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Abstract

The problem of estimating a regression function based on a regression model with (known)
random design is considered. By adopting the framework of wavelet analysis, we establish
the asymptotic minimax rate of convergence under the LP risk over Besov balls. A part of
this paper is devoted to the case where the design density is vanishing.
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1 Motivation

Suppose we observe n pairs of random variable (X1,Y7), ..., (X,,Y,) i.i.d governed by the equation

where the &;’s are Gaussian i.i.d with mean zero, variance one and are independent of the design
X1,...,Xn. We denote by g the density of X;. The function f is an unknown function of interest.
We wish to reconstruct f from observations (X1, Y1), ..., (Xn, Ya).

In the case where g is the density of an uniform law or satisfied some conditions of boundedness, this
statistical problem was studied by many authors under various risk and over various function spaces.
Quote for instance Ibragimov and Khaminskii (1982), Stone (1982) and Delyon and Juditsky (1996)
among others. Numerous statistical results can be found in the book of Tsybakov (2004). In this paper,
the accuracy of an estimate f of f is measured under the global IL? risk

RGJ)IW<Alﬂﬂf@Wﬁ),pZL

where we have denoted E the expectation with respect to the distribution P} of (X1,Y1),..., (Xy, Ya).

The benchmark for the performance of an estimator f over a function class X is the following minimax
LP risk: )
Rn(X) = inf sup E} < |f(x)—f(x)|pd;l:> .
f fex 0
The aim of our study is to investigate the minimax rate of convergence over Besov balls B (L) under
mild assumptions on g. First, we show that if g belongs to the following set:

_ . l maz(p,2)—1
6-{s ter (0.1} (12)

then for s > 0, 7 > p and » > 1 we have
Ru(B3 (L) =< n~ .

Let us notice that if g belongs to (1.2), then it is not necessarily bounded from below. Second, we
complete our minimax study by setting the minimax rate of convergence over Bfr’,,(L) for p > 7 in
the simplest case where g is bounded from below. To obtain the upper bounds, we use a non adaptive
procedure introduced by Delyon and Juditsky (1996) and some geometrical properties of the compactly
supported wavelet bases under the L norms (unconditional nature and Temlyakov’s property). Let us
precise that all the lower bounds are obtained via a consequence of Fano’s lemma. Finally, we prove
that these minimax results can be truly deteriorated for certain densities g which don’t belong to the
set G described in (1.2) .

This paper is organized as follows. Section 2 describes wavelet bases, some of their geometrical
properties in the P norms and the main function spaces of the study. The minimax results over Besov
balls and the associated proofs are presented in Section 3. Proofs of Propositions and technical Lemmas
are given in Section 4.
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2 Wavelet bases and function spaces

Throughout this paper we set LP([0,1]) = {f measurable on [0,1] | ||f[[5 = fol |f(t)[Pdt < +o00}. The
constants C' and ¢ represent any constants we shall need, and can be different from one line to one other.
The notation a =< b means: there exist two constants ¢ > 0 and C' > 0 such that ¢b < a < Cb. The
notations (a)+ and a A b mean respectively max(a,0) and maz(a,b).

2.1 Wavelet bases and geometrical properties in L? norms

First, we introduce the wavelet bases on the unit interval. Second, we set some results which will be
intensively used in the rest of this paper.

Definition 2.1 (Wavelet bases on [0,1]). Let us consider ¢ a father wavelet of a multiresolution
analysis on R and 1/) the associated mother wavelet. Assume that Supp(¢) = Supp(v) = [1 — N, N] and

[N oyt =1, [N tap(t)dt =0 for1=0,...,N — 1. Let

Sin(x) =28p(2x —k)  and  ¢;u(z) = 289 (2z — k).
Then there exists an integer T satisfying 27 > 2NN such that the collection
E={prn(), k=0,..,2" = 1; ;x(.); 5>7, k=0,...,27 — 1}
with an appropriate treatments at the boundaries, is an orthonormal basis of IL?([0,1]). See Cohen et al.

(1993) for further details about such wavelet bases.

Let 1 < p < oo. Any function f of LP([0, 1]) can be decomposed on & as

Za7k¢7k +ZZ§;1€¢]1€ x € [0,1],

kEA, i>TkeEA;

where o, = fo t)o;k(t)dt, Bk = fo )k (t)dt and Aj = {0, ...,27 —1}. Let us denote by Pr(f)(x)
the first term of this decomposition. The following lemmas set some inequalities linked to the basis &.
Lemma 2.1 (Concentration property). Let v > 0. There exists a constant C > 0 such that:

S lgiu(@)’ < 02%, zeo,1).

]CEA]'
Lemma 2.2. Let p > 1. For any j > 7 we have:

[ Z ;1P ()|} = 27371 Z |aj P

keA, keA;

The Lemmas (2.1) and (2.2) are obviously true if we exchange ¢ by . Let us introduce two
important geometrical properties concerning the weighted compactly supported wavelet bases under the
LP norms.

Lemma 2.3 (Uncondional nature-Temlyakov’s property). Let p > 1. Let us denote r_1 1 = ¢r .
Then the basis & is unconditional for LP([0,1]) i.e for all sequence u = (uj i)k we have:

Do wtillE =< NC YD D luiatbiel)E [
j>r—1ken; J>T—1keA;
Let 0 € R — {—271}. Then the weighted compactly supported wavelet basis &, defined by
€ = {277 0r(), k€ Ag; 27704 (); j > 7, k€ A}
satisfies the Temlyakov property i.e for all D;, C {7 —1,...} X A; we have:

(>0 3 1p,, 2792 E = > S 1p,, 12772

J>T—1keEA, J>T—1keEA;

The proof of the first point of Lemma 2.3 above can be viewed in Meyer (1990), we refer to Johnstone
et al. (2004, Theorem 2) for the proof of the second point.
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2.2 Function spaces

Definition 2.2 (Besov balls). Let N e N*, 0 < s < N, 1 <r < oo and 1 < 7w < co. For any
measurable function f on [0,1], we denote the associated N-th order modulus of smoothness as

s it </JN XN: (]Z) (=1 f(u + kh) ﬂ dU> %

k=0
where Jyp, = {x € [0,1] : x4+ Nh € [0,1]}. We say that a function f of L™([0,1]) belongs to the Besov

balls B, (L) if and only if
1
1, N r B
(/ (M) ldt) <L<x
0 ts t

with the usual modification if r = oco.

Lemma 2.4 below shows the link which exist between the Besov balls and the basis £ described in
Definition 2.1.

Lemma 2.4. Let0<s<N,1<p<ooand1<r <oo. We have

(ZJ_>71 (23‘(3+;) (zkeA_,» 18;.x Tr2_j>?) ) <1
(Sysr IR - 112)) " < L.

<

feB; (L)

3 Minimax study over Besov balls

Throughout this paper, we observe the model (1.1) where f and g are assumed to be compactly supported
on [0, 1]. Moreover, we suppose that || f[locc = sup,ejo 1y |f(@)] < oco.

Considering the parameters (s, 7, r) of the Besov balls B} , (L), we adopt the following notations:

1 1
s (s—%)+5 _ T
7@ and E—7T5+T.

In the case where m > p, Theorem 3.1 below shows that the minimax rate of convergence over
B; (L) can be of the form n~*'? under some condition of integrability on g. Theorem 3.2 exhibits the
minimax rate of convergence over B .(L) for p > 7 when g is bounded from below. Proposition 3.1
completes our minimax study.

Theorem 3.1. Let 1 < p < co. Assume that
1 /
—eL”1([0,1]) (3.1)
g

where p' = max(p,2). Then for s > 0,1 <r <oo, p <7 < o0 and n large enough, we have
Ra(BS, (L)) = n=o7.

Theorem 3.2. Let 1 <p < co. Assume that g is bounded from below. Then for 1 <mw <p, s > % + %,
1 <r < oo and n large enough, we have:

Ro(B2, (L)) = n=er if >0,

Ru(B2, (L)) = (M)‘”’ if 0>e

n

For the case where e = 0, there exist two constants C' > 0 and ¢ > 0 such that:
1 a2p 1 oo B

Proposition 3.1. There exist densities g such that the minimaz rates of convergence obtained in The-
orem 3.1 and Theorem 3.2 can not be attained.
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3.1 Proofs of Theorem 3.1 and Theorem 3.2

Let u € {0,1} and ¢, €]0,1]. Let us consider the following procedure:

ful@) = " djordjon(@ +u D > Bj’kl{|ﬁj,k\2n\/@}¢j’k(@’ z €0,1], (32)

kEA, Jo<j<ji1 k€A,

where the estimators & and Bj’k are defined by:

1~ Y . 1N Y,
Gk =—D  —~Pik(Xi),  Bik=—) —~Vik(Xi) (3.3)
oon ; 9(Xi)™’ ) ; g(X:)
and the integers jo and j; are chosen such that:
1
cilye 0)+2 q{jglo} n
i = paT and 9 = n > G-I+ '
In(n)

Proof of Theorem 3.1. Proof of the upper bound: Assume that the condition (3.1) holds. Using Minkowski’s
inequality, Lemma 2.4, Lemma 2.2 and the fact that f € B; (L) C B, (L) (since 7 > p), the L? risk

of fo can be dominated as follows:

B}~ fI5) < C (B}o — Pu(DIR) + 125 () — F12)

IA

020G 37 Ej(lages — ajal?) +275 | (3.4)
keAj,
To bound the first term, we need the following lemma:

Lemma 3.1 (Moments inequality). Let2 < a < 00, j > 7 andn € N*. Assume that % € Le~1([0,1)).
Then there exists a constant C' > 0 such that:

14, a L e 9
Bjlase —esul) <0 (v~ [T o7t [T w).

First, let us study the case where 2 > p > 1. Using Jensen’s inequality and Lemma 3.1 for a = 2,
we have:

n(|a D n(|a 2\ & -1 ! |¢j0,k($)|2 ?
Ef('qjo,k - aj07/€| ) < Ef(lajmk - ajoJfl )2 <C|(n g(:v) dx .
0

The [,-Hélder inequality, Lemma 2.1 and the condition (3.1) yield:

1
> Bk — ajokl?) < CnE (Y / Wig)zdz (Card(A)' 2
0

kEA, kEA, g
1 5
< Cn°k <2J’°/ de> 9i0(1=8) < cgion =%, (3.5)
o 9(z)

Now, let us consider the case where p > 2. It follows from Lemma 3.1, Lemma 2.1, the condition (3.1)
and the choice of jy that:

LY ke, [@jok (@) LY ken, [@o.k(@)?
> EBF(lage s —aul’) < C (”1p/ kEAJz?fl(J;) dm‘L”fg/ Ee R0 dx
= 0 9 0 92 (x)
< C (2“’7%1*1' + QfOn*%) < C2iopn~8. (3.6)

Putting (3.4), (3.5), (3.6) together, we deduce the existence of a constant C' > 0 such that:

s Ej(llfo— fI5) < C (2% nk +270) < oo
FeBs (L)
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for p > 1. This implies that R,,(B ,.(L)) < Cn=P.

Proof of the lower bound: Before introducing a consequence of Fano’s lemma, let us recall that the
Kullbak-Leibler divergence K (P, Q) between P and @ is defined by:

K(P.Q) = {C{‘Oln(%)dp if P<<Q,

otherwise.

Lemma 3.2 (A consequence of Fano’s Lemma). Let A be a sigma algebra on the space . Let
A, e A i e€{0,1,...,m} such that Vi # j, A,NA; =a. Let P;, i € {0,1,...,m} be m+ 1 probability
measures on (2, A). Then

sup  P;(AS) >min (271, Vmexp(—3e ") exp(—xm))
1€{0,...,m}

where

—  inf K(Py,P .
Xm = inf ’m}mé k> Py). (3.7)

For a proof, we refer the reader to DeVore et al. (2005). For further details and applications of
Fano’s lemma see Birge (2001) and Tsybakov (2004).
For all € = (ex)rea,; € {0, 132 let us set

gé(x) = Z Ek'(/)j,k(x)’ T € [07 1]v

keA;

where j is an integer to be chosen below and v; < 279(s+3) Since the wavelet coefficients of ge are equal
to vjex, it follows from Lemma 2.4 that g. € B .(L). The rest of the proof is based on the theorem
of Varshamov-Gilbert (see for instance Tsybakov (2004, Lemma 2.7)). It said that there exist a subset

E; = {©, .. T} of {0,1}? and two constants ¢ €]0, 1], o €]0, 1] such that Y0 < u < v < Tj:

Z |6,(€u) — e,(cv)| > I and T > e?
keA,

Considering such a E; and using Lemma 2.2, for v # v and w,v € {0, ...,T;} one gets:

—0227 2JZ|€ - 7j)|%2 20;
keA;

||g€(u) -

where 0; = 02%'yj. Using Chebychev’s inequality, for any f we have:

5P sup  EF(If—fIB) = sup (A7) =m
/ feB: (L) f P ue{0,...,T;} g(”)

where the sets A, defined by A, = {||f— Geew ||p < (5j} satisfy A, N A, = @ for u # v and u,v €
{0,...,T;}. Thus, Lemma 3.2 gives us

pr > min (271, /Ty exp(~3¢ ™) exp(—x1,)) - (38)

where . is defined by (3.7). Now, let us consider the following lemma which will be proved in Appendix.

Lemma 3.3. For any function f1 and fa measurable on [0,1] and bounded from above, we have:

n 1
KPR = 5 [ ()= o) oo
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By virtue of Lemma 3.3, Lemma 2.1, the facts that |e,(€u) - eg})| < 2 and that fol g(z)dr = 1, for all
u#vand u,v € {0,...,T;} we have:

KPPy ,) = %ﬁ/(}j@%ﬁ—%>%,<» g(@)dz < 2077 [ (D [k()])2g(x)da

0 ken, U kea,

1
C’n*y??j/ g(x)dr = Cn'yJQ-QJ
0

IN

Hence

S e s KB, Py )< COnyi2. 3.9
XT; = ve{o""’Tj}u?'év;ue{(r)),.,,,Tj} ( 9 (u) ge(w) = ’YJ ( )

Putting (3.8) and (3.9) together and choosing 7, = co\/iﬁ where cg denotes a well chosen constant, one
gets:

_ nonp a_ .
5,7 sup  E(If - fl) > cexp(52 — OcF2) > e
feB; (L)

where §; =< = n2(m=—1 = p-o1. This justifies the existence of a constant ¢ > 0 such that

R(B,. (L)) =

] Yok

_‘le . The proof of Theorem 3.1 is thus complete. O

Proof of Theorem 5.2. Proof of the upper bound: Proposition 3.2 below provides upper bounds over
B; (L) under the L? risk in the case where p > 7. In particular, it proves that the minimax results

obtained by Delyon and Juditsky (1996) for the procedure fl under the Besov risk can be extended to
the LP risk for 1 < p < oo under mild assumptions on the model.

Proposition 3.2 (Upper bounds for p > 7). Let 1 < p < oco. Assume that we have a sequence of
model E, in which we are able to produce estimates &, and B of the wavelet coefficients oy and
Bk of the unknown function f. Let us consider the procedure describes by (3.2) with v = 1. Adopting

the notation Bj, x = &j, x, suppose that there exists a constant C > 0 such that:

E} (1B — Bikl?P) < Cn7P, o <4<, (3.10)

and that there exist & > 0 and a positive function h satisfying lim, o h(u) = +00 such that the following
concentration condition holds:

n 2 K j —Jjo+1 —(j—7 K . . .
P} <|ﬁj7 = Bkl = 5\/%) < 027 Udo)h(m) Jo <7 <1, (3.11)

for a suitably chosen c,.. Then for p > m and s > % — min (%, %(1 — %)) , there exists a constant C' > 0

such that: ‘
SUDfep: (L) E?(|lfy — fIB) < Cn—ear if €>0,
suppep: (1) EF(IfL = fIIB) < C (m("))azp if €<,
swpsens oy E(If = fIB) < © (22) ™ (m(m) =9+ if =0,

For the case where € > 0, let us remark that the rate of convergence of f1 is without logarithmic
factor contrary to that reached by the procedure described in Donoho et al. (1996, Section 4). Let us
mention that the proof of Proposition 3.10 intensively uses the geometrical properties of the basis £ (see
Lemma 2.3).

Lemma 3.4. Assume that we observe the regression model (1.1) and that g is bounded from below. Then
the estimators 3 and &;y described by (3.3) satisfy the conditions (3.10) and (3.11) for ¢, = 271,

The proofs of the upper bounds of Theorem 3.2 are thus complete.

Proof of the lower bound: Let us introduce the following family:

{gn(x) = v5k(x), k€A, goi(x) =0}, x€][0,1],
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where j is an integer to be chosen below and ~; < 277 (s+3-%), Since the wavelet coefficients of g are
equal to v;, it follows from Lemma 2.4 that g € B; .(L). Moreover for k # k" and k # 0, Lemma 2.2
gives us:

(1 1
gk = i Il > e1,27373) = 25
where 6; = ¢vy;2’ i(2-3). For any procedure f , let us observe that Chebychev’s inequality gives us:

577 sup  ER(If-fIR) > sup  PR(AD) =p»
feB; (L) ke{0,1,...,29}

where the sets Ay defined by A; = {||f —gkllp < 6j} satisfy A, N Ay = @ for k # k. It follows from
Lemma 3.2 that:

P2 > min (2_1, \/gexp(—?)e_l) exp(—X2_7)> . (3.12)
where x. is defined by (3.7). Using Lemma 3.3 and Lemma 2.1, one gets:
1
Xoi <277 Z K( gk,IE”” ) < C2_-jn7j/ Z 1/) z)dx < qu/j / g(z)dx = ijzn. (3.13)
keA; keA; 0

n(n)

Let us set v; = ¢ where ¢g denotes an arbitrary positive constant (in particular, this implies

n(n

T T
that: 27 < ( ﬁ) TR ). Thus, for n large enough, we see that:

In(27) > ) (In(n) — In(In(n))) > cA,

2(s+5— =

s

where A, = In(n). For a suitable choice of ¢y, it follows from (3.12) and (3.13) that:

677 sup ER(|f = FIIB) > cexp(eh, —eny?) > ¢
feB; (L)

vl
ks

o Qs
where §; = IHSL”) ( ln?n)> - (%) . We conclude that there exists a constant ¢ > 0 such

asp
that R,.(B; (L)) > c (@) . This ends the proof of Theorem 3.2. O

Remark 3.1. All the lower bounds have been obtained without extra assumption on the density g.

4 Appendix: proofs of Propositions and technical Lemmas

9(X1)
E(d;4) = E <f(X1 o k(X1) > / f(t) d’gk )dt = ;.

Yidj r(Xi)

Proof of Lemma 5.1. Since E} <| $1.5(X1) ) fo |@jk(x)|dx < oo, it is clear that

Thus, Rosenthal’s inequality applied with the i.i.d real variables W; = — a1, for the exponent

9(X5)
2 < a < oo justifies the existence of a constant C' > 0 satisfying
n(|Aa a Zaq (ZQ)%
B (a0 - anl®) < € (g + 2 (4.1)

where Z, = E}(|W1|*). Using an elementary inequality of convexity and the Holder inequality, one gets:

= (o0 i () ) e (555
< C (E? <|M|a> +E! (IM&I“)) _ O(T(El) +Ta(2))- (4.2)

g(X1) g(X1)
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The condition (3.1) gives us:

1 . a
Z, <O nTP) < CIfl AEf ) | ﬁk—%dw

Using Hélder’s inequality for the measure dv = f »(z)dx, one gets:

(@) < 0@ A @) < ol nmpar) [ 22000)" <o [Ny, g

Putting the inequalities (4.1), (4.2) and (4.3) together, one gets:
. |9, ()| _a [ dsk(@)
E3 (| — ajul?) sc(n / o) gy s [ 12O g, )
7 ! o 9* ') o 92(x)

This ends the proof of Lemma 3.1. O

Proof of Lemma 3.3. The law of (X1,Y7) is given by p(x,y) = \/LQ—ﬂg(x) exp (—3(y — f(2))?) . Thus, for
any function f; and fs measurable on [0, 1] and bounded from above we have:

K}, PL) = ﬁ / / ((y = o)) = (y = ful@))*)g(w)e 2N dudy

- zm// (F1(2) = fo(@))(22 + f1(x) — fol@))e™ " g(x)dadz
- /<f1<> fol@)2g(x)da.

Since K (P}, ,P},) = nK (P} ,P},), the proof is finished. O

Proof of Proposition 3.2. Let us denote A; 1/%. Proceeding as in Donoho et al. (1996), we
obtain the following decomposition:

A@) = f@) = > (Ggor — o r)bior(@) + > > Bistix(@)

keAjo J>jg1 k€A

+ Z Z ﬂjv 637 (1{Bj,kl>>\j}1{ﬁj,kl<’\;} + 1{@j,k|>>‘j}1{lﬁj,k|2)\2j}> wj’k(x)

Jo<j<j1 kEA;

Y Bk (T en ) Misizon T g aen) Lisel<on) ) Yik(@)

Jo<j<j1 k€A;
= 61+62+63+64+65+66.

By the Minkowski inequality and an elementary inequality of convexity, one gets:

= O(él+é2+é3+é4+é5+é6).

EF(If = fI5) < 67" (EF(leall?) +EFlezl5) + EF(lleslB) + Ef(leall?) +EF(les|2) + E(les]))

Let us analyze each term €;, i=1,2,3,4,5,6, in turn. The upper bound for the term é,. Proceeding as in
the proof of Theorem 3.1, it is clear that:

&1 =Ej(Jer]5) < C2°G0 3™ B (|, — ajul?) < 024075

kEA]'O

The upper bound for the term é5. It follows from the Minkowski inequality, Lemma 2.2 and the inclusions

B:,(L)C By,” "(L) C Byl 7 (L) (which holds for p > 7) that:
P
& = E}([le2]) < C Z 23’(%—%)( Z |ﬂj7k|p)% Z 9—i(s—%+3 P <2 Ji(s=24+5p.

JZJj1 keA; J>g1
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The upper bounds for the terms €3 and é5. Since the following inclusions hold:

(0,

. s . )
s 1Bk] = 2)\3‘} U {/3j,k >N, 1Bkl < ?j} C {5j,k - > 73}7
{|Bj,k| < Aj, 1Bkl = 2)\j} C {|ﬁj,k| < 2|81 — }v

we can group the terms és and é;. Now, observe that the Cauchy-Schwartz inequality combined with
the conditions (3.10) and (3.11) gives us:

1 1
n A n (143 2p\ 2 pn % >\j :
Ej (WM - pl{éj,k_ﬁj,kb%}) < E (Iﬂyyk = Bil ”) Py <|ﬂj,k = Bixl > 7)
< Onha RN (4.4)

The rest of the proof uses arguments similar to Kerkyacharian and Picard (2000, Subsection 5.1.1).
For p > 2, using the unconditional nature of the basis ¢ (see Lemma 2.3), the generalized Minkowski
inequality, the inequality (4.4) and the fact that &, satisfies the Temlyakov property (see again Lemma
2.3), one obtains:

fstes = Ejlesllh+lesl) < CBRIC D2 30 10— BialLyyy oy Wl HIE)

Jo<j<ji1 k€A,

2
~ P 1
< n AP . ) 12\ ||P
<y YE (m T WG
Jo<j<j1 k€EA;
_r _ =ig)h(x) 1
< onEC Y] Y2 )l
Jo<j<j1 k€A;
(G—3g)h(x) _ G Yh(r)
S Z Z 27 J ]02 ||,¢)J7ng S Cnfg Z 2 J— J()
Jo<j<ji1 k€EA; Jo<ji<ji
< Cn—59"%" ZQ%(p—h(k)) < Cn—59"%
Jj=>0

for k large enough. For 1 < p < 2 using the unconditional nature of the basis £, the comparison
beetween the [, norms and the inequality (4.4), one gets:

es+es = Ef(lesllh+llesll) < CERUIC Y- > 1Bk — Byl 1{|ﬂ Byl J}I%, )22

Jo<j<j1 k€EA;

< CEj( Y. |Bj7k_5j7k|p1{|3jﬂkfﬁjykl>%}”wj,k”g)

Jo<j<ji1 k€A;

(= Jo)h() _ P L
< DD DN 2 < O 52

Jo<j<ji1 k€A,

for k large enough.

The upper bound for the term é4. In the case where p > 2, we use again the unconditional nature
of the basis &, the generalized Minkowski inequality, the condition (3.10), the fact that & satisfies the
Temlyakov’s property, the Makov inequality and the characterization of Besov spaces:

B = Ejleal) =BHOC 3 D0 1Bk = Biallp o sl EIR)

Jo<ji<ji1 k€A,

2
n A A p r C12V5 P
< c||<‘ Z ZA B (1830 = i) 1y a0l
JoxJ<J1 j
< O DL ) L eyllslp < OnE 3 PETINGT S
Jo<j<ji1 k€EA; Jo<j<j1 keA;
, E ) . 9-je
< Cnt (51T g-ilsti-2)m < 03" S
2 (J—Jo+1)2 2 (j—jo+1)2

Jo<j<j1 Jo<i<ji
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In the case where 1 < p < 2, we use again the unconditional nature of the basis £, the comparison
beetween the [, norms, the Cauchy-Schwartz inequality, the condition (3.10) and the characterization of
the Besov spaces:

e = Ejlleal)<C >0 3 B} (1Bik - Bl L2 1kl

Jo<j<ji1 k€A,
m—p 9—Je
= > Z |>7}ij’“|| <Conz 3 (G—jo+1)F
Jo<j<ji1 k€A, Jo<i<ji J=Jo+ )

The upper bound for the term €g. By virtue of the Minkowski inequality, Lemma 2.2 and the character-
ization of the Besov spaces, we see that:
P

- " 11 1
& = Ef(leslp) <C | Y. 2ET00 ] 18P ys, . <2ny)?

Jo<i<in KeA,
p
< | > 27G=3)((2)) PN 1Bkl )¥
Jo<j<j1 keA;
p
< on =T Y Y0TR(G o+ ) 2R

Jo<j<j1
P

< o Y 2 V(GG )

Jo<j<j1

Since €3, €5 and €; are of the same order, it suffices to balance the bounds of €1, é;, €4 and €g to obtain
the optimal upper bounds.

In the case where € > 0 and s > 2 — min (l 11— })), we have:

(NS}

_ cx(s—3+3)p
& <02¥n 8 <COn~ P, &G <C (m( )> T < onew,
n
(EaNég) < Cn 227903 " " 27 I5)P < On"2" 270 < Cn~P
j=1
and we obtain the desired upper bound.

1

In the case where ¢ < 0 and s > % — min (%, %(1 - Z))’ we have:

In(n) ) oap

n

1 Q2p
€1 < Cn~ P e <C (%) and (é4 N ég) < le = 2Tt < C(

and we establish the desired upper bound.

Finally, in the special case where € = 0, we have:
P P

G<C| D 267D (@rn)r <Cnar Y

Jo<j<j1 keA; Jo<j<j1

‘vb—'

1

where [; = (20(st3—7)m ZkeA 7)». Now, let us distinguish the case where m > rp and the case

where m < rp. If 1 > rp then B (L) is included in B (L) so we have:
T ’p

m—p , p—m 1 2P
ee <Cn 2 j; 2 < (#) .

Let us consider the case where 7 < rp. Using Holder’s inequality and the fact that f € Bj (L) C
B; (L), it comes:

o> rE <ot

Jo<j<j1 Jo<j<j1 Jo<j<j1 Jo<j<j1

—
~
<
S~—
S
IN
—
~
<
Al
—
RlE!
—
~
S
I
5
k-
N
b
<A
IA
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and a fortiori:

p—m

eG<C](p n2]12.

1n1(1n) *2p ji;l?*%)Jr

Since (€4 A €g) < C’(
3.2 is thus complete. D

, we obtain the desired upper bound. The proof of Proposition

Proof of Lemma 3.4. Proof of the moments inequality. Since g is supposed to be bounded from below,
we have

2p
R e T )
Sk g-r ( ) g

Considering Lemma 3.1 with 9 instead of ¢ and using the fact that 2/ < n, one gets:
EF (185 — Bixl") < C(n'72®~D 4 n7P) < On P

Proof of the concentration condition. Here, we proceed as in Kerkyacharian and Picard (2005, subsection
9.1). Let k > 0. Let us denote u; = j — jo + 1. By a simple decomposition, one gets:

P (ij — Bjkl > E\/u—ij)
(2_)“ e M‘T) (ZW |_4ﬁ>

= S5+ 8.

Un

IN

Let us analyze each terms S7 and Ss in turn. The upper bound for S;. Since ||M

C2% and E? (|MT)1)(X1) — ﬁjyk\z) < C, it follows from Bernstein’s inequality that for 27 < \/_ there

exists C' > O satisfying

(g% 2
S1 <2exp | — - < 2exp (—CH uj)
C(1+255,/%)
1
for n large enough. We used the fact that lim,,_, 4 u; n~1 = 0 for all jo < j < ji1. Thus, there exist a
constant C' > 0 and a positive function z satisfying lim, . z(2) = oo such that:
S, < 02~ —do)z(x) (4.5)

The upper bound for Sy. Conditionally on (X1, ..., X;,) = (21, ..., x,) we have

(z:)

1 Zn $j.h (i) 2 : 2 1 1 Zn
_ AL LA ST i~ 0, " th e | o5
n — g(xl) é‘ N( O—J,k)) w1 O—]’k — ||g || 77,2 =

For x = (x1, ..., 2y), let us define

Folz) = {|—Z—(i)—12a} and r(z)=2exp | — r Y

Y2y (@1)
= g(w;) %lléllooZL ’g’(kxi)

Applying the usual Gaussian concentration inequality and remarking that r(z) < 2, one gets:

S = E (P?( Z% |_4 %|X1,...,Xn>>
S E}L(’F(Xl,,Xn)lj:a(Xl,,Xn))—FE?(T(Xl,,Xn)lj:&(Xl,,Xn))
< 2P FalX1, .o X)) + ER(r(X1, oo, X)) Lre (X1, o0 Xin).
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On the set F5(z), remark that r(z) < 2exp (—%) . Since PR(FS(X1,..., Xn)) < 1, we see
that: ’

Sy <2 (Pf;(fa(xl, o X)) + exp (—m» . (4.6)

. V7 (X)) .. V7 o (Xs) i (V3R (X1) C . .
Since g’(’“Xi) are i.i.d, é(chi) < ||%||OOH1/)||202J, ]Ef( g,(le)l ) = 1, Hoeffding’s inequality and the

choice a < k imply that:

2n2a? In(n)

Pn(]:a(Xh aXn)) S 2€Xp -
’ Al LT 9,27

) < Cn= 9" < 02O < 0o U0 (47

for jo < j < j1 and & large enough. We used the fact that 27 < C ﬁ It follows from (4.6) with

a such that a < k and (4.7) that there exists a constant C' > 0 and a positive function m satisfying
lim, o m(x) = oo such that:

Sy < 02~ Cli—do)m(x) (4.8)

for k large enough. Combining the results (4.8) and (4.5), we obtain the desired concentration property.
O

Proof of Proposition 3.1. The proof consists in exhibiting the lower bound of the minimax IL? risk when
we observe the model (1.1) for the densities of the form:

gx) = (c+1)2°, o>2p L
Let us consider the two following functions:

g1(z) =vvin(T), g-1(x) = =9~ ()

where Supp(¢jn) = 5, 22—11\[] and v; =< 977(s+3-%) Since the wavelet coefficients of g1 and g are

equal to v, it is easy to see that g; and g_; belong to B; .(L). We have:
(1_1
lor = g-1lp = 22,25 o], = 26,
where 6; = 'yj2j(%_%) |¥]|p. For any f, Chebychev’s inequality gives us:

577 sup  EF(If—fIB) > sup PI(AS) =ps (4.9)
feBs (L) ec{—1,1}

where the sets A, = {||f —gellp < 5]} satisfy Ay N A_y = @. It follows from Lemma 3.2 that

p3 > min (271, V2exp(—3e~h) exp(f)a)) . (4.10)

Using Lemma 3.3 and the fact that z? is increasing for o > 0, one gets:

2N

]P’Z_l) =(o+ l)nﬁ /12'7 ?’N(x)x”dx < Cn’yj2-2*j”. (4.11)

27

g1’

1

2

1
Putting (4.9), (4.10) and (4.11) together and choosing 7, = 2/5n~2 i.e 2/ < n>**7~% we obtain:

5;7 sup  EF(If — fIB) > ev2exp(—x1) > ¢
feB; (L)

where §; =< n~?(>™P:7) and

(ssmipur) = ——t

v(s,m,p,0) = ———.
, T, D, 25 + 1 +o— %

The proof of Proposition 3.1 ends by taking ¢ large enough. O
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