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Abstract

We consider the problem of model-selection-type aggregation of arbitrary den-

sity estimators using MISE risk. Given a collection of arbitrary density estima-

tors, we propose a data-based selector of the best estimator in the collection and

prove a general ready-to-use oracle inequality for the selected aggregate estima-

tor. We then apply this inequality to the adaptive estimation of a multivariate

density in a “multiple index” model. We show that the proposed aggregate es-

timator adapts to the unknown index space of unknown dimension in the sense

that it allows us to estimate the density with the optimal rate attainable when

the index space is known.
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1 Introduction

The problem of aggregation of M arbitrary estimators has been recently studied by

many authors (see, e.g., Nemirovski (2000), Yang (2000), Devroye and Lugosi (2000),

Catoni (2004), Wegkamp (2003), Tsybakov (2003), Birgé (2003), Bunea, Tsybakov

and Wegkamp (2004), Rigollet and Tsybakov (2004) and the references cited therein).

A motivating factor is that in frequently used statistical models (such as regression or

density estimation) there exists a great variety of possible competing estimators, and

it is often difficult to decide which estimator to choose. Assume that a Statistician is

given a list of size M of such estimators: p1, . . . , pM . A natural idea is then to look for

a new, improved, estimator constructed by combining p1, . . . , pM in a suitable way. A

combined “super-estimator” obtained from p1, . . . , pM is usually called aggregate and

its construction is called aggregation.

One can distinguish between three main types of aggregation: model selection

(MS) aggregation, convex (C) aggregation and linear (L) aggregation. The objective

of (MS) is to select the optimal single estimator from the list; that of (C) is to select

the optimal convex combination of the given estimators; and that of (L) is to select

the optimal linear combination of the given estimators. The notion of optimality

mentioned here is defined with respect to a given risk function, and it can be formalized

in a minimax sense leading to the concept of optimal rates of aggregation (Tsybakov

(2003)). A standard approach to establishing this kind of optimality is to show that

the aggregate satisfies a sufficiently precise oracle inequality.

Most of the currently available results on aggregation were obtained for the regres-

sion model (see a recent overview in Bunea, Tsybakov and Wegkamp (2004)). The

literature on aggregation of density estimators is not as large: Catoni (2004) and Yang

(2000) investigated the (MS) aggregation with the Kullback-Leibler divergence as a

loss function; Devroye and Lugosi (2000) developed a method of (MS) aggregation

of density estimators under the L1 loss. Another approach to density aggregation

under the L1 loss was proposed by Birgé (2003). Finally, we mention the recent paper

of Rigollet and Tsybakov (2004) on optimal convex (C) and linear (L) aggregation

of density estimators under the L2 loss, and the work of Juditsky, Nazin, Tsybakov

and Vayatis (2005a,b) where a recursive aggregation procedure is proposed for various

statistical contexts, including density estimation, classification and regression.
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In this paper we consider the (MS) aggregation of arbitrary density estimators

under the L2 loss (MISE). The main precursor of our study is the paper of Wegkamp

(1999) who treated a more particular problem of bandwidth selection for kernel density

estimation, but some of his results can be interpreted in general aggregation frame-

work. For instance, some oracle inequalities can be deduced from Wegkamp’s work,

although he does not derive them explicitly. Our first aim is to obtain a ready-to-use

oracle inequality for the L2 (MS) aggregation using techniques that are somewhat

different from those of Wegkamp (1999). Then we consider an example of application

of this inequality, namely, to the adaptive estimation of a multivariate density in a

multiple index model. We show that the proposed aggregate adapts to the unknown

index matrix B in the sense that it allows to estimate the density with the optimal

rate attainable when B is known.

2 A density aggregation theorem

Let X1, . . . , Xn be i.i.d. random vectors with common probability density p on Rd.

Suppose that we are given M candidate estimators p1, . . . , pM of the density p based

on the sample X1, . . . , Xn. Our goal here is the model selection (MS) aggregation,

that is, we would like to choose Ñ ∈ {1, . . . , M}, a random index based on the data,

such that the aggregate pÑ satisfies an oracle inequality of the form

E‖pÑ − p‖2 ≤ (1 + δn) min
1≤N≤M

E‖pN − p‖2 + rn, (1)

where the value δn = δn,M > 0 and the remainder term rn = rn,M > 0 are small

enough (they tend to 0, as n → ∞), and

‖p‖ =

(
∫

p2

)1/2

=

(
∫

Rd

p2(x)dx

)1/2

.

We interpret the inequality (1) as the fact that the aggregate pÑ mimics asymptoti-

cally the best among the estimators p1, . . . , pM (in the sense of MISE), up to a small

remainder term. Note that here p1, . . . , pM are arbitrary estimators, not necessarily

belonging to a specific family of nonparametric estimators. In particular, some es-

timators in the list can be parametric and others can be nonparametric of different

nature (kernel, spline, wavelet etc.). To apply the inequality (1) in the nonparametric
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density estimation context, it is usually sufficient that the remainder rn were smaller

in order than the standard nonparametric MISE rates, for example, rn = (log n)a/n

for some a > 0. This will be the case in the result that we prove below.

In order to define a specific aggregation algorithm, we split the sample X1, . . . , Xn

into two parts: I1, used for constructing “base” estimators pN , and I2, used for their

aggregation. Let n1 = Card(I1), n2 = Card(I2), n = n1 + n2. We select Ñ using the

rule:

Ñ = arg min
1≤N≤M

JN , (2)

where

JN = − 2

n2

∑

I2

pN(Xi) +

∫

p2
N . (3)

Here and later we abbreviate
∑

Xi∈I2
=
∑

I2
. Note that, because sub-samples I1 and

I2 are independent,

E

(

1

n2

∑

I2

pN(Xi)

)

= E

(
∫

pN(x)p(x)dx

)

. (4)

Therefore, JN is such that

E(JN) = E‖p − pN‖2 − ‖p‖2, N = 1, . . . , M,

i.e. JN is an unbiased estimator of the MISE of pN , up to the summand ‖p‖2 free

from N .

To state the aggregation theorem, we need the following assumptions.

Assumption 1. There exist finite positive constants a1, a2, and C1, C2 such that

M
∑

N=1

E‖pN − p‖ ≤ C1n
a1 (5)

with M ≥ 2 satisfying

M ≥ C2n
a2 . (6)

Assumption 2. There exists a finite constant C3 and a constant γ0 ≤ 1/12 such

that
M
∑

N=1

E

[

‖pN − p‖∞ exp

(

−γ0 log7/4 M

‖pN − p‖∞

)]

≤ C3 log2 M, (7)
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where ‖f‖∞ = supx∈D |f(x)| and D ∈ Rd is the support of the density p(·).
Assumption 3. The density p is uniformly bounded: there exists a constant

pmax < ∞ such that ‖p‖∞ ≤ pmax.

Remark 1. Assumptions 1 – 3 are not very restrictive. First of all, note that the

(MS) aggregation has the largest oracle risk and the smallest order of the remainder

term among the three types of aggregation mentioned in the introduction (Tsybakov

(2003), see also Bunea, Tsybakov and Wegkamp (2004), where these issues are dis-

cussed for the regression model). Therefore, it is not crucial to use (MS) aggregation

when the number M of base estimators is small, for example, when M grows as a

power of log n. In this case one can efficiently mimic more powerful convex or linear

oracles (Rigollet and Tsybakov (2004)). However, if the number M of estimators

to aggregate is polynomial in n or bigger, the remainder terms of convex and linear

aggregation become too large as compared to the typical nonparametric MISE rates.

This does not happen for the (MS) aggregation remainder term. Therefore, the (MS)

aggregation is the type of aggregation which is especially important for polynomial

M , explaining why assumption (6) is natural.

Given (6), the assumption (5) is almost trivially satisfied: it suffices to have the

risks E‖pN − p‖ uniformly bounded and M bounded by a power of n. Typically pN

are consistent with rates, and we have even a stronger bound.

Finally, Assumption 2 looks rather technical, but it is also quite a mild one. For

example, it is satisfied if

max
N=1,...,M

E
[

‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4 M)
]

≤ log2 M

M
, (8)

where I(·) denotes the indicator function. Below we give examples showing that (8)

is not a restrictive condition in density estimation. For instance, a sufficient condition

for (8) is that the probability P(‖pN − p‖∞ > t) decreases exponentially in t, as

t → ∞ (an example is given in Section 3), but often it suffices to check a weaker

and quite natural condition that the deviation of the stochastic part of the estimator

P(‖pN − EpN‖∞ > t) is exponentially small (see the example below).

To show that (8) implies (7), define the event W = {‖pN − p‖∞ ≤ γ0 log3/4 M}

5



and write

E

[

‖pN − p‖∞ exp

(

−γ0 log7/4 M

‖pN − p‖∞

)]

≤ γ0

M
log3/4 M + E

[

‖pN − p‖∞ exp

(

−γ0 log7/4 M

‖pN − p‖∞

)

I(W c)

]

≤ γ0

M
log3/4 M + E

[

‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4 M)
]

.

Consider a simple example illustrating that (8) is indeed a mild assumption: let p be

supported on [0, 1] and let pN be a kernel density estimator with bandwidth hN > 0

and with a bounded Lipschitz continuous kernel K ≥ 0 such that
∫

K = 1:

pN(x) =
1

nhN

n
∑

i=1

K

(

Xi − x

hN

)

, N = 1, . . . , M.

Then, clearly, ‖EpN‖∞ ≤ pmax and ‖pN‖∞ ≤ D1/hmin where D1 > 0 is a constant

and hmin = min{h1, . . . , hM}. Hence ‖pN − p‖∞ ≤ 2pmax + ‖pN − EpN‖∞ and ‖pN −
p‖∞ ≤ D1/hmin + pmax, so that we get E

[

‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4 M)
]

≤
(D1/hmin + pmax)P(‖pN − EpN‖∞ > D2 log3/4 M) with some constant D2 > 0. Now,

using Bernstein’s inequality, the Lipschitz condition on K and bounding ‖pN−EpN‖∞
by the maximum over a fine enough grid on [0, 1] with step n−α for some large enough

α > 0 we get the bound on the probability P(‖pN − EpN‖∞ > D2 log3/4 M) ≤
D3n

α exp(−D4nhN log3/4 M) ≤ D3n
α exp(−D4nhmin log3/4 M) with some constants

D3, D4 > 0. Finally, if M ≍ na with a > 0 and if the bandwidths are such that

hmin ≥ n−1 log3/4 n we get the bound E
[

‖pN − p‖∞I(‖pN − p‖∞ > γ0 log3/4 M)
]

≤
D5M

a′

exp(−D6 log3/2 M) with some constants D5, D6, a
′ > 0, which implies (8) for

n large enough. Thus, Assumption 2 holds under quite standard conditions on the

kernel K and on the bandwidths hN .

Theorem 1 If n2 = ⌊ cn
log M

⌋ for some constant c > 0 such that 1 ≤ n2 < n, then,

under Assumptions 1 – 3, we have

E‖pÑ − p‖2 ≤
(

1 +
C∗

log1/4 M

)

min
1≤N≤M

E‖pN − p‖2 + C∗ log3 M

n
, (9)

where C∗ > 0 is a constant which depends only on pmax, a1, a2, C1, C2, C3, c.
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Proof. Note first that, by definition, JÑ ≤ JN for all 1 ≤ N ≤ M . Using this

and (4), we have

E‖pÑ − p‖2 − E‖pN − p‖2 = E

(

−2

∫

ppÑ +

∫

p2
Ñ

)

−E

(

− 2

n2

∑

I2

pN(Xi) +

∫

p2
N

)

= E(JÑ) −E(JN) + E

(

2

n2

∑

I2

pÑ(Xi) − 2

∫

ppÑ

)

≤ 2E

(

1

n2

∑

I2

pÑ(Xi) −
∫

ppÑ

)

= 2E[ZÑ ], (10)

where

ZN ,
1

n2

∑

I2

(pN(Xi) − p(Xi)) −
(
∫

ppN −
∫

p2

)

.

Set WN = γ(‖pN − p‖2 + r), where r = (log M)2/n2 and γ > 0 will be chosen later.

Denoting by I(A) the indicator of a set A, we have

E(|ZÑ |) ≤ E(|ZÑ |I(|ZÑ | < WÑ)) + E(|ZÑ |I(|ZÑ | ≥ WÑ))

≤ γE[‖pÑ − p‖2 + r] + E(|ZÑ |I(|ZÑ | ≥ WÑ ))

≤ γE‖pÑ − p‖2 + γr +

M
∑

N=1

E(|ZN |I(|ZN | ≥ WN)). (11)

Now,

E(|ZN |I(|ZN | ≥ WN)) = E{E[|ZN |I(|ZN | ≥ WN )|I1]}. (12)

Note that ZN = n−1
2

∑

I2
[ζiN − E(ζiN |I1)] where, for fixed subsample I1, the random

variables ζiN = pN(Xi) − p(Xi), Xi ∈ I2, are i.i.d., and

E(ζiN |I1) =

∫

ppN −
∫

p2,

E(ζ2
iN |I1) =

∫

(pN(x) − p(x))2p(x)dx ≤ pmax‖pN − p‖2,

by Assumption 3. To evaluate (12) we will use Bernstein’s inequality (see, e.g., Serfling

(1980)):

P(|ZN | ≥ t|I1) ≤ 2ρ(t) for all t > 0,
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where

ρ(t) = exp

(

− n2t
2

2pmax‖pN − p‖2 + 2t‖pN − p‖∞/3

)

.

We have

E[|ZN |I(|ZN | ≥ WN)|I1] = WNP(|ZN | ≥ WN |I1)

+

∫ ∞

WN

P(|ZN | ≥ t|I1)dt

≤ A0 + A1, (13)

where

A0 = 2WNρ(WN) and A1 = 2

∫ ∞

WN

ρ(t)dt.

We first bound from above the integral A1. Consider the following two sets:

T1 = {t > 0 : t‖pN − p‖∞ ≤ 3pmax‖pN − p‖2},
T2 = {t > 0 : t‖pN − p‖∞ > 3pmax‖pN − p‖2}.

On T1 we evaluate:

ρ(t) ≤ exp

(

− n2t
2

4pmax‖pN − p‖2

)

for all t ∈ T1, (14)

while on T2:

ρ(t) ≤ exp

(

− 3n2t

4‖pN − p‖∞

)

, for all t ∈ T2. (15)

Consider first the set T1. Setting u = t
√

n2/(
√

2pmax ‖pN − p‖) and

W
′

N = WN
√

n2/(
√

2pmax ‖pN − p‖), we get

A11 ,

∫ ∞

WN

exp

(

− n2t
2

4pmax‖pN − p‖2

)

I(t ∈ T1)dt

≤
√

2pmax ‖pN − p‖√
n2

∫ ∞

W
′

N

e−u2/2du

≤ C

√
pmax ‖pN − p‖√

n2

exp(−(W
′

N)2/2)

= C

√
pmax ‖pN − p‖√

n2

exp

(

− n2W
2
N

4pmax‖pN − p‖2

)

≤ C

√

pmax

n2
‖pN − p‖ exp

(

−γ2 log2 M

pmax

)

,
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where we have used WN ≥ 2γ(log M)‖pN − p‖/√n2, and C, here and later, denotes

a positive constant, not always the same.

Consider now the set T2. Setting W
′′

N = 3n2WN/(4‖pN − p‖∞), we find

A12 ,

∫ ∞

WN

exp

(

− 3n2t

4‖pN − p‖∞

)

I(t ∈ T2)dt

≤ 4‖pN − p‖∞
3n2

∫ ∞

W
′′

N

e−udu

=
4‖pN − p‖∞

3n2
exp

(

− 3n2WN

4‖pN − p‖∞

)

≤ 4‖pN − p‖∞
3n2

exp

(

− 3γ log2 M

4‖pN − p‖∞

)

,

where we have used WN ≥ γ(log M)2/n2. Therefore we have

A1 ≤ 2(A11 + A12) ≤ C

√

pmax

n2
‖pN − p‖ exp

(

−γ2 log2 M

pmax

)

+
8‖pN − p‖∞

3n2
exp

(

− 3γ log2 M

4‖pN − p‖∞

)

. (16)

We turn now to the evaluation of A0. The argument here is similar to that used

above. If WN ∈ T1, then using (14) and the inequality x exp(−x2) ≤ exp(−x2/2), for

all x > 0, we get

A0 ≤ 2WN exp

(

− n2W
2
N

4pmax‖pN − p‖2

)

≤ 4

√

pmax

n2
‖pN − p‖ exp

(

− n2W
2
N

8pmax‖pN − p‖2

)

≤ 4

√

pmax

n2
‖pN − p‖ exp

(

−γ2 log2 M

2pmax

)

. (17)

Similarly, if WN ∈ T2, then using (15) and the inequality x exp(−x) ≤ exp(−x/2), for

all x > 0, we find

A0 ≤ 2WN exp

(

− 3n2WN

4‖pN − p‖∞

)

≤ 8‖pN − p‖∞
3n2

exp

(

− 3n2WN

8‖pN − p‖∞

)

≤ 8‖pN − p‖∞
3n2

exp

(

− 3γ log2 M

8‖pN − p‖∞

)

. (18)
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Returning now to (12) and (13) and using (16) – (18), we obtain

E(|ZN |I(|ZN | ≥ WN )) ≤ E(A0) + E(A1)

≤ C√
n2

exp(−C−1γ2 log2 M)E‖pN − p‖

+
C

n2
E

[

‖pN − p‖∞ exp

(

− 3γ log2 M

8‖pN − p‖∞

)]

.

This together with (11) gives

2E(|ZÑ |) ≤ 2γ

(

E‖pÑ − p‖2 +
log2 M

n2

)

+
C√
n2

exp(−C−1γ2 log2 M)
M
∑

N=1

E‖pN − p‖

+
C

n2

M
∑

N=1

E

[

‖pN − p‖∞ exp

(

− 3γ log2 M

8‖pN − p‖∞

)]

, 2γE‖pÑ − p‖2 + R. (19)

¿From (19) and (10) we get

(1 − 2γ)E‖pÑ − p‖2 ≤ E‖pN − p‖2 + R,

and, with 0 < γ < 1/4,

E‖pÑ − p‖2 ≤ (1 + 4γ)E‖pN − p‖2 + (1 + 4γ)R.

Set now γ = (8γ0/3)(log M)−1/4 where γ0 ≤ 1/12 is the constant in Assumption 2.

Then 0 < γ ≤ 2(log 2)−1/4/9 < 1/4 for all M ≥ 2, and we have the following bound

on the remainder term R defined in (19):

R ≤ C

{

log7/4 M

n2
+

1√
n2

exp(−C−1 log3/2 M)

M
∑

N=1

E‖pN − p‖

+
1

n2

M
∑

N=1

E

[

‖pN − p‖∞ exp

(

−γ0 log7/4 M

‖pN − p‖∞

)]}

.

The theorem follows from the last two displays by applying Assumptions 1 and 2.

Remark 2. Inspection of the proof shows that Assumption 2 can be slightly

generalized and the remainder term (log M)3/n in (9) can be reduced to (log M)1+ε/n
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for an arbitrarily small ε > 0. To obtain this, it suffices to fix an arbitrarily small

ν > 0, to replace log2 M by (log M)1+ν in the definition of r, and to take γ ≍
(log M)−ν′

with ν ′ < ν/2, n2 = ⌊cn/(log M)ν⌋. Then log7/4 M and log2 M in (7) can

be replaced by (log M)1+ν−ν′

and (log M)1+2ν−ν′

, respectively. We did not include

these extensions in Theorem 1, because they require more notation but seem not to

be crucial for application of the result.

3 Application to a dimensionality reduction model

Let X1, . . . , Xn be i.i.d. random vectors with common probability density p on Rd, d ≥
2. We consider the problem of nonparametric estimation of the density p assuming

that it has the form

p(x) ≡ fB(x) , φd(x)g(BTx), x ∈ Rd, (20)

where B is an unknown d × m matrix with orthonormal columns, 1 ≤ m ≤ d, the

function g : Rm → [0,∞) is unknown, and φd(·) is the density of the standard d-variate

normal distribution. Our goal is to show, using Theorem 1, that one can estimate

the density (20), without knowing B and m, with the same rate as the optimal rate

attainable when B and m are known.

Note that the representation (20) is not unique. In particular, if Qm is an m × m

orthogonal matrix, the density p in (20) can be rewritten as p(x) = φd(x)g1(B
T
1 x)

with g1(y) = g(Qmy) and B1 = BQm. However, the linear subspace M spanned by

the columns of B is uniquely defined by (20). By analogy with regression models, e.g.

Li (1991), Hristache, et al. (2001), we will call M the index space. In particular, if the

dimension of M is 1, (20) can be viewed as a density analog of the single index model

in regression. In general, if the dimension of M is arbitrary, we call (20) the multiple

index model. The directions where the density of projections of Xi is standard normal

are interpreted as non-interesting (“pure noise” directions).

The model (20) can be viewed as a modification of the projection pursuit density

estimation (PPDE) model, e.g. Huber (1985). A common PPDE model corresponds

to the special case of (20) where the function g can be represented as a product

of densities corresponding to one-dimensional projections. In this case, the density

can be estimated with one-dimensional rate (Samarov and Tsybakov (2004)), and
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thus the dimension reduction principle is realized. Models similar to (20) also arise

in biased, or weighted, sampling, where a direct sampling from a density f is, for

some reason, impossible, and an observation X = x from f may be available with

a relative probability proportional to a so-called biasing function w(x). The biased

observations have the density p(x) = f(x)w(x)/
∫

w(x)f(x)dx, and a typical problem

in biased estimation is: having observations from p, estimate f , when w(·) is known,

e.g. Cox (1969), Patil and Rao (1977). In our setting, f = φd is known while the

biasing function has the form g(BTx) and is unknown, and our goal is to estimate

p(·).
When the dimension m and an index matrix B (i.e. any of the matrices, equivalent

up to an orthogonal transformation, that define the index space M) are specified, the

density (20) can be estimated using a kernel estimator

p̂m,B(x) =
φd(x)

φm(BT x)

1

nhm

n
∑

i=1

K

(

BT (Xi − x)

h

)

, (21)

with appropriately chosen bandwidth h > 0 and kernel K : Rm → R1. We will

assume the following.

Assumption 4. The function g : Rm → [0,∞) in (20) is bounded on Rm with

its gradient ∇g and Hessian ∇2g, so that max{g(z), |∇g(z)|m, ‖∇2g(z)‖2} ≤ Lg, for

all z ∈ Rm, where Lg is a constant, | · |m denotes the Euclidean norm in Rm and

‖A‖2 = Tr1/2(AAT ) denotes the Frobenius norm of the matrix A.

Assumption 5. The kernel K : Rm → R1 is a bounded function supported on

[−1, 1]m and such that
∫

Rm K(t)dt = 1 and
∫

Rm K(t)tjdt = 0, j = 1, . . . , m, where tj

is the jth component of t ∈ Rm.

Kernels satisfying Assumption 5 can be easily constructed as products of m one-

dimensional kernels.

We first suppose that the dimension m and an index matrix B are known and

establish the rate of convergence of the estimator (21).

Proposition 1 Let the density p be of the form (20) with g satisfying Assumption

4. Then, for the estimator (21) with kernel K satisfying Assumption 5, we have the

12



following bounds on the L2-bias and variance terms

‖E(p̂m,B) − p‖2 ≤ C4h
4, (22)

E
(

‖E(p̂m,B) − p̂m,B‖2
)

≤ C5

nhm
. (23)

Here 0 < h ≤ h0 with some h0 < ∞ and any integer n ≥ 1 and C4 and C5 are

constants depending only on d, Lg, h0 and on Kmax , supz∈Rm |K(z)|.

Proof. For every x ∈ Rd, the expectation of p̂m,B(x) can be written as follows:

E(p̂m,B(x)) =
φd(x)

hmφm(BT x)

∫

Rd

K

(

BT (y − x)

h

)

φd(y)g(BTy)dy

=
φd(x)

hmφm(BT x)

∫

Rd−m

[
∫

Rm

K

(

u − BT x

h

)

φm(u)g(u)du

]

φd−m(v)dv (24)

with new variables u = BT y and v = B̃T y, where B̃ is a d × (d − m) matrix with

orthonormal columns such that (B|B̃) is a d × d orthogonal matrix. Making in (24)

the change of variables t = (u − BT x)/h, we find that the bias of p̂m,B(x) equals

E(p̂m,B(x)) − p(x) =
φd(x)

φm(BT x)

∫

Rm

K(t)φm(BT x + th)g(BT x + th)dt

− φd(x)g(BT x), (25)

and, under the above assumptions about g and K, the standard Taylor expansion

argument gives

‖E(p̂m,B) − p‖2 =

∫

Rd

(E(p̂m,B(x)) − p(x))2dx =

∫

Rd

(

φd(x)

φm(BT x)

∫

Rm

K(t)
h2

2
tT D(BT x + a∗t)t dt

)2

dx, (26)

where 0 ≤ a∗ ≤ h and D(z) = ∇2(φm(z)g(z)) = [(zzT − Im)g(z) − ∇g(z)zT −
z∇T g(z) +∇2g(z)]φm(z). Here and in what follows Im stands for the identity matrix

of dimension m. Using Assumption 4 and the fact that a∗ ≤ h0, we get

tT D(BTx + a∗t)t ≤ CLg|t|2m(1 + h2
0|t|2m + |BT x|2m)φm(BT x + a∗t)

≤ CLg|t|2m(1 + h2
0|t|2m + |BT x|2m) exp(|BT x|mh0|t|m)φm(BT x),

13



with some constant C > 0. Because K(t) has bounded support, (22) follows from

(26). For the variance term, we have

V ar(p̂m,B(x)) =
φ2

d(x)

nh2mφ2
m(BT x)

V ar

(

K

(

BT (X − x)

h

))

≤ 1

(2π)d−mnh2m
exp(−xT (Id − BBT )x)

∫

Rd

K2

(

BT (y − x)

h

)

φd(y)g(BTy)dy

≤ Lg

(2π)d−mnh2m

∫

Rd

K2

(

BT (y − x)

h

)

φd(y)dy,

and after making the same changes of variables as for the bias, we obtain

E
(

‖E(p̂m,B) − p̂m,B‖2
)

=

∫

Rd

V ar(p̂m,B(x))dx = O(n−1h−m).

Consider the mean integrated mean squared error (MISE) of the estimator p̂m,B:

MISE(p̂m,B, p) , E‖p̂m,B − p‖2 ≡ E‖p̂m,B − fB‖2. (27)

Proposition 1 implies that, under Assumptions 4 and 5,

MISE(p̂m,B, p) = O(n−4/(m+4)), (28)

if the bandwidth h is chosen of the order h ≍ n−1/(m+4). Using the standard techniques

of the minimax lower bounds (e.g. Tsybakov (2004)), it is easy to show that the rate

n−4/(m+4) given in (28) is the optimal MISE rate for the model (20) on the class of

densities p defined by Assumption 4, and thus the estimator p̂m,B with h ≍ n−1/(m+4)

has the optimal rate for this class of densities.

Consider now the case where the dimension m and the index matrix B are un-

known. We will use the procedure of Section 2 to aggregate estimators of the type

(20) corresponding to candidate pairs (m, B) = (k, A) with k = 1, . . . , d and with A

that runs over a finite net on the set of all admissible d×k index matrices. The latter

is the set Bk of all d × k matrices A with orthonormal columns. This set is bounded

in the Frobenius norm ‖A‖2 = Tr1/2(AAT ). Consider an ǫ-net Qk on Bk constructed

using the Frobenius norm. Note that orthogonal transformations preserve the norm,

so that both estimators (21) and the ǫ-net Qk are invariant under orthogonal trans-

formations, and thus are not affected by the non-uniqueness of representation (20).

14



The set Bk is bounded and can be imbedded in Rs with s = k(d − (k + 1)/2), and

therefore we can construct an ǫ-net Qk with cardinality

Card(Qk) = O(ǫ−k(d−(k+1)/2)), (29)

e.g. Wellner and van der Vaart (1996). Doing this for k = 1, . . . , d, we obtain a

collection Q1, . . . , Qk of ǫ-nets with the property (29) each, and in what follows we

set ǫ = n−a with a > 2/5 for all k = 1, . . . , d.

We can now define the aggregate. As in Section 2, we split the sample X1, . . . , Xn

into two parts, I1 and I2 with n1 = Card(I1), n2 = Card(I2), n = n1 + n2. From the

first subsample we construct estimators

p̂k,A(x) =
φd(x)

φk(AT x)

1

n1h
k
k

∑

I1

K

(

AT (Xi − x)

hk

)

, k = 1, . . . , d, A ∈ Qk, (30)

where hk ≍ n−1/(k+4). These estimators are of the form (21), but here we plug in k

and A that are not necessarily equal to the true unknown values m and B and we use

only the first subsample I1. Nevertheless, we preserve the same notation as in (21)

since this will not cause ambiguity.

Let now pÑ be the aggregate defined as in (2) and (3) using as {p1, . . . , pM} the

collection of estimators {p̂k,A, k = 1, . . . , d, A ∈ Qk} of the form (30) with bandwidths

hk ≍ n− 1
k+4 and ǫ-nets Qk such that ǫ = n−a, a > 2/5. In view of (29), the cardinality

M of this set of estimators is

M ≍
d
∑

k=1

nak(d−(k+1)/2) ≍ nad(d−1)/2. (31)

In this case, the aggregate pÑ of (2) and (3) can be written in the form p̂k̃,Ã where

(k̃, Ã) are given by

(k̃, Ã) = arg min
k=1,...,d,A∈Qk

(

− 2

n2

∑

I2

p̂k,A(Xi) +

∫

p̂2
k,A

)

. (32)

We can now state the main result of this section.

Theorem 2 Let Assumptions 4 and 5 hold and let n2 = ⌊ cn
log n

⌋ for some constant

c > 0 such that 1 ≤ n2 < n. Assume in addition that the kernel K(·) is Lipschitz

continuous. Then for the aggregate p̂k̃,Ã we have

E‖p̂k̃,Ã − p‖2 = O(n−4/(m+4)), (33)
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as n → ∞, so that p̂k̃,Ã estimates p with the best rate attainable when dimension m

and matrix B are known.

Proof. We first verify the assumptions of Theorem 1. Clearly, Assumption 4

implies Assumption 3. With a bounded kernel K, ‖p̂k,A − p‖ ≤ Ch−k
k = O(nk/(k+4)),

so that Assumption 1 holds with a1 = d/(d + 4) + ad(d− 1)/2 and a2 = ad(d− 1)/2.

In order to verify Assumption 2, we will show that (8) holds for estimators pN =

p̂k,A with k = 1, . . . , d and A ∈ Qk.

Proof of (8). For any estimator p̂k,A we have ‖p̂k,A − p‖∞ ≤ ‖p̂k,A − E(p̂k,A)‖∞ +

‖E(p̂k,A) − p‖∞, so that (25), written with p̂k,A instead of p̂m,B, implies that ‖p̂k,A −
p‖∞ ≤ ‖p̂k,A − E(p̂k,A)‖∞ + C for some constant C > 0 which depends on g but not

on k and A. Therefore we have

E[‖p̂k,A − p‖∞I(‖p̂k,A − p‖∞ > γ0 log3/4 M)]

≤ E[(‖p̂k,A −E(p̂k,A)‖∞ + C)I(‖p̂k,A − E(p̂k,A)‖∞ > γ0 log3/4 M − C)]. (34)

Note that, for any x ∈ Rd,

p̂k,A(x) −E(p̂k,A(x)) = (2π)−(d−k)/2 exp(−xT (Id − AAT )x/2)
∑

I1

ζi,n(z), (35)

where z = AT x and

ζi,n(z) = ζ ′
i,n(z) −E(ζ ′

i,n(z)), ζ ′
i,n(z) =

1

n1hk
k

K

(

AT Xi − z

hk

)

.

Introduce the truncated variables

ξi,n(z) = ξ′i,n(z) − E(ξ′i,n(z)), ξ′i,n(z) =
1

n1hk
k

K

(

AT Xi − z

hk

)

I(|Xi|d ≤ log n),

and note that

P(|X1|d > log n) ≤ C(log n)d exp

(

− log2 n

2

)

, (36)

where the constant C depends only on gmax and d. This follows from the relations

P(|X1|d > log n) =

∫

Rd

I(|x|d > log n)φd(x)g(BTx)dx ≤ gmax

∫

|x|d>log n

φd(x)dx,
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followed by evaluation of the tail of d-dimensional standard normal distribution. Con-

sider the random event A = {|Xi|d ≤ log n, i = 1, . . . , n}. In view of (36), the

probability of the complementary event satisfies

P(Ac) ≤ Cn(log n)d exp

(

− log2 n

2

)

. (37)

Using (35) and the fact that Id − AAT ≥ 0 for all matrices A ∈ Bk, we get

‖p̂k,A − E(p̂k,A)‖∞ ≤ (2π)−(d−k)/2 sup
z∈Ek

∣

∣

∣

∑

I1

ζi,n(z)
∣

∣

∣
,

where Ek is the linear subspace of Rd spanned by the columns of A. Now, (36) implies

that for any D > 0 there exists a constant C depending only on gmax, Kmax and d,

such that E|ζ ′
i,n(z) − ξ′i,n(z)| ≤ Cn−D. Therefore,

‖p̂k,A − E(p̂k,A)‖∞ ≤ (2π)−(d−k)/2 sup
z∈Ek

∣

∣

∣

∑

I1

[

ζ ′
i,n(z) − E(ξ′i,n(z))

]
∣

∣

∣
+ Cn−D. (38)

Setting

η , sup
z∈Ek

∣

∣

∣

∑

I1

[

ζ ′
i,n(z) − E(ξ′i,n(z))

]
∣

∣

∣
,

we note that, in view of the inequalities (31), (34) and (38), to prove (8) it is enough

to show that

P(η > C log3/4 n) + E[ηI(η > C log3/4 n)] ≤ log2 M

M
. (39)

We will in fact prove a stronger result, namely, that the left-hand side of (39)

decreases faster than any power of n. Since on the event A it holds that ζ ′
i,n(z) = ξ′i,n(z)

for all z ∈ Rk, we obtain

P(η > s) ≤ P(Ac) + P

(

sup
z∈Ek

∣

∣

∣

∑

I1

ξi,n(z)
∣

∣

∣
> s

)

= P(Ac) + P

(

sup
z∈S∩Ek

∣

∣

∣

∑

I1

ξi,n(z)
∣

∣

∣
> s

)

, (40)

where the last equality is due to the fact that ξ′i,n(z) = 0 for all z 6∈ S, with S = {x ∈
Rd : |x|d ≤ 1 + log n}.
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As kernel K is Lipschitz continuous, we get

∣

∣

∣

∑

I1

(ξi,n(z) − ξi,n(y))
∣

∣

∣
≤ CLh

−(k+1)
k |z − y|d, ∀ z, y ∈ Ek, (41)

where CL is a constant. Next, fix some δ > 0, and let z1, ..., zL be a δ-net in Euclidean

metric on the bounded set S ∩ Ek such that L ≤ C( log n
δ

)d. Clearly, a δ-net of

cardinality L satisfying the latter inequality exists, since the cardinality of the minimal

δ-net on the larger set S is of the order ( log n
δ

)d. In view of (41), we have, for s >

2CLδh
−(k+1)
k ,

P

(

sup
z∈S∩Ek

∣

∣

∣

∑

I1

ξi,n(z)
∣

∣

∣
> s

)

≤ P

(

max
1≤j≤L

∣

∣

∣

∑

I1

ξi,n(zj)
∣

∣

∣
> s/2

)

≤ L sup
z∈S∩Ek

P

(

∣

∣

∣

∑

I1

ξi,n(z)
∣

∣

∣
> s/2

)

. (42)

We have E(ξi,n(z)) = 0 and supz∈S∩Ek |ξi,n(z)| ≤ c1n
−1
1 h−k

k , for some constant c1 > 0.

Also, using (20) and Assumption 4, we find

V ar(ξi,n(z)) ≤ Eζ ′ 2
i,n(z) =

1

n2
1h

2k
k

∫

Rd

K2

(

AT y − z

hk

)

fB(y)dy

≤ Lg

n2
1h

2k
k

∫

Rd

K2

(

AT y − z

hk

)

φd(y)dy

=
Lg

n2
1h

k
k

∫

Rk

K2(t)φk(thk + z)

[
∫

Rd−k

φd−k(u)du

]

dt

with new variables t = (AT y − z)/hk and u = ÃT y, where Ã is a d × (d − k) matrix

with orthonormal columns such that (A|Ã) is a d × d orthogonal matrix. Therefore

we have supz∈S∩Ek V ar(ξi,n(z)) ≤ c2n
−2
1 h−k

k , for some constant c2 > 0.

Choosing now δ = hk+1
k , applying in (42) the Bernstein inequality and recalling
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that hk ≍ n− 1
k+4 , n1 = n − n2 = n(1 + o(1)) we get, for s > 2CL,

P

(

sup
z∈S∩Ek

∣

∣

∣

∑

I1

ξi,n(z)
∣

∣

∣
> s

)

≤ 2L exp

(

− (s/2)2

2c2n
−1
1 h−k

k + c1n
−1
1 h−k

k s/3

)

≤ C

(

log n

δ

)d

exp

(

− s2n1h
k
k

8c2 + 2c1s

)

≤ C(log n)dn
d(k+1)

k+4 exp

(

−s2n4/(k+4)(1 + o(1))

8c2 + 2c1s

)

≤ C(log n)dn
d(d+1)

d+4 exp

(

−s2n4/(d+4)

C(1 + s)

)

, (43)

where the last inequality is valid for n large enough. From (40), (37) and (43) we

deduce that, for n large enough,

P(η > C log3/4 n) ≤ C(log n)d

[

n exp

(

− log2 n

2

)

+ n
d(d+1)

d+4 exp

(

−n4/(d+4) log3/4 n

C

)]

. (44)

On the other hand, η ≤ 2Kmaxh
−k
k = O(nk/(k+4)) = O(nd/(d+4)), and therefore

E[ηI(η > C log3/4 n)] ≤ O(nd/(d+4))P(η > C log3/4 n). This inequality and (44) com-

bined with (31) prove that (39) holds for n large enough. The proof of (8) is thus

complete.

All the assumptions of Theorem 1 are therefore satisfied. Applying Theorem 1 we

get the oracle inequality

E‖p̂k̃,Ã − p‖2 ≤
(

1 +
C∗

log1/4 n

)

min
k=1,...,d

min
A∈Qk

MISE(p̂k,A, p) + C∗ log3 n

n
. (45)

To complete the proof of Theorem 2, we now show that

min
k=1,...,d

min
A∈Qk

MISE(p̂k,A, p) = O(n−4/(m+4)). (46)

In fact,

min
k=1,...,d

min
A∈Qk

MISE(p̂k,A, p) ≤ MISE(p̂m,B∗ , p), (47)

where B∗ is a matrix in Qm closest to B in the Frobenius norm, and thus satisfying

‖B∗ − B‖2 ≤ ǫ. We have (recall that p ≡ fB)

‖p̂m,B∗−p‖2 ≤ 2(‖p̂m,B∗−fB∗‖2+‖fB∗−p‖2) = 2(‖p̂m,B∗−fB∗‖2+‖fB∗−fB‖2). (48)
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It follows from (27) and (28) that

E‖p̂m,B∗ − fB∗‖2 = O(n−4/(m+4)). (49)

(Note that we proved (28) for the estimator (21), while here the estimator p̂m,B∗ is

defined by (30) and based on the sample of size n1; nevertheless the result remains

valid, since n1 = n(1 + o(1)).) Using (49) and applying Assumption 4 to bound from

above the last summand in (48), we obtain

MISE(p̂m,B∗ , p) ≤ b1n
−4/(m+4) + b2ǫ

2 (50)

with some constants b1, b2. Since ǫ = n−a with a > 2/5 ≥ 2/(m + 4) we get

MISE(p̂m,B∗ , p) = O(n−4/(m+4)). Together with (47) this implies (46).

Remark 3. The aggregate estimator for model (20) suggested here automatically

accomplishes dimension reduction. In fact, if the unknown true dimension m is small,

it achieves the rate O(n−4/(m+4)) that can be much faster than the best attainable

rate O(n−4/(d+4)) for a model of full dimension. The aggregate can be interpreted as

an adaptive estimator, but in contrast to adaptation to unknown smoothness usually

considered in nonparametrics, here we deal with adaptation to unknown dimension

m and to the index space M determined by a matrix B. The procedure provides

explicit estimates (k̃, Ã) of (m, B) that are optimal in the sense of Theorem 2. The

tools of this paper do not allow us, however, to evaluate how close is (k̃, Ã) to (m, B)

(or, equivalently, how close is the estimated index space to the true one M).
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