the lowest odd (full line) and even (dashed
line) twiston modes and were calculated using polynomials
trial wave functions.

ωT of the first transverse excited mode, i.e. the low-
est Tkachenko mode. Using the expression of ωT found
in [15], we find that for typical values µ/h̄ω⊥ = 20
and ω⊥/ωz = 20, the perturbation expansion fails for
Ω0/ω⊥

<∼ 0.96. Although the width of validity of our
approximation might seem narrow at first sight, it must
be noted that experimentally regular vortex lattices are
only observed on a relatively narrow range of rotation fre-
quencies, comparable to our validity domain (Ω0/ω⊥ ∈
[0.7, 0.96] for [30]). A last issue concerns the experimen-
tal observation of twistons. It must be noted that, in
practice, it is difficult to excite directly the vortex de-
grees of freedom of a gaseous BEC and it is therefore
more convenient to excite an acoustic mode by perturb-
ing the trapping potential and to use the linear [31, 32]
or non linear [33] coupling to vortical modes. In princi-
ple, the coupling existing between acoustic and torsional
degrees of freedom should permit an excitation of the
twiston mode using an external potential. However, one
can show using perturbation theory that a simple mod-
ulation of the trap center or frequency is only weakly
coupled to the twiston mode. To obtain a significant cou-
pling to torsional modes, one therefore needs to impart
cubic or quartic perturbation to the gas.
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CNRS, Collège de France, ACI Nanosciences and Région
Ile de France (IFRAF).
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