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ON THE FIRST TWISTED DIRICHLET EIGENVALUE

PEDRO FREITAS AND ANTOINE HENROT

Abstract. In this paper we prove an isoperimetric inequality for the twisted

Dirichlet eigenvalue which was introduced by Barbosa and Bérard in the con-

text of constant mean curvature surfaces. More precisely, we show that in the

Euclidean case this eigenvalue is minimized by the union of two equal balls.

1. Introduction

Let (Ω, g) be a Riemannian manifold with boundary and denote by T0 the set
of functions f : Ω → R with zero average in Ω and belonging to H1

0 (Ω), the usual
Sobolev space which is the closure of the space of C∞ functions with compact

support in Ω, for the norm ‖u‖ :=
(∫

Ω
|∇u|2 + u2

)1/2
. In the context of constant

mean curvature immersions, Barbosa and Bérard [BB] were led to the problem of
minimizing the Rayleigh quotient

(1) min
u∈T0, u 6≡0

∫

Ω

|∇u|2 + bu2

∫

Ω

u2
,

where b : Ω → R is a continuous function. This combination of Dirichlet boundary
conditions with zero average gives rise to an eigenvalue problem that is interesting in
its own right, which Barbosa and Bérard called the twisted eigenvalue problem, and
for which they presented some basic properties in [BB]. More specifically, we have
that the eigenvalue problem in question is given by the Euler–Lagrange equations
associated with the above minimization problem and is of the form

(2)







−∆v + bv = λT
1 v − 1

|Ω|

∫

Ω

∆v dx in Ω

v = 0 on ∂Ω.

Due to the presence of the average of the Laplacian, problems of this type are
often referred to as nonlocal eigenvalue problems – see [F] for an overview of some
nonlocal eigenvalue problems.

Among other results, Barbosa and Bérard proved that the spectra of the Dirichlet
and the twisted problems are intertwined, and also a Courant type nodal domain
result for the eigenfunctions of the twisted problem.
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The purpose of the present paper is to continue the study of this eigenvalue
problem in the case where the potential b vanishes and in the Euclidean context. For
a bounded open set in R

n, we denote by λT
1 (Ω) the first twisted eigenvalue defined

by (1). In particular, our main result is the following isoperimetric inequality of the
Rayleigh–Faber–Krahn type

Theorem 1. Let Ω be any bounded open set in R
n, then

(3) λT
1 (Ω) ≥ λT

1 (B1 ∪ B2)

where B1 and B2 are two disjoint balls of volume |Ω|/2.
Equality holds (for regular Ω) if and only if Ω = B1 ∪ B2

It is clear that the eigenvalue λT
1 (Ω) does not change if we add or remove sets of

zero capacity (for the capacity associated to the Sobolev space H1
0 (Ω)). This is the

reason why we need to consider regular domains (e.g. Lipschitzian) to investigate
the equality case.

Since the first eigenfunction uT
1 changes sign in Ω, the result above is more

related to the Krahn-Szegö Theorem for the second Dirichlet eigenvalue, which
states that among open sets of given volume, this second eigenvalue is minimized
by the union of two identical balls. We refer to [HO] for details and extensions
about the Krahn-Szegö Theorem and to [H] for a survey of general similar results
about the eigenvalues of the Laplacian operator.

In Section 2 we present some basic properties of the twisted problem relating
the first twisted eigenvalue to various Dirichlet eigenvalues, together with some
elementary bounds. In Section 3 we prove Theorem 1. This uses a result on the
ratio of the first zero of consecutive Bessel functions which we state and prove in
the Appendix. In the last section we present some remarks and open problems.

2. Basic properties

We begin with a simple consequence of when a number λ is an eigenvalue of the
twisted and the Dirichlet problems (see also Proposition 2.4 in [BB]).

Proposition 2.1. A positive number λ is an eigenvalue for both the twisted and
Dirichlet problems if and only if there exists an associated eigenfunction u for the
Dirichlet problem such that

∫

Ω

u(x) dx = 0.

Proof. If there is a Dirichlet eigenfunction u associated to λ which has zero average,
then the Laplacian of u also has zro average and the result follows.

Assume now that there are eigenfunctions u for the Dirichlet problem and v for
the twisted problem, both associated to the value λ. Multiplying each equation by
the other eigenfunction, integrating over Ω and taking the difference yields

(
∫

Ω

u(x) dx

) (
∫

Ω

∆v(x) dx

)

= 0.
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From this we deduce that either u is an eigenfunction for the twisted problem, or v
is an eigenfunction for the Dirichlet problem. In both cases there is an eigenfunction
of the Dirichlet problem with zero average. ¤

In the case of the classical Dirichlet problem if u is an eigenfunction for a domain
Ω, then it is also an eigenfunction for any of the nodal domains that it divides
Ω into, with the same eigenvalue. For the twisted problem there is, of course, no
analogue of this result. It is, however, possible to relate the first twisted eigenvalue
to the first Dirichlet eigenvalue of its nodal domains.

Proposition 2.2. Let λT
1 (Ω) be the first eigenvalue of the twisted problem, and

denote by v a corresponding eigenfunction. Then v has precisely two nodal domains
and, denoting by Ω+ and Ω− the sets where v is positive and negative, respectively,
we have that

min
{

λD
1 (Ω−), λD

1 (Ω+)
}

≤ λT
1 (Ω) ≤ max

{

λD
1 (Ω−), λD

1 (Ω+)
}

,

where λD
1 (Ω−) and λD

1 (Ω+) denote the first Dirichlet eigenvalues of Ω+ and Ω−,
respectively.

Proof. As was mentioned in [BB], a variation of Courant’s nodal domain theorem
applies also to the twisted problem, giving that any eigenfunction associated with
the first eigenvalue has precisely two nodal domains. It remains to prove the other
assertions.

To prove the first inequality, we use the function

u =

{

u+, x ∈ Ω+

u−, x ∈ Ω−

in the variational formulation for λT
1 (Ω), where u+ and u− denote first Dirichlet

eigenfunctions for Ω+ and Ω−, respectively, and scaled in such a way that u has
zero average in Ω. This gives that

(4)

λT
1 (Ω) ≤

∫

Ω+

|∇u+|
2
dx +

∫

Ω−

|∇u−|
2
dx

∫

Ω+

u2
+dx +

∫

Ω−

u2
−dx

=

λD
1 (Ω+)

∫

Ω+

u2
+dx + λD

1 (Ω−)

∫

Ω−

u2
−dx

∫

Ω+

u2
+dx +

∫

Ω−

u2
−dx

,

from which the result follows.
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On the other hand

(5)

λT
1 (Ω) =

∫

Ω+

|∇v|
2
dx +

∫

Ω−

|∇v|
2
dx

∫

Ω+

v2dx +

∫

Ω−

v2dx

≥

λD
1 (Ω+)

∫

Ω+

v2dx + λD
1 (Ω−)

∫

Ω−

v2dx
∫

Ω+

v2dx +

∫

Ω−

v2dx
,

proving the second inequality. ¤

Remark 2.1. It is, of course, possible to extend this result in the obvious way to
higher eigenvalues.

Corollary 2.3.

λT
1 (Ω) = λD

1 (Ω+) if and only if λD
1 (Ω+) = λD

1 (Ω−) = λD
2 (Ω),

where λD
2 (Ω) is the second Dirichlet eigenvalue of Ω. A similar statement holds if

we replace λD
1 (Ω+) by λD

1 (Ω−).

Proof. If λD
1 (Ω+) = λD

1 (Ω−), then the previous proposition immediately implies
that λT

1 (Ω) = λD
1 (Ω+).

Assume now that λT
1 (Ω) = λD

1 (Ω+). Replacing this in both (4) and (5) yields

λD
1 (Ω−) ≤ λT

1 (Ω) ≤ λD
1 (Ω−),

and so λD
1 (Ω−) = λD

1 (Ω+). Denoting by v+ and v− the restrictions of a first
eigenfunction of the twisted problem to Ω+ and Ω−, respectively, we now use

u =

{

u+, x ∈ Ω+

cu−, x ∈ Ω−

in the Rayleigh quotient for the Dirichlet problem, where c is such that u is orthog-
onal to the first Dirichlet eigenspace. We then obtain that λD

2 (Ω) ≤ λT
1 (Ω). Since

we have that λD
2 (Ω) ≥ λT

1 (Ω), the result follows. ¤

We shall now give some other bounds for λT
1 in terms of the two first eigenvalues

λD
1 , λD

2 and the corresponding eigenfunctions u1, u2 of the Dirichlet Laplacian on
Ω. We already know that λD

1 < λT
1 ≤ λD

2 and we are now going to give some more
precise estimates.

The first is a very simple upper bound for the first twisted eigenvalue in the
terms of the first Dirichlet eigenvalue.

Proposition 2.4. There exists a constant αn which depends only on n and for
which

λD
1 (Ω) ≤ λT

1 ≤ αnλD
1 (Ω).
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Proof. It is only necessary to prove the second inequality. This follows immediately
from the inequality λT

1 ≤ λD
2 (Ω) and then using the fact (see [AB1]) that

λD
2 (Ω)

λD
1 (Ω)

≤
λD

2 (B)

λD
1 (B)

=

(

jn/2,1

jn/2−1,1

)2

,

where B denotes the unit ball in R
n. ¤

Let us now assume that λ is a real (positive) number which is not in the spectrum
of the Dirichlet Laplacian. Therefore, we can solve the equation

(6)

{

−∆v = λv + 1 in Ω
v = 0 on ∂Ω

obtaining

v = (−∆ − λId)
−1

(1) .

Then, λ will be an eigenvalue for the twisted problem if and only if v satisfies
∫

Ω

v(x) dx = 0. This relation

∫

Ω

v(x) dx = (1, v) = 0 (where (., .) denotes the usual

scalar product on L2(Ω)) can also be written

(7)
(

[−∆ − λId]
−1

(1), 1
)

= 0 .

We now introduce the expansion of the constant function 1 in the Hilbert basis of
the Dirichlet eigenfunctions:

1 =
+∞
∑

n=1

anun with an =

∫

Ω

un(x) dx

, where we assume the eigenfunctions un to be normalized with L2 norm equal
to one. Then, the eigenvalues of the operator (−∆ − λId)

−1
being the numbers

(λD
n − λ)−1, equation (7) can be rewritten as

(8)

+∞
∑

n=1

a2
n

λD
n − λ

= 0 .

All the zeros of equation (8) are eigenvalues for the twisted problem, but in the case

where an =

∫

Ω

un(x) dx vanishes for some n, we must add the corresponding λD
n as

an eigenvalue.
We come back to our equation (8). If we denote by φ : (λ1, λ2) → R the function

φ(x) :=

+∞
∑

n=1

a2
n

λD
n − x

,

it is clear that φ will be negative for x < λT
1 (Ω) and positive for x > λT

1 (Ω).

Theorem 2.5. Let us denote by λ1, λ2 the two first eigenvalues of the Dirichlet
Laplacian on Ω and by u1, u2 the corresponding (normalized) eigenfunctions. We
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also introduce a1 =

∫

Ω

u1(x) dx, a2 =

∫

Ω

u2(x) dx. Then, we have the following

estimate for λT
1 (Ω):

(9)
λ1|Ω| + λ2 a2

1

|Ω| + a2
1

≤ λT
1 (Ω) ≤

λ1 a2
2 + λ2 a2

1

a2
2 + a2

1

.

Proof. First, we set x =
λ1a2

2+λ2a2
1

a2
2
+a2

1

and plug it into the definition of φ giving

φ(x) ≥
a2
1

λ1 − x
+

a2
2

λ2 − x
=

a2
1(a

2
1 + a2

2)

(λ1 − λ2)a2
1

+
a2
2(a

2
1 + a2

2)

(λ2 − λ1)a2
2

= 0.

The upper bound now follows thanks to the remark preceding the statement of
Theorem 2.5.

In the same way, if we take now x =
λ1|Ω|+λ2a2

1

|Ω|+a2
1

, we have

+∞
∑

n=2

a2
n

λn − x
≤

1

λ2 − x

+∞
∑

n=2

a2
n ≤

‖1‖L2

λ2 − x
=

|Ω|

λ2 − x
.

Therefore,

φ(x) ≤
a2
1

λ1 − x
+

|Ω|

λ2 − x
= 0

thanks to the definition of x. The result follows. ¤

Remark 2.2. We can obtain more precise bounds by taking one supplementary
term. These bounds will involve λ3 and u3.

Remark 2.3. The upper bound is, in some sense, ”best possible” since we have
equality as soon as a2 = 0 (see Proposition 2.1). This will happen for example when
Ω is symmetric with respect to a hyperplane or when λ2 is a multiple eigenvalue.
This bound can also be obtained by making a linear combination of u1 and u2 with
zero average, and then plugging it in the Rayleigh quotient.

¿From the first inequality in Theorem 2.5 it is possible to obtain a lower bound
for the first twisted eigenvalue that depends only on the volume of the domain and
its first two Dirichlet eigenvalues. To do this, we use the following inequality due
to Kohler-Jobin, which is an extension to the n−dimensional case of an inequality
of Payne and Rayner [KJ]:

(10) a2
1 ≥

2ωnjn−2
n/2−1,1

(

λD
1

)n/2

∫

Ω

u2
1dx,

where ωn denotes the area of the unit sphere in R
n. Using this in the first inequality

in Theorem 2.5 yields

Corollary 2.6.

λT
1 ≥

1

2
λD

1 +
ωnjn−2

n/2−1,1

|Ω|
(

λD
1

)n/2
λD

2 .
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Since we have equality in (10) in the case of the ball (in dimension two this is
known to be the only case [PR]), we might expect this bound not to be very good for
long domains. Indeed, if one considers rectangles in the plane, the bound is larger
than the first Dirichlet eigenvalue only up to a ratio of the larger to the smaller side
which is approximately 1.678.

3. The isoperimetric inequality

The goal of this section is to prove Theorem 1. The first part of the proof is
similar to that of Ashbaugh and Benguria in [AB2] where they study the same
question for the first eigenvalue of the clamped problem. Let us denote by u (one
of) the first eigenfunction for the twisted problem on Ω,

Ω+ = {x ∈ Ω, u(x) > 0} Ω− = {x ∈ Ω, u(x) < 0} .

Then,

λT
1 (Ω) =

∫

Ω+

|∇u|2 dx +

∫

Ω−

|∇u|2 dx

∫

Ω+

u2 dx +

∫

Ω−

u2 dx

.

We first prove:

Lemma 3.1. Let us denote by B+ (resp. B−) the balls of same volume as Ω+

(resp. Ω−). Then,

λT
1 (Ω) ≥ λT

1 (B+ ∪ B−) .

Proof. Let us introduce u∗
+ (resp. −u∗

−) the Schwarz decreasing rearrangement of
u \ Ω+ (resp. u \ Ω−). The classical properties of the rearrangement provide:

(11) λT
1 (Ω) ≥

∫

B+

|∇u∗
+|

2 dx +

∫

B−

|∇u∗
−|

2 dx

∫

B+

u∗
+

2 dx +

∫

B−

u∗
−

2 dx

and

(12)

∫

B+

u∗
+ dx −

∫

B−

u∗
− dx =

∫

Ω+

u dx +

∫

Ω−

u dx =

∫

Ω

u dx = 0 .

In view of (11) and (12), we have the following inequality:

(13) λT
1 (Ω) ≥ λ∗ := inf

(f, g) ∈ H1
0 (B+) × H1

0 (B−)
∫

B+

f dx =

∫

B−

g dx

∫

B+

|∇f |2 dx +

∫

B−

|∇g|2 dx

∫

B+

f2 dx +

∫

B−

g2 dx

.

Now, it is standard, using the classical method of calculus of variations, to prove
that the infimum in the definition of λ∗ is attained for a couple that we denote by
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(f+, f−). The Euler-Lagrange condition satisfied by (f+, f−), taking into account

the constraint

∫

B−

g dx −

∫

B+

f dx = 0, can be written as

(14)































∀(φ, ψ) ∈ H1
0 (B+) × H1

0 (B−)
∫

B+

∇f+.∇φ dx +

∫

B−

∇f−.∇ψ dx − λ∗

(

∫

B+

f+φ dx +

∫

B−

f−ψ dx

)

= µ0

(

∫

B+

f2
+ dx +

∫

B−

f2
− dx

) (

∫

B−

ψ dx −

∫

B+

φ dx

)

,

where µ0 is a Lagrange multiplier. Due to the homogeneity of the problem, we can

obviously assume that

∫

B+

f2
+ dx +

∫

B−

f2
− dx = 1. Now, taking first ψ = 0, then

φ = 0 in (14) we see that f+ and f− solve:

(15)

{

−∆f+ = λ∗f+ − µ0 in B+

f+ = 0 on ∂B+
,

{

−∆f− = λ∗f− + µ0 in B−

f− = 0 on ∂B− .

Integrating the two equations and taking the difference yields

−

∫

B+

∆f+ dx +

∫

B−

∆f− dx = −µ0(|Ω
+| + |Ω−|) = −µ0|Ω| .

Now, we introduce the open set Ω̃ = B+ ∪ B− and the function w defined on Ω̃ by

w =

{

f+ in B+

−f− in B− .

This function satisfies −

∫

Ω̃

∆w dx = −µ0|Ω| = −µ0|Ω̃| and then, replacing in (15):

(16)







−∆w = λ∗w − 1
|Ω̃|

∫

Ω̃

∆w dx in Ω̃

w = 0 on ∂Ω̃

what shows that λ∗ is an eigenvalue of the twisted problem on Ω̃ and therefore,
λT

1 (Ω) ≥ λ∗ ≥ λT
1 (Ω̃). ¤

To finish the proof of Theorem 1, it remains to prove that the union of two
identical balls gives the lowest possible value of λT

1 among union of balls. This is
not as simple as in the purely Dirichlet case since the extra zero average condition on
the eigenfunction couples the eigenfunction on the two balls making the eigenvalue
equation more complicated.

Let us establish the equation allowing to compute the first twisted eigenvalue of
the union Ω of two (disjoint) balls B1 and B2 in R

n of respective radii R1 and R2,
with R1 ≤ R2. Without loss of generality, we can assume that the volume of Ω is
one which implies

(17) Rn
1 + Rn

2 = 1 .
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There is a first possibility which consists in taking an eigenfunction which is zero
on the smaller ball B1 and which coincides on B2 with the first eigenfunction u2 of
the larger ball. In this case, we would have

λT
1 (B1 ∪ B2) = λT

1 (B2) .

We will see later that this situation actually occurs for a large range of value of the
ratio R1/R2! Following L. Barbosa and P. Bérard, see [BB], we see that, in such a

case, we will have λT
1 (B2) =

(

jn
2

,1/R2

)2
where jn

2
,1 is the first zero of the Bessel

function Jn
2

(x).
We have now to look at the case where the eigenfunction, say u does not vanish

on any of the two balls. We write

u =

{

u1 in B1

u2 in B2 .

Since, as was mentioned in Proposition 2.2, Courant’s Theorem about the number
of nodal domains holds here, we see that u1 is, for example, positive in B1 while
u2 is negative in B2. Moreover, the proof of Lemma 3.1 shows that we can restrict
ourselves to the case where u1 and u2 are radially symmetric functions. Then, the
ordinary differential equation that we have to solve (for j = 1, 2) is:

(18)















d2 uj

dr2 +
n − 1

r

d uj

dr
+ λT uj = c

d uj

dr
(0) = 0, uj(Rj) = 0

where c is the constant unknown a priori which corresponds to the term

∫

Ω

∆u dx

(we recall that we have chosen the volume of the union of the two balls to be one).
Setting λT (B1 ∪ B2) = ω2, the solution of (18) is known to be

(19) u =











u1 = α1

(

r1−n
2 Jn

2
−1(ωr) − R

1−n
2

1 Jn
2
−1(ωR1)

)

in B1

u2 = −α2

(

r1−n
2 Jn

2
−1(ωr) − R

1−n
2

2 Jn
2
−1(ωR2)

)

in B2

Now, we express the coupling condition

∫

Ω

u(x) dx = 0:

0 =

∫

B1

u1 dx +

∫

B2

u2 dx = α1

(

γn

∫ R1

0

Jn
2
−1(ωr)r

n
2 dr − δnR

n
2
+1

1 Jn
2
−1(ωR1)

)

−α2

(

γn

∫ R2

0

Jn
2
−1(ωr)r

n
2 dr − δnR

n
2
+1

2 Jn
2
−1(ωR2)

)

.

where γn is the (n − 1)-measure of the unit sphere in R
n and δn the n-measure of

the unit ball. Using classical results for Bessel functions (see e.g. [W]), namely,
∫ R

0

Jn
2
−1(ωr)r

n
2 dr =

1

ω
R

n
2 Jn

2
(ωr) and 2 ν

x Jν(x) − Jν−1(x) = Jν+1(x),
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together with γn = nδn, we get

0 = α1R
n
2
+1

1 Jn
2
+1(ωR1) − α2R

n
2
+1

2 Jn
2
+1(ωR2).

Therefore, it is possible to take

(20) α1 = R
n
2
+1

2 Jn
2
+1(ωR2) and α2 = R

n
2
+1

1 Jn
2
+1(ωR1)

in (19). It remains to express that we want the constant c in (18) to be the same
for the two equations j = 1 and j = 2. Since,

∆u1 = −α1ω
2r1−n

2 Jn
2
−1(ωr)

∆u2 = α2ω
2r1−n

2 Jn
2
−1(ωr)

we have
c = ∆u1 + ω2u1 = −α1ω

2R
1−n

2

1 Jn
2
−1(ωR1)

c = ∆u2 + ω2u2 = α2ω
2R

1−n
2

2 Jn
2
−1(ωR2) .

Comparing these two relations and taking into account (20) yields the following
transcendental equation whose zeros give eigenvalues of the twisted problem for the
union of two balls of radii R1 and R2:

(21) R
n
2
+1

2 Jn
2
+1(ωR2)R

1−n
2

1 Jn
2
−1(ωR1) + R

n
2
+1

1 Jn
2
+1(ωR1)R

1−n
2

2 Jn
2
−1(ωR2) = 0

which, unless R1 = R2 (see below) can also be written as

(22) Rn
1

Jn
2
+1(ωR1)

Jn
2
−1(ωR1)

+ Rn
2

Jn
2
+1(ωR2)

Jn
2
−1(ωR2)

= 0 .

We will denote by ω(R1, R2) (or ω if no misunderstanding can occur) the first
positive root of the equation (21) or (22). Its square is always an eigenvalue for the
twisted problem on B1 ∪ B2 but not necessarily the first one. Actually, numerical
computations (and also asymptotic expansion for R1 → 0) show that there exist a
constant cn depending on the dimension n (we get e.g. c2 ≈ 0.56714, c3 ≈ 0.64715)
such that if R1/R2 < cn, then jn

2
,1/R2 < ω(R1, R2). That we always have cn < 1

is actually a consequence of Corollary A.2 – see the comment just after Lemma 3.3.
Summing up, the following situation holds:

Proposition 3.2. There exists a constant cn, depending on the dimension n, such
that:

• if R1/R2 < cn then λT
1 (B1 ∪ B2) =

(

jn
2

,1/R2

)2

• if R1/R2 ≥ cn then λT
1 (B1 ∪ B2) = ω(R1, R2)

2.

where ω(R1, R2) is the first positive zero of equation (21) or (22).

In the case R1 = R2(= 2−1/n), from the equation in its form (21), we see that

ω(R1, R1) = ω(2−1/n, 2−1/n) = jn
2
−1,1/2−1/n = 21/njn

2
−1,1 .

We will denote this value by ω∗ = 21/njn
2
−1,1 which will play an important role in

the next analysis since we want to prove that λT
1 (B1 ∪ B2) ≥ ω∗2.

Let us denote by φ(x) the function which appears in (22):

φ(x) := xn
Jn

2
+1(x)

Jn
2
−1(x)

.
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We easily get, thanks to the recurrence relations satisfied by Bessel functions, that

(23) φ′(x) =
xn+1

n

[

1 +
Jn

2
+1(x)

Jn
2
−1(x)

]2

=
xn+1

n

[

1 +
φ(x)

xn

]2

.

This shows, in particular, that φ is increasing on each interval where it is defined,
that is, on intervals of the form

(0, jn
2
−1,1) and (jn

2
−1,k, jn

2
−1,k+1), k ≥ 1.

Let us now introduce the function ψ(ω,R1, R2) for which we want to calculate the
zeros:

ψ(ω,R1, R2) := φ(ωR1) + φ(ωR2) .

It is defined when ω belongs to the intersection of all the intervals
(jn

2
−1,k/R1, jn

2
−1,k+1/R1) and (jn

2
−1,k/R2, jn

2
−1,k+1/R2). The two first such inter-

vals are

]0, jn
2
−1,1/R2[∪]jn

2
−1,1/R2,min(jn

2
−1,1/R1, jn

2
−1,2

/R2)[.

On the first interval ψ is positive, while on the second it goes from −∞ to +∞. It
implies the following first rough estimate:

jn
2
−1,1/R2 < ω(R1, R2) < min(jn

2
−1,1/R1, jn

2
−1,2/R2) .

Moreover,

ψ(jn
2
+1,1/R2, R1, R2) = (jn

2
+1,1/R2)

n
Jn

2
+1(jn

2
+1,1R1/R2)

Jn
2
−1(jn

2
+1,1R1/R2)

so, if we are in the case jn
2
+1,1R1/R2 < jn

2
−1,1 both numerator and denominator

in the previous fraction will be positive which shows that ω(R1, R2) < jn
2
+1,1/R2.

Now, it is known that the zeros of Jn
2
−1 and Jn

2
+1 are intertwined, which means in

particular jn
2
+1,1/R2 < jn

2
−1,2/R2. Therefore, we finally have

(24) jn
2
−1,1/R2 < ω(R1, R2) < min(jn

2
−1,1/R1, jn

2
+1,1/R2) .

Remark 3.1. ¿From (24), it is clear that when the ratio R1/R2 tends to 1, ω(R1, R2) →
jn

2
−1,1/(2−1/n) = ω∗.

Now, if we assume that R1 = R is fixed and we look at the function ω 7→
ψ(ω,R, (1 − Rn)1/n), the previous analysis shows that this function is well defined
and increasing on the interval

I =

(

jn
2
−1,1

R2
,min

{

jn
2
−1,1

R1
,
jn

2
+1,1

R2

})

.

We can now introduce the function G : (0, 2−1/n) → R defined by:

(25) G(r) := ψ(ω∗, r, (1 − rn)1/n) = φ(ω∗r) + φ(ω∗(1 − rn)1/n) .

Let us remark that ω∗r = jn
2
−1,12

1/nr < jn
2
−1,1, so the expression φ(ω∗r) is always

well defined. For the expression φ(ω∗(1−rn)1/n), it will also be true if ω∗ < jn
2
−1,2.

The chain of inequalities 21/njn
2
−1,1 < jn

2
,1 < jn

2
−1,2 (the first inequality coming
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from Corollary A.2) shows that it is the case. Therefore, the function G is well
defined on the interval [0, 2−1/n).

Lemma 3.3. If G takes only negative values on (0, 2−1/n), then ω∗ ≤ ω(R1, R2)
for all R1, R2.

Proof. Since ω 7→ ψ(ω,R, (1 − Rn)1/n) is increasing, if ψ(ω∗, R, (1 − Rn)1/n) < 0
for all R ∈ (0, 2−1/n), it will remain negative for ω < ω∗, and then no zero of ψ (i.e.
ω(R1, R2)) can be in the range (0, ω∗). ¤

This Lemma implies Theorem 1 because of Proposition 3.2 and the inequality
ω∗ = jn

2
−1,12

1/n < jn
2

,1 ≤ jn
2

,1/R2 for all R2 ≤ 1 which comes from Corollary A.2.

It remains to prove that G takes only negative values. For this, we compute its
derivative.

G′(r) = ω∗φ′(ω∗r) − ω∗rn−1(1 − rn)1/n−1φ′(ω∗(1 − rn)1/n) .

Using the expression of φ′ given in (23), a straightforward computation gives:

G′(r) =
ω∗n+2rn−1

n

[

r2

(

1 +
φ(ω∗r)

(ω∗r)n

)2

− (1 − rn)
2
n

(

1 +
φ(ω∗(1 − rn)1/n)

ω∗n(1 − rn)

)2
]

.

So, if we introduce the function

h(r) := r

[

1 +
φ(ω∗r)

(ω∗r)n

]

we can write G′(r) as

G′(r) =
ω∗n+2rn−1

n

[

h2(r) − h2
(

(1 − rn)
1
n

)]

.

Now, the relations satisfied by the Bessel functions show that

h(r) = r

[

1 +
Jn

2
+1(ω

∗r)

Jn
2
−1(ω∗r)

]

=
n

ω∗

Jn
2
(ω∗r)

Jn
2
−1(ω∗r)

.

Since ω∗r ∈]0, jn
2
−1,1[, h is well defined and positive for r ∈]0, 2−1/n[. Furthermore,

using the Mittag-Leffler representation (see e.g. [W]), we get

h(r) =
n

ω∗
2ω∗r

+∞
∑

m=1

1

(jn
2
−1,m)2 − (ω∗r)2

which shows that h is an increasing function (as a product of increasing positive
functions). Therefore,

h2(r) − h2
[

(1 − rn)
1
n

]

< 0

and G′(r) < 0 for r ∈ (0, 2−1/n). Now,

G(0) = φ(ω∗) = ω∗n Jn
2
+1(ω

∗)

Jn
2
−1(ω∗)

is negative since jn
2
−1,1 < ω∗ < jn

2
+1,1 < jn

2
−1,2 according to Corollary A.2.
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At last, we investigate the equality case. According to the analysis of the equality
case in the Polya inequality relating

∫

Ω∗
|∇u∗|2 and

∫

Ω
|∇u|2 (see e.g. [K]), we see

from (11) that equality can occur only if Ω is already the union of two balls. Now,
the proof of Lemma 3.3 shows that we have actually ω∗ < ω(R1, R2) if R1 6= R2.

This finishes the proof of Theorem 1.

4. Discussion and open problems

Since the minimum is obtained for a set which is not connected, the obvious
question that arises is what the infimum is if we restrict ourselves to connected
sets. As in the case of the second Dirichlet eigenvalue referred to previously, this is
not the good question, since the minimum can be approximated by a sequence of
connected domains: take, for instance, two equal balls connected by a thin tube. By
using in the Rayleigh quotient an eigenfunction corresponding to the first twisted
eigenvalue problem for the two balls alone, we can easily see that by making the
tube thinner and increasing the radius of the balls such that the total volume is kept
fixed, we can approach the optimal eigenvalue as much as desired. Thus, and like in
the Dirichlet problem, a more interesting situation is to consider the minimization
over convex domains. Following the lines of [HO] where is considered the case of
the second Dirichlet eigenvalue, we may actually prove the following properties:

• There exists a convex domain, say Ω∗, which minimizes λT
1 (Ω) among con-

vex sets of given volume.
• This domain Ω∗ does not contain arc of circle (or pieces of sphere in dimen-

sion greater than 2) on its boundary. In particular, the optimal domain is
not the stadium (convex hull of two identical tangent balls).

• The optimal domain is at least C1.

To continue the study of the optimal convex domain, in particular its geometric
properties, we need to know more about the nodal line of a convex domain. Here
are some open problems related to that question.

Open problem 1: Prove that the nodal line of the first twisted eigenfunction
of a plane convex domain Ω hits the boundary of Ω at exactly two points
(see [M] for the Dirichlet case).

Open problem 2: Prove that the optimal plane convex domain has exactly
two parallel segments on its boundary.

Open problem 3: Prove that the optimal plane convex domain has two axis
of symmetry.

Appendix A. A result about the ratio of the first zero of two

consecutive Bessel functions

In the proof of Lemma 3.3 (and also at some other places in section 3), we used the
inequality jn

2
,1 > jn

2
−1,12

1/n. We will prove in this section that it is a consequence
of a sharper inequality involving the ratio of the first zero of two consecutive Bessel
functions:
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Theorem A.1. Let us denote by jν the first positive zero of the Bessel function
Jν(x), ν ≥ 0. Then, for any ν = n

2 where n is an integer, the following estimate
holds:

(26) 31/(ν+1) ≥
jν+1

jν
≥

(

j1
j0

)1/(ν+1)

.

Let us point out that the estimate from below in inequality (26) is ”the best
possible” since equality obviously holds for ν = 0. For the estimate from above, see
comment in the Remark A.1.

Corollary A.2. For every integer n, we have the inequality

(27)
jn

2
+1

jn
2
−1

>
jn

2

jn
2
−1

> 2
1
n .

Proof. Indeed, the first inequality is trivial, while Theorem A.1 applied to ν = n
2 −1

yields

jn
2

jn
2
−1

>

(

j1
j0

)2/n

and the result follows since
(

j1
j0

)2

> 2. ¤

Proof of the Theorem : The starting point is the following inequality which can
be found, for example, in [QW]:

(28) ν −
α1

21/3
ν1/3 < jν < ν −

α1

21/3
ν1/3 +

3

20
α2

1

21/3

ν1/3

where α1 is the first negative zero of the Airy function Ai(x), its numerical value
being α1 ' −2.3381. From now on, we will assume ν ≥ 2, the case ν < 2 will be
considered at the end of the proof. We use the inequalities

(29) 1 + u/3 ≥ (1 + u)1/3 ≥ 1 + u/4 (valid for 0 ≤ u ≤ 1) ,

(30) (1 + u)−1/3 ≤ 1 − u/4 (valid for 0 ≤ u ≤ 1/2)

together with (28) to get on the one hand

(31) jν+1 > ν + 1 −
α1

21/3
(ν + 1)1/3 ≥ ν + 1 −

α1

21/3
ν1/3(1 +

1

4ν
)

and, on the other hand

jν+1 < ν + 1 −
α1

21/3
(ν + 1)1/3 +

3

20
α2

1 21/3(ν + 1)−1/3

implies

(32) jν+1 < ν + 1 −
α1

21/3
ν1/3(1 +

1

3ν
) +

3

20
α2

1 21/3ν−1/3(1 −
1

4ν
)
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Let us set c = log(j1/j0), we know use the inequality eu ≤ 1 + 1.3u valid for every
number u ≤ 1/2 (we have c/(ν + 1) ≤ c ≤ 1/2) to get

(33)

(

j1
j0

)
1

ν+1

≤ 1 +
1.3 c

ν + 1
≤ 1 +

1.3 c

ν
.

Using (28) for jν , (31) for jν+1 and (33), we finally get:

(

j1
j0

)
1

ν+1

jν − jν+1 <

(

1 +
1.3 c

ν

) (

ν −
α1

21/3
ν1/3 +

3

20
21/3α2

1ν
−1/3

)

− ...

(

ν + 1 −
α1

21/3
ν1/3 −

α1

4.21/3
ν−2/3

)

.

which gives the following upper bound for
(

j1
j0

)
1

ν+1

jν − jν+1:

1.3 c − 1 +
3

20
21/3α2

1ν
−1/3 +

α1

21/3
(
1

4
− 1.3 c)ν−2/3 +

3.9 c

20
21/3 α2

1ν
−4/3 .

If we denote by x = ν1/3, the previous estimate leads to study the polynomial

P (x) := (1.3 c − 1)x4 +
3

20
21/3α2

1x
3 +

α1

21/3
(
1

4
− 1.3 c)x2 +

3.9 c

20
21/3 α2

1 .

Now, a straightforward calculation shows that P (x) ≤ 0 as soon as x ≥ 3.19226,
which yields that the lower bound in inequality (26) holds when ν ≥ 3.192263 '
32.53.

For the upper bound, we proceed in the same way. We use jν > ν − α1

21/3 ν1/3

and

31/(ν+1) ≥ 1 +
log 3

ν + 1
≥ 1 +

log 3

ν
−

log 3

ν2

together with (32) to get

jν31/(ν+1) − jν+1 ≥ log 3 − 1 −
3

20
21/3α2

1ν
−1/3 +

α1

21/3
(
1

3
− log 3)ν−2/3 + ...

− log 3 ν−1 +
3

80
21/3 α2

1ν
−4/3 +

α1

21/3
log 3ν−5/3 .

This yields to consider the polynomial

Q(x) := (log 3−1)x5−
3

20
21/3α2

1x
4+

α1

21/3
(
1

3
−log 3)x3−log 3x2+

3

80
21/3 α2

1x+
α1

21/3
log 3

which is non positive if x > 9.0161. It means that the upper bound in inequality
(26) holds when ν ≥ 9.01613 ' 732.2.

It remains to check the first inequality in (26) for a finite number of values
ν = n

2 , n = 0, 1, . . . , 1464 which we did using Matlab.

Remark A.1. The number 3 in the upper bound has been chosen to give numer-
ical computations which were not too long. Actually, according to the asymptotic
expansion given by (28), we could certainly choose, instead of 3, any number k
greater than e = 2.7128.... But obviously, the closer k is to e, the more numerical
computations we need to do to complete the proof.
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Remark A.2. We were only motivated by the quotient jν+1/jν , so we have not
considered the case of higher zeros. But, since the estimate (28) holds for any zero
jν,k (we just have to replace α1 by αk, the k-th negative zero of the Airy function),
it is clear that the proof we give can be adapted to look at any ratio of the type
jν+1,k/jν,k.
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