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Phase transformation yield surface determination for some

shape memory alloys

C. Lexcellent *, P. Blanc
Laboratoire de M canique Appliqu e R. Chal at, UMR 6604, CNRS-Universit de Franche-Comt 24 rue de l�Epitaphe, 25000 Besan�con, France 

Like in the ‘‘plasticity’’ theory, the prediction of phase transformation yield surfaces constitutes an essential issue in the mod-elling of
polycrystalline shape memory alloys thermomechanical behaviour. Usually for ‘‘micro–macro’’ integration, the nature of the
interface between austenite and twinned or untwinned martensite under stress free state and the choice of correspondence variants
(CV) or habit plane variant (HPV) are predominant toward the explicit shape of the phase transformation surface. If the predictions
for Cu–Al–Be, Cu–Al–Zn (interface between austenite and one single variant of martensite for cubic to monoclinic phase
transformation) and Cu–Al–Ni (interface between austenite and twinned martensite for cubic to orthorhombic phase transfor-
mation) are fairly good; the prediction is not efficient in the important case of Ti–Ni (interface between austenite and twinned
martensite with stress free state for cubic to monoclinic phase transformation). The usual hypothesis consisting in neglecting the effect
of stress on the interface geometrical configuration ~must be revised.
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1. Introduction

Shape memory alloys (SMA) are materials undergo-

ing a first order structural phase transformation. This

phase transformation may be induced by a change either

in stress or in temperature or both. These structural

transformations occur in different ways from a high

symmetry parent phase (called austenite) to a lower

symmetry product phase (called martensite).

The deformation behaviour of SMA is predicted

thanks to the knowledge of the different microstructures

appearing during the transition between phases. As

shown in [1], it is important to know such microstruc-

tures in order to predict the SMA thermomechanical

response under various loading conditions.

At first, a theoretical analysis of the austenite–mar-

tensite transformation called WLR classical theory [2]

was presented. It predicts the habit plane, orientation

relationships and macroscopic distortions only from the

knowledge of the crystal structures and lattice parame-

ters of the parent and the product phases. Hence a

martensite variant is identified by its own shape strain

and habit plane normal vectors.

More recently, the theory used to construct micro-

structures is a geometrically non-linear theory of mar-

tensitic transformation performed by Ball and James

[3,4]. These authors formulate a free energy function

that would produce the A–M interface by energy mini-

mization and relate it to crystal structure. One of the

main results of this new theory (called crystallographic

theory of martensite: CTM) is the recognition that some

of the common microstructures in shape memory ma-

terials are possible (as energy minimizing microstruc-

tures) only with exceedingly special lattice parameters.

Generally speaking according to Bhattacharya [5], a

single variant of martensite cannot have a coherent in-

terface with the austenite. However a region consisting of

fine twins of two martensitic variants can form a coher-

ent interface with the austenite. But Hane [6] considered

that alloys such as Cu–Al–Ni (cubic!monoclinic
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transformation) Cu–Zn, Cu–Zn–Al, Cu–Zn–Ga, etc.

among others [7] exhibit an undeformed interface

between austenite and a single variant of martensite.

For many alloys such as Ni–Ti, Cu–Al–Ni (cu-

bic! orthorhombic transformation), the transformed

region consists of parallel bands containing alternately

two different variants of martensite. The CTM gives

mathematical tools to predict untwinned or twinned

martensite at the interface with the austenite phase.

However the different possible configurations at the

interface A–M are predicted for the stress free state. For

example, Shield [8] examines the effect of the crystalline

orientation on the simple tension pseudoelastic behaviour

of three different Cu–Al–Ni single crystals: ‘‘we will not

consider elastic strains in the analysis presented here and

will instead be using the ‘‘constrained theory’’ as de-

scribed by Ball et al. [9]. Consistent with the way it was

actually introduced, is that the elastic strains are neglected

in comparison with the transformations strains.

In this context, considering the very recent paper [10]

of Stupkiewicz and Petryk, who performed a new

modelling of single crystal tensile tests of Shield [8]: ‘‘as

a first approximation, in our model, we assume that the

parameters describing the microstructure follow the two

theories of martensite transformation [1,2], originally

developed for the stress-free transformation’’.

As a summary, even for analysing the mechanical be-

haviour of SMA, the crystallographical microstructure is

viewed as stress free. It means that exact compatibility of

the transformation strains at zero stress is adopted.

The main question of the present paper consists in the

workability of this important hypothesis. In this aim, a

comparison between theoretical predictions of the ini-

tiation surface of phase transformation and experimen-

tal points for biaxial proportional loadings (tension

(compression)–torsion, bicompression tests) is done.

Two microstructural configurations are investigated,

(i) the coherent interface between austenite and one single

variant of martensite (cubic!monoclinic) exhibited by

Cu–Al–Be and Cu–Al–Zn for special compositions, (ii)

the transformed region consists of parallel bands includ-

ing alternately two different variants of martensite ex-

hibited for instance by Ni–Ti (cubic!monoclinic) and

Cu–Al–Ni (cubic! orthorhombic).

2. Austenite–martensite possible interfaces

2.1. General considerations

Let the reference configuration be unloaded and un-

distorded austenite at a temperature above the phase

transformation temperature (A!M) in the three di-

mensional space. Considering any other configuration of

the crystal as a deformation~yð~xÞ . We assume that~yð~xÞ is
continuous and piecewise continuously differentiable.

Therefore F ¼ r~yð~xÞ is a piecewise continuous func-

tion.Moreover, if F is discontinuous across some surface,

the jump in F across the surface must be a rank-one ma-

trix. This is the Hadamard jump condition or compati-

bility condition (see [5] and the references therein). It

ensures that the interface is coherent.

If ~n is unit vector normal to the interface, it means

that for some vector ~a , the matrices F 1 and F 2 repre-

senting the deformation gradient on each side of the

interface must comply with

F 2 � F 1 ¼~a�~n: ð1Þ
The polar decomposition theorem allows to decom-

pose F (with positive determinant) uniquely as a product

QU of a positive definite symmetric matrix U ¼ ð
ffiffiffiffiffiffiffiffiffi

F TF
p

Þ
and a rotation Q.

Let the homogeneous deformation ~y ¼ U i~x take the

austenite to the martensite. The matrix U i is known as

the Bain strain or the transformation stretches matrix.

Considering the distinct matrix of the form RTU iR (R:

rotation matrix belonging to the point group of aus-

tenite) U 1;U 2; . . . ;U m. The integer m is given by [5]

m ¼ order of Pa; the point group of the austensite

order of Pm; the point group of the martensite
;

ð2Þ
m represents the number of martensite variants.

It depends on the nature of the crystallographic

transformation (m ¼ 3 for cubic! tetragonal, m ¼ 6 for

cubic! orthorhombic, m ¼ 12 for cubic!monoclinic,

etc.).

2.2. Cubic to monoclinic phase transformations

Some copper based and Ni–Ti alloys exhibit a phase

transformation between a cubic parent phase A (lattice

parameter a0) and a product phase M which is mono-

clinic (lattice parameters a, b, c and h angle between the

edges with lengths a and c).

The strain gradient tensor F can be written as

F ¼
a c cos h 0

0 c sin h 0

0 0 b

0

@

1

A

ðframe of AÞ

; ð3Þ

where the transformation stretches are

a ¼
ffiffiffiffiffi

2a
p

a0
; b ¼ b

a0
and

c ¼
ffiffiffiffiffi

2c
p

9a0
ðM18RÞ ½11; 12� or c ¼

ffiffiffiffiffi

2c
p

3a0
ð6MÞ ½13�

or a ¼ a

a0
; b ¼ b

ffiffiffi

2
p

a0
and

c ¼ c
ffiffiffi

2
p

a0
for Ni–Ti½1�:
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Hence, U 2 ¼ F TF can be obtained

U 2 ¼
a2 ac cos h 0

ac cos h c2 0

0 0 b2

0

@

1

A

ðframe of AÞ

; ð4Þ

In addition, the eigenvalues k1, k2 and k3 of this

symmetric matrix are

k1 ¼ b2;

k2 ¼
a2 þ c2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ2 þ 4a2c2 cos2 h

q

2
;

k3 ¼
a2 þ c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ2 þ 4a2c2 cos2 h

q

2
:

ð5Þ

With the usual values of a, b, c, obtained with lattice

parameters X-ray measurements for these alloys, one

obtains

k16 k26 k3: ð6Þ
Following Ball and James [3,4] an interface exists

between austenite and a single variant of martensite

called Mi (i ¼ 1; . . . ; 12) if and only if the symmetric

matrix U2 has a first eigenvalue less than or equal to one

(called k1), a second one equal to one (k2). And the third

eigenvalue is greater than or equal to one (called k3).

U 2 has an eigenvalue k2 ¼ 1 if and only if, the

monoclinic angle and the transformation stretches a and

c are related by

cos2 h ¼ ð1� a2Þð1� c2Þ
a2c2

: ð7Þ

For instance, this situation is fulfilled for some copper

based alloys [6,14] but not for Ni–Ti alloys (Eq. (7) and

ki values) (see Table 1) as it has been verified.

It should be pointed out that the same calculations

are made on the alloys Cu–23.73 Zn–9.4 Al and Cu–24.2

Al–2.95 Be than on the other copper based alloys [14],

but with the measured lattice parameters we find k2 re-

spectively equal to 0.98 and 0.979.

However with the first alloy, it was observed ‘‘in situ’’

(optical observation: G ¼ 50) interfaces between austen-

ite and single variant martensite by Lexcellent et al. [14].

For the second alloy, the sample observed has not

exactly the same composition than Cu–24.2 Al–2.95 Be

[12], that is why the results may be not completely exact.

Nevertheless some copper based alloys were observed

and give the same result. Following the theoretical

analysis of James and Hane [15] k2 must be equal to one

in order to insure the existence of an interface between

austenite and a single variant of martensite.

2.2.1. Austenite – single variant of martensite microstruc-

ture

The previous discussion means that the ‘‘habit plane

equation’’ and the monoclinic variant U i (i ¼ 1; . . . ; 12)

RiU i � 1 ¼~b� ~m ð8Þ
give values for Ri (rotation matrix), ~m: habit plane

normal and ~b: the shape strain vector.

Besides, with the eigenvalues from Eq. (5), it can be

shown that the shape strain vector~b and the habit plane

normal ~m have components such as

~b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1
p

� b
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1� b2

q

�

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

q

�bk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p� �

bk
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p� �

0

B

B

B

B

@

1

C

C

C

C

A

ðaustenite frameÞ

; ð9Þ

~m ¼ 1
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1� b2

q

�

�
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

q

�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p� �

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p� �

0

B

B

B

B

@

1

C

C

C

C

A

ðaustenite frameÞ

; ð10Þ

where k ¼ �1. Thus, two solutions of the habit plane

Eq. (8) exist.

At last, it can be found that the components of the

symmetric matrix U in the austenite frame are

Table 1

Lattice parameters (�A) of cubic austenite and monoclinic martensite and obtained eigenvalues

Atomic composition Austenite Martensite Eigenvalues

a0 a b c h c1 k2 k3

Cu–15 Zn–17 Al [6] (L21 ! 6M) 5.996 4.553 5.452 13.014 94.2 0.827 1.004 1.196

Cu–14 Al–4 Ni [6](L21 ! 6M) 5.836 4.430 5.330 12.79 95.6 0.834 0.994 1.226

Cu–20 Zn–12 Ga [6] (L21 ! 6M) 5.86 4.40 5.33 12.78 94.9 0.827 0.993 1.192

Cu–23.73 Zn–9.4 Al [11] 5.870 4.441 5.330 38.132 89.08 0.824 0.980 1.218

Cu–24.2 Al–2.95 Be [12] 5.82 4.46 5.22 38.25 83.3 0.804 0.979 1.262

Ti–49.2 Ni [1] 3.015 2.898 4.108 4.646 97.78 0.862 0.928 1.249

Ti–49.75 Ni [1] 3.015 2.889 4.12 4.622 96.80 0.869 0.934 1.224
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U ¼
b 0 0

0 n1 þ 2n2 þ n3 n1 � n3
0 n1 � n3 n1 � 2n2 þ n3

0

@

1

A; ð11Þ

where

n1 ¼
c2 � 1þ ða2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1
p

2ða2 þ c2 � 2Þ ;

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1
p

� 1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � 1Þðc2 � 1Þ
p

2ða2 þ c2 � 2Þ ;

n3 ¼
a2 � 1þ ðc2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 1
p

2ða2 þ c2 � 2Þ :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð11bisÞ
As recalled before, there are twelve distinct variants

U 1; . . . ;U 12. For example, the components of the vari-

ant U1 can be taken as these given in Eq. (11).

While the remaining variants are found from this

variant by a symmetry transformation using the rotation

in the cubic La€ue Group ðLc ¼ Pa \ S0ð3ÞÞ .
As a summary, there are 24 distinct possible couples

ð~bi; ~miÞ in that kind of phase transformation.

2.2.2. Austenite–twinned martensite microstructure

The austenite–twinned martensite microstructure

configuration is given in Fig. 1. It consists of two adja-

cent regions: in the first one the austenite phase is

present, the other one contains parallel bands of alter-

nating layers of two martensite variants. According to

Ball and James [3,4] with the martensite variant pair

(i; j) the compatibility equations are

(i) the twinning equation between the martensite vari-

ants i and j itself

RijU i � U j ¼~a�~n; ð12Þ

(ii) the habit plane equation written

RijðkRijU i þ ð1� kÞU jÞ � 1 ¼~b� ~m: ð13Þ
The algorithm to find the solutions is given in the

paper [1].

In a first step, the resolution of the twinning Eq. (12)

delivers the pairs (i; j) which are compatible. They are

often called the correspondence variants CV. For Ni–Ti,

there are 132 correspondence variant pairs. Among

these there are 84 (sets S1, S2, S3, S4) where the set (i; j)
contains also the set (j; i). The last 48 (sets S5 and S6) of

CV pairs are rather odd because they do not individually

contains both variants pairs (i; j) and (j; i) but appears
only for a special choice of the lattice parameters.

Secondly, the resolution of the habit plane equation

permits to choose among the CV pairs, the so-called

habit plane variant (HPV) which is a compound twin of

kU i and ð1� kÞU j. At last for Ni–Ti 192 different cou-

ples of ð~bik; ~mjkÞ are obtained (with i; j ¼ 1–12, i 6¼ j,

k ¼ 1–8).

It should be noted that for both alloys: Ti–49.2 Ni

(wt%) and Ti–49.75 Ni (wt%), we are in this case. Indeed

for many couples (i; j), the matrix Cij (Eq. (15)) has an

eigenvalue equal to 1 for a suitable choice of k.

If the twinning Eq. (12) is substituted in the habit

plane Eq. (13), then the habit plane equation becomes

RijðU j þ k~a�~nÞ � 1 ¼~b� ~m: ð14Þ
Let the symmetric matrix CijðkÞ defined by

CijðkÞ ¼ ðU j þ k~a�~nÞTðU j þ k~a�~nÞ: ð15Þ
If~e1 and~e3 are the eigenvectors corresponding to the

eigenvalues k1 and k3 of CijðkÞ ðk16 k2 ¼ 16 k3Þ, it can
be demonstrated that

~b¼
ffiffiffiffiffi

k3
p

�
ffiffiffiffiffi

k1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k3�k1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k3ð1�k1Þ
p

~e1

�

þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1ðk3�1Þ
p

~e3

�

and

~m¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k3�k1
p

�

�
ffiffiffiffiffiffiffiffiffiffiffiffi

1�k1
p

~e1þ k
ffiffiffiffiffiffiffiffiffiffiffiffi

k3�1
p

~e3

�

;

ð16Þ

with k ¼ �1.

2.3. Cubic to orthorhombic transformation (examination

of Cu–13.95 Al–3.93 Ni (wt%))

In a very simple way, U 2 ¼ ðF TF Þ can be expressed as

U 2 ¼

a2 þ c2

2
a2 � c2

2
0

a2 � c2

2
a2 þ c2

2
0

0 0 b2

0

B

B

@

1

C

C

A

ðaustenite frameÞ

; ð17Þ

with a ¼ 1:0619, b ¼ 0:9178 and c ¼ 1:023 (obtained for

Cu–14.2 Al–4.3 Ni (wt%) [16,17]).

The eigenvalues are evidently: k1 ¼ b2, k2 ¼ c2,

k3 ¼ a2 and k2 ¼ 1:046 is different from 1. However,
Fig. 1. Schematic view of a laminated austenite–twinned martensite

microstructure (A: austenite, Mi, Mj: martensite variants).
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according to our calculations (Eq. (15)) with the values

above, we find a root k02 ¼ 1. Cij eigenvalues confirms

the presence of an interface between austenite and

twinned martensite.

Using procedure (2.2), we find that we can have an

austenite–martensite interface with either twins I or II.

Interfaces using type I twin k ¼ 0:2906

bþ ¼ ð0:06565; 0:06573; 0:02379Þ;
b� ¼ ð0:05763;�0:07473; 0:01700Þ;
m̂þ ¼ ð0:6355;�0:7484; 0:1897Þ;
m̂� ¼ ð0:7154; 0:6497; 0:2572Þ:

Interfaces using type II twin k ¼ 0:3011

bþ ¼ ð0:05599;�0:07068; 0:02359Þ;
b� ¼ ð0:06531; 0:06538; 0:01211Þ;
m̂þ ¼ ð0:7306; 0:6679; 0:1420Þ;
m̂� ¼ ð0:6350;�0:7275; 0:2599Þ:

Thus, we have 96 A–M possible austenite–martensite

interfaces in this material (48 type I, 48 type II) i.e. 96

different couples (~bi; ~mj).

Following Ichinose et al. [18], type I twins are 2.5

times harder to move than type II twins, thus during

mechanical loadings, type II is expected to be observed.

It can be recalled that type I twins have one plane of

symmetry while type II twins have none.

3. Phase transformation surface (austenitefimartensite)

3.1. Theoretical considerations

Let have a biaxial ‘‘dead’’ loading i.e. the stress tensor

will be expressed in the reference configuration,

r ¼ r1~e1 �~e1 þ r2~e2 �~e2: ð18Þ
The predicted phase transformation surface must be

at least convex in the stress space (r1; r2) must also ac-

count for the general asymmetry between tension and

compression observed in SMA and at last must fitted the

experimental yield points obtained for proportional bi-

axial loadings in tension(compression)–torsion or

bi-compression.

As a criterion the first variant appears when a ther-

modynamical force associated to the phase transfor-

mation is equal to zero:

r : et � KðT Þ ¼ 0; ð19Þ
where r and et are naturally written in the geometrical

frame of the sample. r : et represent the mechanical en-

ergy required to transform completely a unit volume of

austenite into martensite. This hypothesis or assumption

is for instance made by Patoor et al. [19] in some micro–

macro modelling and also for some phenomenological

investigation at the macro-scale [20] suggests.

If R is the rotation matrix from the austenite cell

frame to the geometrical sample one, then

et ¼ TREtR with Et ¼ 1
2
ðU 2 � 1Þ; ð20Þ

U ¼ U i ði ¼ 1; . . . ; vÞ for a single variant U ¼
ð1� kÞU i þ kU j (with ði; jÞ 2 f1; . . . ; vg) for a twinned

variant.

The procedure used to calculate yield surface of

polycrystal is purely phenomenological and is adapted

from a paper by Huang [21]:

(i) A polycrystalline material is represented by n grains

(here 1000 grains are chosen) defined by their crystal-

lographic orientation. Obviously, an isotropic tex-

ture, which represents a random distribution of the

grain crystallographic lattice orientation in the space

of the Euler angles, is chosen. The number m of pos-

sible variants U i is different for Ni–Ti or Cu–Al–Ni.

Interactions between the grains are not taken into

account. As the yield surface represents apparition

of the first activated martensite platelets, interaction

stresses are not playing an important part yet.

(ii) Under a given stress condition r0, for each grain k

and among the m possible variants, the one present-

ing the higher factor K (Eq. (12)) is selected. It

should be noted that we use there a Sachs type

model. Indeed, this variant is the one with the larg-

est transformation strain along the stress direction,

which is equivalent to the lowest transformation

stress, it is similar to a Schmid law. A set of n fac-

tors Kmax
k is determined by this method.

(iii) A new set of Kmax
k can be calculated under a differ-

ent stress condition. Kmax
tension;k stands for the results

under uniaxial tension.

(iv) The ratio called r and the phase transformation

start stress rt are obtained (Eq. (14)).

(v) A new stress condition is applied and the corre-

sponding phase transformation stress is deter-

mined, and so on.

Hence, a convex yield surface in the biaxial stress

space ðr1; r2Þ is determined for the polycrystalline al-

loys.

r ¼
P

k¼1;...;n K
max
k

P

k¼1;...;n K
max
tension;k

and rt ¼ 1

r
r0: ð21Þ

3.2. Transformation surface prediction

There is also a prediction of these surfaces at the

macroscopic scale. Like in the classical plasticity theory,

a combination of the second (J2) and the third (J3) in-

variants of the deviatoric stress tensor dev r is used

[13,14,22].

This application constitutes the extension of a ther-

modynamical study of isotropic pseudoelasticity in
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shape memory alloys considering the tension–compres-

sion assymmetry performed by Raniecki and Lexcellent

[20]. Without entering into the details, the yield surface

corresponds to the fact that the thermodynamical force

associated to the volume fraction of martensite attains a

zero value. As the volume variation associated to the

phase transformation is negligible, only the two invari-

ants of the stress deviator are taken into account.

Under isothermal conditions, the following yield

surface is proposed

gðrijÞ ¼ �rf ðyÞ � r0 ¼ 0; ð22Þ
with �r is the classical Von Mises invariant (second in-

variant of the deviatoric stress tensor)

�r ¼ 3

2
devr : devr

� �1=2

; ð23Þ

J3 is the third invariant of the deviatoric stress tensor

J3 ¼ detðdevrÞ: ð24Þ
The adimensional parameter y is defined by

y ¼ 27

2

J3

�r3
: ð25Þ

The choice of the f ðyÞ function corresponds to the

necessity to have a convex yield surface for any chosen

material parameter a.

For instance a choice of

f ðyÞ ¼ 1þ ay ð26Þ
is not convenient.

On the opposite, a more complicated equation of f ðyÞ
like

f ðyÞ ¼ cos
ar cosð1� að1� yÞÞ

3

� �

with � 1 < a < 1

ð27Þ

works.

For the two copper-based alloys investigated (Cu–

23.73 Zn–9.4 Al (at.%) and Cu–24.2 Al–2.95 Be (at.%)

where an ‘‘austenite–single variant martensite’’ interface

is predicted with stress free state, a good agreement is

obtained between prediction and experiments (Figs. 2

and 3).

For the Cu–13.95 Al–3.93 Ni (wt%) which shows a

cubic to orthorhombic transformation, it�s considered

that an interface between austenite and twinned mar-

tensite is predicted with stress free state. The micro–

macro prediction (Fig. 4) seems consistent with the two

previous shape yield curves obtained for the Cu–Zn–Al

and Cu–Al–Be.

In particular, the established asymmetry in tension–

compression for this alloys [10] is taken into account in

the prediction.

The prediction for Ti – 49.75 Ni (at.%) with an aus-

tenite–twinned martensite interface with stress free state

is more questionable (Fig. 5). For instance, the asym-

metry between tension and compression which has been

measured on this alloy [22,23] is not predicted.

This gap between prediction and real material be-

haviour for Ni–Ti is confirmed by the work of Patoor

et al. [24]. In the very important case of this alloy, there

is no agreement between the experimental results and

the prediction. In order to solve the problem, they de-

termined a new interaction matrix considering the exis-

tence of two CVs inside each HPV, without efficient

results.

Fig. 2. Yield surface of Cu–Zn–Al polycrystal in the space ðr1; r2Þ
(austenite!untwinned martensite) (� experimental points; –– micro–

macro simulation; phenomenological simulation).

Fig. 3. Yield surface of Cu–Al–Be polycrystal in the space ðr1; r2Þ
(austenite!untwinned martensite) (� experimental points; –– micro–

macro simulation; phenomenological simulation).
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Actually, the same investigation is done with the

double Hadamard conditions whereas this interaction

matrix and the obtained results are also not efficient.

However for Cu–Zn–Al (case of the austenite! single

variant martensite), the micro–macro approach [24] and

our investigation give nearly the same yield phase

transformation curve [14].

Our interpretation of this strange Ni–Ti behaviour is

the following: it seems that the interface configuration

(austenite–twinned martensite kU i þ ð1� kÞU j) pre-

dicted with stress free state is not the same than under

stresses. However, if one imagines that under stress for

NiTi alloys, the variant which appears is untwinned, one

can make the calculation with the single variant hy-

pothesis and examines its prediction. The calculation

seems to be in good agreement some experimental

biaxial point and the macroscopic prediction (Fig. 6).

4. Conclusion

On the one hand, the crystallographic theory of

martensite performed by Ball and James [3,4], Bhat-

tacharya [5], Hane [6], Shield [8] permit to determine the

nature of the interface i.e. between austenite and a single

variant of martensite or between austenite and a twin-

ned austenite, with stress free state.

The determination of the habit plane normal ~m and

the shape strain vector ~b and the choice of a simple

thermodynamical driving force permit to obtain the

yield phase transformation criterion.

The yield surface prediction is efficient for some Cu–

Zn–Al and Cu–Al–Be (austenite/untwinned martensite)

and Cu–Al–Ni (austenite/twinned martensite) but not

for Ni–Ti equiatomic alloys.

For these alloys, since the grains are very small (less

than 1 lm size), the hypothesis of neglecting grain

boundaries interaction can be revised as well as the

Fig. 4. Phase transformation surface of Cu–Al–Ni polycrystal in the

space ðr1;r2Þ (austenite! twinned martensite) (–– micro–macro sim-

ulation).

Fig. 5. Phase transformation surface of Ni–Ti polycrystal in the space

ðr1; r2Þ (austenite! twinned martensite) (j experimental points; ––

micro–macro simulation, phenomenological simulation).

Fig. 6. Phase transformation surface of Ni–Ti polycrystal in the space

ðr1;r2Þ (austenite!martensite as if it was single martensite) (j ex-

perimental points; –– micro–macro simulation, phenomenological

simulation).
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hypothesis of neglecting stress effect on the interface

between austenite and martensite.

In spite of the observation difficulties, an ‘‘in situ’’

observation of Ni–Ti samples under loading, would in-

teresting informations about this last point and real

geography of the interface microstructure under stress

certainly bring out.
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