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Abstract

We consider smooth 1-parameter families of plane curves tangent to a semicubic
parabola, when the curvature radius of their curves at the tangency point vanishes
at the cusp point. We find the A -normal form of these families, their envelopes and
local patterns near the cusp. We obtain a new codimension 2 singularity of envelopes
(two transversal semicubic cusps), and we describe its perestroikas under generic small
deformations.
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1 Introduction

In [2], problem 2001-6, V. I. Arnold proposed to study envelopes of families of curves tangent
to a semicubic parabola, when the curvature radius at the tangency point is a non-negative
smooth function of this point, vanishing at the cusp point. This problem has been solved
in [3], where such an envelope is described, according to the value of the first term of the
Taylor expansion of the curvature radius function. These families are not smooth.

In this paper we consider a similar problem in the smooth setting. Namely, we consider
cusped tangential families, that is smooth 1-parameter families of smooth plane curves, tan-
gent to a semicubic parabola (called the support). This is a generalization of the notion of
tangential family (see [4], [5] and [6]) to the case of singular support.

If the curvature radius of the family curve tangent to the support at the singular point
is not vanishing, then the curve is regular. Such families provide one of the five local models
for generic 1-parameter families of plane curves (studied by Dufour, see e.g. [7], [8]).

The aim of this paper is to study cusped tangential families when this curvature radius
vanishes (we say that such a family is flat along the cusp). This means that we allow the
family to have a singular curve, corresponding to the singular point of the support. These
families provide a new codimension 2 local singularity of envelopes. While stable singularities
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of plane envelopes have been fully classified (by Arnold [1], Dufour [7] and Thom [14]), simple
singularities have not yet been completely investigated, in spite of the fact that they appear
generically in deformations of families with enough parameters.

We describe the singularities of envelopes of flat cusped tangential families and their
local patterns: we show that, generically, the envelope has two branches near the cusp of the
support, the support itself and a second semicubic cusp transversal to it. This singularity
is local, hence it is different from the superposition of two branches having both a semicu-
bic cusp. Near the support singular point, the curves of the family experience a γ → U
perestroika along the support. We discuss the graph surfaces of cusped tangential families
(whose apparent contour is the family envelope). Moreover, we find A -normal forms of
generic cusped tangential families, toghether with their A -miniversal deformations. This
allows us to describe the perestroikas of the envelope singularity under small deformations.
These perestroikas can be interpreted as the metamorphosis of the apparent contour of a
vertical Whitney Umbrella under small deformations of the direction of the projection.

2 Cusped tangential families

Let Γ be a smooth curve in the plane R
2 = {X, Y }, having a semicubic cusp. Without loss

of generality, we may assume that, at least near the singular point, this curve is the standard
semicubic parabola Y 2 = X3, parameterized by the map ξ 7→ Γ(ξ) = (ξ2, ξ3).

Definition. A smooth 1-parameter family of plane curves {ϕξ : ξ ∈ R} is a cusped tangential
family (CTF) of support Γ if each curve ϕξ : R → R

2 is tangent to the semicubic parabola
Γ at Γ(ξ) for every ξ 6= 0.

By “smooth family” we mean that the mapping ϕ : R × R → R
2, sending (ξ, t) to

ϕ(ξ, t) := ϕξ(t), is of class C∞. In particular, each curve ϕξ is smooth.
Since the semicubic parabola Γ is regular at each point ξ 6= 0, each curve on the family,

corresponding to such a point, is required to be regular near the tangency point. Up to
change the parameterizations of the tangent curves, we can suppose that they are tangent
to Γ for t = 0 at point ϕξ(0) = Γ(ξ).

On the other hand, the special curve ϕ0, corresponding to the singular point of the
semicubic parabola, may have a singularity at t = 0.

The vector field along the semicubic parabola Γ,

VΓ(ξ) :=
1

ξ

d

dξ
Γ(ξ) (1)

is smooth also at the singular point ξ = 0, and it defines a tangent direction at each point
of the semicubic parabola. The tangency condition between ϕξ and Γ can be expressed as
the proportionality of the tangent vector field VΓ and the vector field of the velocities of the
curves ϕξ at the tangency point:

dϕξ
dt

(0) = α(ξ) VΓ(ξ) , (2)

2



where the proportionality factor α : R → R is a smooth function, nonvanishing at every
ξ 6= 0. This proportionality factor α does not characterize a CTF, but it controls several
interesting features of the family.

The degeneracy of the proportionality factor at the singular point of the support provides
a stratification of the set of the CTFs.

Definition. A CTF is said to be n-flat along Γ if its proportionality factor α is n-flat at the
origin (i.e. the Taylor expansion of α at ξ = 0 is O(ξn)).

0-flat CTFs will be also called non-flat CTFs. By flat CTF we mean a CTF whose
proportionality factor vanishes at ξ = 0. There exist infinitely degenerate flat families which
are not n-flat, whatever be n ∈ N.

Remark. A CTF is non-flat if and only if the special curve ϕ0 of the family is regular at
t = 0 and it is tangent there to the support. For flat CTFs, the special curve is singular at the
singular point of the semicubic parabola Γ. In particular, its curvature radius is vanishing
at the cusp point of the support.

We introduce now a “genericity condition” on CTFs.

Definition. We say that a flat CTF satisfies the condition (∗) if its special curve ϕ0 has a
semicubic cusp at t = 0, transversal to that of Γ at the common singular point.

We will explain below (corollary to Theorem 3 and subsequent remark) why condition
(∗) is actually a genericity condition.

3 Normal forms of 1-flat CTFs

In this section we find the A -miniversal normal form of 1-flat (∗)-generic CTFs and its
A -miniversal deformation. We start with some preliminar computations.

Let ϕ be a parameterization of a CTF in the standard coordinate system described above.
Equation (2) implies that the Taylor expansion of ϕξ (as a function of the only variable t)
at t = 0 can be written as

ϕξ(t) = Γ(ξ) + α(ξ)VΓ(ξ)t+

(

A(ξ)
B(ξ)

)

t2 +

(

C(ξ)
D(ξ)

)

t3 +

(

1
1

)

o(t3) , (3)

where A,B,C,D : R → R are smooth functions of the parameter ξ. We shall use the
notation

∑∞

i=0
Aiξ

i for the expansion of the function A at ξ = 0 (and similar notations for
functions B,C and D).

Lemma 1. A flat CTF ϕ is (∗)-generic if and only if the coefficients of the Taylor expansion
(3) satisfy B0(A0D0 − B0C0) 6= 0.

Proof. In our particular coordinate system, the 3-jet at the origin of the special curve of the
family is (A0t

2 + C0t
3, B0t

2 +D0t
3), since α(0) = 0. This curve has a semicubic cusp if and

only if A0D0 6= B0C0. Its tangent direction at the singular point, defined by the tangent
vector field (1), is (A0, B0). It is transverse to that of the semicubic parabola Γ if and only
if B0 6= 0.
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We shall classify (∗)-generic 1-flat CTFs with respect to the usual A -equivalence. Let
us recall that two smooth map germs f, g : (R2, 0) → (R2, 0) are said to be A -equivalent if
there exist diffeomorphic coordinate changes h, k : (R2, 0) → (R2, 0) in the source and target
space such that g = k ◦ f ◦ h−1. In other terms, two germs are A -equivalent if they belong
to the same orbit of the natural action of the group A = {(h, k)} on M2E

2
2 , where M2 is

the maximal ideal of ring E2 of the smooth function germs (R2, 0) → R and E
2
2 = E2 × E2.

Remark. A -equivalence does not preserve the curves of the family, but only their envelopes.
The more natural equivalence relation, preserving the family curves, is the fibered equiva-
lence, restricting the source coordinate changes to those of the form h(ξ, t) = (h1(ξ), h2(ξ, t)).
We will use coordinate x, y in the source space, instead of ξ, t, when the fibered structure of
the source space is not taken into account.

Non-flat CTFs are local models (for this fibered equivalence) for semicubic cusps as stable
singularities of envelopes of 1-parameter families of plane curves, studied by J.-P. Dufour (see
e.g. [7], [8] and [9]). Among other results, he proved that any non-flat CTFs has a functional
modulus, which is essentially the Blaschke curvature of the (codimension 1) planar 3-web
defined in the interior of the semicubic parabola near the singular point (where at each point
passes 3 curves of the family). Since flat CTFs are degenerated non-flat CTFs, it is clear
that they have fonctional moduli. Hence the fibered equivalence would not provide a discrete
classification of CTFs.

Some easy computations, starting from parameterization (3), show that the 3-jet of ϕ is
A -equivalent to

ψδ(x, y) := (x2 + y2 + δy3, y2 + x3) ,

where δ is a parameter determined (up to sign) by the initial CTF.

Theorem 1. Every (∗)-generic 1-flat CTF is A -equivalent to the normal form ψδ, provided
that δ 6= 0.

For the proof of this theorem we need to recall some further notations. The tangent space
V (f) to M2E

2
2 at any one of its points f is canonically identified with M2E

2
2 itself, and it

contains the tangent space TA (f) to the A -orbit of f . We recall that the tangent space is

TA (f) := M2〈fx, fy〉R + f ∗(M2)〈e1, e2〉R ,

where fx (resp. fy) is the partial derivative of f with respect to x (resp. with respect to y)
and e1 = (1, 0), e2 = (0, 1).

The extended tangent space to the A -orbit of f , TeA (f), is the extension of TA (f)
obtained by including the initial velocity vectors of all 1-parameter deformations of mappings
and of the identity diffeomorphisms of the source and the target spaces:

TeA (f) := E2〈fx, fy〉R + f ∗(E2)〈e1, e2〉R ,

The extended A -codimension of f is the dimension of the real vector space E p
n /TeA (f). We

denote by If the ideal E
2
2 〈f1, f2〉R generated by the components of f = (f1, f2).

The proof of Theorem 1 is based on the following determinacy estimate (see [12]).
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Theorem (Du Plessis). Let f : (R2, 0) → (R2, 0) be a smooth map germ and suppose that

M
ℓ
2E

2

2 ⊆ E
2〈fx, fy〉R + IfE

2

2 + M
ℓ+1

2 E
2

2 (4)

and
M

k
2E

2

2 ⊆ TeE (f) + M
k+ℓ
2 E

2

2 (5)

for some integers k ≥ 1 and ℓ > 0. Then f is (k + ℓ)-A -determined.

Proof of Theorem 1. We first use du Plessis’ estimate with k = ℓ = 2 to show that the normal
form ψ = (ψ1, ψ2) is 4-A -determined, provided that δ 6= 0 (we omit here the subscript δ).

Consider the 8 vectors xψx, . . . , yψy, (ψ1, 0), (ψ2, 0), (0, ψ1) and (0, ψ2) of the space
E 2〈ψx, ψy〉R + IψE 2

2 . Their projections into the 6-dimensional vector space M
2
2E

2
2 /M

3
2E

2
2 ,

generated by the vector monomials (x2, 0), . . . , (0, y2), form a generator system. Indeed, the
matrix formed by the coordinates of these projections in the above space basis has maximal
rank. Hence E 2〈ψx, ψy〉R+IψE 2

2 +M
3
2E

2
2 contains M

2
2E

2
2 , so the first inclusion (4) is fullfilled.

The second inclusion (5) to check is:

M
2

2E
2

2 ⊆ TeA (ψ) + M
4

2E
2

2 .

Consider the 6 vectors x2ψx, . . . , y
2ψy, toghether with the 8 vectors used in the proof of the

first inclusion. These 14 vectors belong to the extended tangent space TeA (ψ). Consider
the squared matrix, whose columns are the coordinates of the projections of these 14 vectors
in the space M

2
2E

2
2 /M

4
2E

2
2 , equipped with the standard basis

{(xiyj, 0), (0, xiyj) : i+ j = 2, 3} .

The determinant of this matrix is 1280 δ, so the above inclusion holds whenever δ 6= 0.
By Du Plessis’ estimate, ψ is 4-A -determined. Now, all the degree 4 terms of ψ can be

killed without any change of the 3-jet of the germ (provided that δ 6= 0), so the germ ψ is
3-A -determined.

4 Envelopes of flat CTFs

In this section we describe envelopes of flat CTFs. First let us recall some basic definitions
of envelope theory.

The graph of a family of curves {ϕξ : ξ ∈ R} is the surface

{(

ϕξ(t), ξ
)

: ξ, t ∈ R
}

in the 3-space R
2 ×R = {X, Y, Z}. The envelope of the family is the apparent contour of its

graph on the plane R
2 (i.e., the critical value set of the restriction to the graph of the natural

projection “forgetting Z” R
2 × R → R

2). There exist several other definitions of envelope,
but the one we recalled (due to René Thom [14]) is the most general and geometric.
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Remark. By the very definition of envelope, the semicubic support of every CTF is a branch
of its envelope. In the case of germs of non-flat CTFs, it is the only branch of the envelope.

For germs of flat CTFs the envelope is more complicated.

Theorem 2. The envelope of the germ at the origin of any (∗)-generic flat CTF has, in
addition to the semicubic support Γ, just another branch, having a cusp at the origin.

For 1-flat CTFs, this second cusp is semicubic if and only if the parameter δ of its A -
normal form is not vanishing. Moreover, this cusp is transversal to those of the support Γ
and of the special curve ϕ0.

For (n > 1)-flat CTFs, the second envelope cusp is semicubic and tangent to that of the
special curve ϕ0.

Proof. Consider first the case of 1-flat CTFs. Let ϕ : R
2 → R

2 be such a CTF. By Theorem
1, ϕ is A -equivalent to the normal form ψδ. Hence, the critical value sets of ϕ and ψδ are
diffeomorphic. The Jacobian determinant of ψδ is 4xy−3(2+3δy)x2y. Therefore the critical
set has two smooth branches passing through the origin, of equations x = 0 and y = 0.
The two branches of the critical value sets are x 7→ (x2, x3), which is the support Γ, and
y 7→ (−y2 + δy3, y2). This second cusp is semicubic if and only if δ 6= 0.

Consider now an n-flat CTF, for n ≥ 2. A direct computation shows that the 2-jet of
the Jacobian determinant of the parameterization (3) is 4B0ξt. Since B0 is non-zero by
Lemma 1, the critical point equation has, in addition to the solution t = 0 (providing the
envelope branch Γ), a solution of the form ξ = o(t). Replacing in (3), we find the envelope
parameterization’s 3-jet to be equal to that of the special curve ϕ0.

5 Singularities of graphs of flat CTFs

In order to understand the behaviour of the curves of flat CTFs near the singular points of
their supports, it is useful to describe the singularities of their graphs. For this, we identify
such a graph to the image of the mapping

Φ : R
2 → R

3 , (ξ, t) 7→ Φ(ξ, t) =
(

ϕ(ξ, t), ξ
)

.

We are interested to the classification of graphs under A -equivalence of map germs (R2, 0) →
(R3, 0) —the definition of A -equivalence in this case is similar to that recalled in section 2.

Local singularities of mappings from the plane to the 3-space have been classified under
A -equivalence by Whitney (who proved that the only stable singularities of these mappings
are transversal intersections of two or three regular sheets and the so-called Whitney Um-
brella, see [15]) and Mond (who classified simple singularities of these mappings, see [11]).

Let us recall that a smooth map from the plane to the space has an A±
n singularity at,

say, the origin if it is locally A -equivalent to the normal form

(u, v) 7→ (u, v2, v3 ± unv) . (6)

A+
n and A−

n singularities are different if and only if n is even.

6



A1 singularity is stable; it is also called the Whitney Umbrella singularity —due to the
form of its image, see fig. 1. The intersection of the (image) surface of the A±

n -singularity with
a transversal plane passing through the singular point is a semicubic cusp. A±

n singularities
are simple for every n ∈ N (that is, by deforming them slightly we can get only a finite
number of different singularities).

intersection
with the plane

Z = 0

Figure 1: The image of the Whitney Umbrella singularity and its intersection with a transver-
sal plane.

Theorem 3. The graph of the germ of any (∗)-generic n-flat CTF has a singularity A±
n .

Proof. By equation (3), the (n + 1)-jet of any n-flat CTF ϕ can be written, in a suitable
coordinate system, as

jn+1ϕ(ξ, t) =
(

ξ2 + 2αnξ
nt+

∑

Pi,jξ
itj+2, ξ3 +

∑

Qi,jξ
itj+2, ξ

)

,

where both sums are taken over all the indexes i, j ∈ N ∪ {0} such that i + j ≤ n − 1.
According to our preceding notations (3), P0,0 = A0, P0,1 = C0, Q0,0 = B0, Q0,1 = D0 and
so on. By (∗)-genericity, the coefficient Q0,0 = B0 is not vanishing due to Lemma 1. Hence,
it is easy to bring the above jet, by an A -conjugation, to the form

(

2αnx
ny +

∑

i+j≤n−1

Pi,jx
iyj+2, y2 +

∑

1≤i+j≤n−1

Q̃i,jx
iyj+2, x

)

,

where Q̃i,j = Qi,j/Q0,0. The coordinate change (X, Y, Z) 7→ (X − P0,0Y, Y, Z) in the target
space of the map reduces the latter jet to

(

2αnx
ny +

∑

1≤i+j≤n−1

P̃i,jx
iyj+2, y2 +

∑

1≤i+j≤n−1

Q̃i,jx
iyj+2, x

)

,

where P̃i,j = Pi,j − P0,0Q̃i,j. In particular, P̃0,1 = P0,1 − P0,0Q0,1/Q0,0 vanishes if and only if
P0,1Q0,0 = P0,0Q0,1, i.e. if and only if B0C0 = A0D0, which is excluded by Lemma 1.

Now, by the coordinate change

(X, Y, Z) 7→ (X, Y +
∑

k≥0

µk Y Z
k, Z)
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in the target space, we can kill (for suitable values µk) all the monomials {xitj+2 : i ≥ 1} in
the Y -coordinate of the germ. Hence the initial jet is A -equivalent to

(

2αnx
ny+

n−1
∑

i=1

P̃i,0x
iy2 + P̃0,1 y

3 +
n−2
∑

i=1

P̃i,1x
iy3 +

∑

i+j≤n−3

P̃i,jx
iyj+4,

y2 +
∑

i+j≤n−2

Q̃′
i,jx

iyj+3, x
)

.

Acting similarly on the first coordinate of the germ, we reduce it to:

(

2αnx
ny + P̃0,1 y

3 +
n−1
∑

i=1

P̃ ′
i,2x

iy3 +
∑

i+j≤n−3

P̃ ′
i,jx

iyj+4, t2 +
∑

i+j≤n−2

Q̃′
i,jx

iyj+3, x
)

.

For a suitable choice of parameters νi,j , replacing y with y+
∑

νi,jx
iyj, i+ j ≥ 2, we get

(

2αnx
ny + P̃0,1 y

3 +

n−2
∑

i=1

P̂i,1x
iy3 +

∑

i+j≤n−3

P̂i,jx
iyj+4, y2, x

)

.

Since P̃0,1 is not vanishing, by rescaling we get
(

y3 ± xny +
n−2
∑

i=1

P̄i,1x
iy3 +

∑

i+j≤n−3

P̄i,jx
iyj+4, y2, x

)

,

which is clearly A -equivalent to the normal form of the A±
n singularity (6); the sign ± is the

same sign as the product αn(B0C0 − A0D0) of the coefficients of the initial map (3). This
jet is (n+ 1)-A -sufficient (see [11]), so the initial CTF’s graph is A -equivalent to it.

We shall focalize now on 1-flat CTFs. In this case Theorem 3 provides the following.

Corollary. The graph of the germ of any (∗)-generic 1-flat CTF has a Whitney Umbrella
singularity, transversal to the plane Z = 0.

Remark. This fact explains why we consider condition (∗) a genericity condition: it ex-
presses the genericity of the intersection of the graph of the family with the plane Z = 0
passing through the singular point.

Remark. It follows from the corollary that the curves of any (∗)-generic (n = 1)-flat CTF
experience a γ → U perestroika along the support Γ. In the case of more flat CTFs, we can
still deduce the pattern of the curves of the family near the singular point of the semicubic
support. For n = 2, we have two different cases, according to the sign ± of the singularity A±

2

of the graph of the family. For the minus sign, the curves experiences a “γ → γ perestroika
along the cusp Γ”, while for the plus sign, they experiences a “U → U perestroika along the
cusp Γ”. For n > 2 the patterns are similar to the preceding ones, according to the parity
of the flatness degree.

The local patterns of (∗)-generic 1-flat CTFs near the double cusp singularity of their
envelopes are shown in figure 2.
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Γ

ϕξ

Γ

ϕξ

ϕξ

ϕξ

ϕξ

ϕξ

Γ

Γ

Γ

ε = 0

ε = 0

ε = 0

Γ

ϕ0

Γ

ϕ0

Γ

ϕ0

Figure 2: Local patterns of (∗)-generic 1-flat CTFs.

6 Deformations of the double cusps singularity

We descibe now the metamorphosis occurring to the double cusp envelope singularity under
a small deformation. This is done by computing the critical value sets of an A -miniversal
deformation of the normal form ψδ.

Theorem 4. The map germ Ψδ : (R2 × R
3, 0) → (R2, 0) defined by

Ψδ(x, y;λ, µ, ν) := ψδ(x, y) + (λy + νy3, µx)

is an A -miniversal deformation of the normal form ψδ, provided that δ 6= 0.

Proof. Recall that for every r-A -determined map germ f : (R2, 0) → (R2, 0) one has

M
r+1

2 E
2

2 ⊆ TA (f) ⊆ TeA (f)

(see [10]). Hence, the real vector space E 2
2 /TeA (ψδ) is generated by the vector monomials

(xiyj, 0), (0, xiyj), for all the non-negative integers i, j such that i + j = 1, 2, 3. Some easy
computations lead to the equality

E
2
2 = TeA (ψδ) ⊕ R

{

( y0 ) , ( 0
x ) ,
(

y3

0

)}

,

proving the theorem.

Corollary. The extended codimension of any (∗)-generic 1-flat CTF, whose coefficient δ is
not vanishing, is 3.
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Remark. The double cusp envelope singularity of (∗)-generic 1-flat CTFs is a codimension
2 envelope singularity. Indeed the parameter ν in the miniversal deformation Ψδ does not
change the envelope singularity, provided that δ 6= 0 and ν is small enough. Hence, this
singularity appear generically in envelopes of 1-parameter family of plane curves depending
in two external parameters, and it is not avoidable with arbitrarily small deformations.

We shall consider from now on only the 2-parameter deformation Ψ̃δ := Ψδ|ν=0 of the
normal form ψδ. We start considering the two sub-deformations

H(x, y;λ) := Ψ̃δ(x, y;λ, 0) and K(x, y;µ) := Ψ̃δ(x, y; 0, µ) ,

obtained by fixing µ = 0 and λ = 0 respectively.

Theorem 5. Under deformations H and K, one of the two cusps of the envelope singularity
is preserved (being diffeomorphic to the standard semicubic parabola for every small enough
value of the deformation parameter), while the other cusp experiences a γ → U transition
when the deformation parameter crosses 0.

Remark. The semicubic cusp is a stable envelope singularity: an isolated envelope cusp
cannot experience a γ → U transition.

Proof. We prove the theorem for deformation H . The proof for K is similar (the role of the
two cusps being exchanged).

The vanishing of the Jacobian determinant (with respect to x, y) ofH provides the critical
set equation

3x2(λ+ 2y + 3δy2) = 4xy , (7)

having two solutions passing through the origin (0, 0). The first solution x = 0 provides a
λ-depending family of critical value set branches. The graph of this family in the 3-space
R

3 = {X, Y, Z} is a surface, parameterized near the origin by (λy + y2 + δy3, y2, λ). Since
we are assuming δ 6= 0, this map germ is clearly A -equivalent to the Whitney Umbrella
normal form (λy, y2, λ). Moreover, the intersection of this surface with the plane Z = 0
is transversal, because the critical value set branch has a semicubic cusp at the origin for
λ = 0. Hence these critical value set branches have a γ → U transition when λ crosses 0.

The other relevant solution of (7) is also a solution of

(9δx)y2 + (6x− 4)y + 3λx . (8)

Let ∆ denote the discriminant of this second degree equation in the unknown y, as a function
of the variables x, λ (δ being fixed); since ∆(x = 0, λ = 0) = 4,

√
∆ is a smooth function

germ (at x = λ = 0). A straght-forward computation shows that

√
∆ = 4 − 6x− 27

2
δλx2 + oλ,x(3) ,

where oλ,x(n) is some smooth function germ of order higher than n in the variables λ, x
(depending also on the parameter δ).
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For λ = 0 the solution of equation (8) passing through the origin is y = 0, so
√

∆|λ=0 =
4 − 6x. Similarly, for x = 0 we have

√
∆|x=0 = 4. Therefore, by Hadamard Lemma we get

√
∆ = 4 − 6x− 27

2
δλx2 + λx · ox,λ(1) .

We deduce from (8) the (smooth local) solution

y =
(4 − 6x) −

√
∆

18δx
=

3

4
λx+ λ · oλ,x(1) .

The graph of the corresponding λ-depending family of branches is parameterized by a func-
tion, whose 3-jet is

(

x2 +
3

4
λ2x, x3, λ

)

.

This function is therefore A -equivalent to the A -sufficient 3-jet (x2, x3, λ), whose image is
the semicubical cuspidal edge. This ends the proof.

The two 1-parameter deformations H and K are obtained deforming a (∗)-generic 1-flat
CTF of support Γ among (∗)-generic 1-flat CTFs with the same support. Given such a
family, there are indeed two such deformations, according to which cusp of the envelope we
take as support.

In the general theory of tangential families (see [4], [5]), these deformations are called
tangential.

Theorem 6. Consider a tangential deformation of ψδ (that is H or K). For every small
enough value of the deformation parameter, the two envelope branches have a second order
tangency.

Proof. We consider the deformation H . The computations carried out in the proof of The-
orem 5 show that the two branches of the critical set intersect themselves at the origin
x = 0, y = 0. For λ 6= 0 fixed, a suitable change of the coordinate y brings the germ ψδ to
the form

(

λy + ox,y(3), y2 − 2

λ
y3 − 2

λ
x2y + x3 + ox,y(3)

)

.

Now, working modulo M
4
x,y × M

4
x,y we have

(

λy, y2 − 2

λ
(y3 − x2y) + x3

)

∼
(

y, x3 − 2

λ
x2y

)

∼ (y, x3 + x2y) .

The latter 3-jet is A -sufficient (see [13]); it is the normal form of the second order self
tangency, which is the only stable local singularity of tangential families (see [4]).

The second order self tangency of envelopes is stable under tangential deformations;
under non tangential deformations the envelope experiences a beaks metamorphosis. The
complete bifurcation diagram of the double cusp envelope singularity is shown in figure 3 for
δ > 0 (a change of sign of δ inverses the orientation of the µ axis).
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Figure 3: Perestroikas of the double cusp singularity.

Remark. The bifurcation diagram of the double cusp singularity can be interpreted also
as the bifurcation diagram of the apparent contour of a vertical Whitney Umbrella under
small deformations of the direction of projection. All the regular curves on the Umbrella
surface, passing through the singular point, have parallel velocities at this point. The “verti-
cality” of the Whitney Umbrella means that the projection fiber passing trough the Umbrella
singularity is tangent to this characteristic direction.
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