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A meso–macro finite element modelling of laminate structures 
Part II: time-dependent behaviour

A meso–macro modelling is proposed for laminates made of unidirectional layers of a polymer matrix reinforced with long fibres.

The time-independent behaviour introduced in the first part of this article is improved herein to account for viscous phenomena

through viscoelasticity and viscoplasticity. A spectrum-type viscoelastic model is considered, which is based on the definition of

elementary viscoelastic mechanisms. Its mathematical formulation is simplified by using a relaxation times triangular layout. A

generalised Norton-type model integrating the elastic domain concept is used to report the plastic strains delay. A zero-valued

‘‘dynamic’’ yield function is incorporated into the traditional viscoplastic format, allowing a same treatment of plastic and visco-

plastic problems. The integration of the layer behaviour through the thickness is obtained within a Kirchhoff shell finite element.

The constitutive equations are integrated using two families of algorithms that generalise the well-known trapezoidal and mid-point

rules, for which accuracy and non-linear stability analysis are carried out. Significant robustness of the local iterative solution is

provided by complementing the basic Newton�s scheme with a local line-search strategy. In the case of a fully coupled plastic–

viscoplastic behaviour, the local Newton�s iterative scheme is associated with a grid-search method in order to define available initial

solutions. A perturbation technique is suggested to evaluate an algorithmic tangent operator since the viscoelasticity renders non-

trivial an explicit determination of a consistent tangent operator. The proposed formulation has been implemented in the finite

element code CASTEM2000� in order to test its validity. The obtained results are compared with semi-analytical ones in the case of

progressive repeated loading tests by applying pure traction and pure pressure. Creep tests are also considered.

To avoid ill-posed boundary value problems and to take account of a time-dependent damage process, viscous regularisation of
the time-independent damage model is finally introduced with a structure analogous to the Perzyna-type viscoplasticity.

Keywords: Viscoelasticity; Viscoplasticity; Trapezoidal rule; Mid-point rule; Accuracy; Non-linear stability; Grid-search method; Perturbation

technique; Localisation; Visco-damage

1. Introduction

Within the context of a mesoscopic approach to model the non-linear behaviour of laminate composites, the be-

haviour of a simple ply is firstly modelled, then the laminate one is assessed by a structural analysis. In a first con-

tribution [1], the complete theoretical formulation of a damaged elasto-plastic layer model has been presented and

successfully integrated within a Kirchhoff shell finite element. This model is improved by the present work to account

for viscous phenomena through viscoelasticity and viscoplasticity.

A phenomenological approach with internal variables is chosen to describe the viscous properties of a layer. The

behaviour constitutive equations are built into a thermodynamic framework with two potentials: the state potential or

thermodynamic potential that gives the state laws and the dissipation potential that gives evolution laws for the in-

ternal variables through the generalised normality assumption. The Helmholtz free energy is chosen as thermodynamic

potential and the Clausius–Duhem inequality is satisfied assuming that the viscoelastic and viscoplastic processes are

independent.
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A spectrum-type viscoelastic model based on the definition of elementary viscoelastic mechanisms is adopted. Its

formulation is simplified by choosing a relaxation times triangular layout. A generalised Norton-type viscoplastic

model integrating the elastic domain concept is used to report the plastic strains delay. The viscoplasticity is interpreted

herein as a penalty regularisation of the classical time-independent plasticity and a zero-valued ‘‘dynamic’’ yield

function depending upon the adopted constitutive model is incorporated into its traditional format. The solution of a

viscoplastic constitutive problem can then be issued by following the same reasoning used for time-independent

models. (Under persistent viscoplastic flow, a consistency condition can be derived from the ‘‘dynamic’’ yield con-

dition.)

For the building of an accurate and reliable state computation algorithm, the important problem in non-linear

material analysis concerns the temporal integration of constitutive equations in the standard strain driven format.

Hence, for example, in order to guarantee the numerical solution convergence towards the exact one as the step size

tends to zero, any proposed algorithm should be consistent with the integrated constitutive equations and numerically

stable. In this study, two families of algorithms that generalise the well-known trapezoidal and mid-point rules are

considered, for which accuracy and non-linear stability (stability with respect to arbitrary perturbation in the initial

conditions) analysis are carried out. A line-search strategy is adopted to determine the ensuing local iterative solutions.

These solutions are obtained by enforcing the ‘‘dynamic’’ yield condition at different times depending upon the

considered algorithm.

For a complete damaged elasto-dissipative modelling including time-dependent and time-independent effects, the

state of the material is obtained over two steps: A (visco)elastic prediction–(visco)plastic correction, then a (vi-

sco)elasto-(visco)plastic prediction-damage correction. In the case of a fully coupled plastic–viscoplastic behaviour, the

local Newton�s iterative scheme is associated with a grid-search method in order to define available initial solutions. A

perturbation technique is suggested to evaluate an algorithmic tangent operator since the viscoelasticity renders non-

trivial an explicit determination of a consistent tangent operator.

The so constructed numerical model has been implemented in the finite element code CASTEM2000� in order to

test its validity. The obtained results are compared with semi-analytical ones in the case of progressive repeated loading

tests by applying pure traction and pure internal pressure on a ½þ55;�55�6 laminate tube. Creep tests are also con-

sidered.

To prevent localisation problems and to take account for a time-dependent damage process, a viscous regularisation

of the time-independent damage model is finally introduced with a structure analogous to the Perzyna-type visco-

plasticity. This regularisation produces retardation of micro-cracks growth and leads to well-posed boundary value

problem. A relevant expression of the algorithmic tangent operator is proposed in this case. This is achieved by re-

placing the rate-independent damage consistency condition with a relation between the increment of the damage

variable and the yield function of the constitutive model in use i.e. incremental ‘‘dynamic’’ yield condition for damage.

Tensors will be underlined in direct notation: ð�Þ represents a second order tensor and ð�Þ a fourth order tensor.

Their juxtaposition implies the usual summation operation. A superposed dot indicates the rate, superposed

two dots indicate acceleration, a superposed )1 the inverse and a superposed T the transpose. I and I are, re-

spectively, the second and the fourth order identity tensors. (In a Cartesian coordinates system Iij ¼ dij and Iijkl ¼
ð1=2Þðdikdjl þ dildjkÞ).

2. Time-dependent behaviour of damaged composite layer

The viscous response of a damaged layer can be given in the absence of damage i.e. through an equivalent virgin

layer, in terms of effective stresses r̂r such as [1]:

r̂r ¼ ½I þ AHðDÞ�r ð1Þ

r represents the Cauchy true stresses tensor, A the elastic stiffness tensor and H a perturbation tensor depending on the

damage variable D which is assumed to be removed fictitiously in the effective stresses space.

2.1. Viscoelastic behaviour

Due to the relative displacement of unbroken molecular chains in the polymer matrix, reversible but time-dependent

strains can be observed. Associated with a dissipative process, this kind of behaviour is classically described using the

thermodynamics of irreversible processes [2–4].
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Assuming that the state of the equivalent virgin material is completely defined by the elastic strains ee and a set of

second order tensors n
i
(i 2 N ) corresponding to viscoelastic flow elementary mechanisms, the Clausius–Duhem in-

equality gives the following state law and intrinsic dissipation Inve:

r̂r ¼ q
oŵw

oee
; Inve ¼

T _eever̂r�
X

i

T _nn
i
v
i
P 0 ð2Þ

q being the material mass density and v
i
¼ qoŵw=on

i
the thermodynamic forces associated with n

i
. _eeve represents the

viscoelastic strain rate tensor (in the absence of plastic flow, the total strains e are composed of an elastic part ee and a

viscoelastic part eve depending on n
i
i.e. e ¼ ee þ eveðn

i
Þ).

In order to build a linear viscoelastic model, the following specific free energy ŵw is introduced (no plastic flow):

ŵwðee; n
i
Þ ¼

1

2q
TeeAee þ

1

2q

X

i

1

li

Tn
i
A
ve
n
i

ð3Þ

With respect to a reference frame Rf having its first axis~xx1 along the fibres direction and its third one~xx3 following the

thickness line, the elastic stiffness tensor is:

A ¼

1
E1

� mt1
Et

� mt1
Et

0 0 0

� m1t
E1

1
Et

� mtt
Et

0 0 0

� m1t
E1

� mtt
Et

1
Et

0 0 0

0 0 0 1
G1t

0 0

0 0 0 0 1
G1t

0

0 0 0 0 0 1
Gtt

2

666666664

3

777777775

�1

; �
mt1

Et
¼ �

m1t

E1

ð4Þ

with E1 (respectively Et) the Young�s modulus in the fibres direction (respectively in the transverse isotropic plane

ð~xx2;~xx3Þ), G1t and Gtt the shear module in the planes ð~xx1;~xx2Þ or ð~xx1;~xx3Þ and in the plane ð~xx2;~xx3Þ respectively and m1t, mt1 and

mtt the Poisson�s ratios.

A
ve

is a fourth order tensor describing the viscous anisotropy and having the A symmetries. Considering a pure

elastic behaviour in the fibres direction, A
ve
is chosen as follows:

A
ve
¼

0 0 0 0 0 0

0
bt
Et

�btt
mtt
Et

0 0 0

0 �btt
mtt
Et

bt
Et

0 0 0

0 0 0
b1t
G1t

0 0

0 0 0 0
b1t
G1t

0

0 0 0 0 0 b


Gtt

2

666666664

3

777777775

�1

;
b


Gtt
¼ 2

bt
Et

�
þ btt

mtt

Et

	
ð5Þ

bt, btt and b1t are parameters characterising the material viscosity. The effect of each elementary viscous mechanism (i)

is then differentiated using weighting coefficients li.

From Eq. (3):

v
i
¼

1

li
A
ve
n
i

ð6Þ

According to a spectrum viscoelastic modelling [5,6], the viscoelastic strain rates are defined as a superposition of the

elementary kinetics _nn
i
:

_eeve ¼
X

i

_nn
i

ð7Þ

what leads to the following form of the intrinsic dissipation:

Inve ¼
X

i

T _nn
i
ðr̂r� v

i
ÞP 0 ð8Þ

Each component (which corresponds to an elementary mechanism) being independent of the kinetics variables whose

depend the other components, uncoupled dissipative processes can be defined:

ðInveÞ1 ¼
T _nn

1
ðr̂r� v

1
ÞP 0; ðInveÞ2 ¼

T _nn
2
ðr̂r� v

2
ÞP 0; ðInveÞi ¼

T _nn
i
ðr̂r� v

i
ÞP 0 ð9Þ

The driving forces ðr̂r� v
i
Þ are given by complementary laws.
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Assuming normal dissipative processes [2,3], each ðInveÞi can be expressed by a non-negative continuous convex

functionPveð _nniÞ, defined for all _nn
i
and verifying Pveð0iÞ ¼ 0. In the particular case of positively homogeneous functions

of order p, the complementary laws are then:

ðr̂r� v
i
Þ ¼

1

p

oPve

o _nn
i

ð10Þ

The choice of the following quadratic functions (p ¼ 2):

Pve ¼
si

li
ðT _nn

i
A
ve
_nn
i
Þ ð11Þ

where si are relaxation times, leads to:

ðr̂r� v
i
Þ ¼

si

li
A
ve
_nn
i

ð12Þ

Hence, taking account of Eqs. (6) and (7):

_eeve ¼
X

i

1

si
ðliSver̂r� n

i
Þ; S

ve
¼ A�1

ve
ð13Þ

si and li are obtained from a relaxation times spectrum layout [6]. Hence, using a triangular spectrum (see Fig. 1) in

order to simplify the proposed modelling, it comes:

si ¼ 10ni ; ni ¼ nc � n0 þ ði� 1ÞD; D ¼
2n0

nb � 1
ð14Þ

with nc a user defined relaxation times number and D the time interval between two relaxation times, and:

li ¼ þa½ni � ðnc � n0Þ� if ni 2 ½ðnc � n0Þnc�

li ¼ �a½ni � ðnc þ n0Þ� if ni 2 ½ncðnc þ n0Þ�
ð15Þ

For the normalisation condition:

Xnb

i¼1

li ¼ 1 ð16Þ

the slope of the triangle edges is given by:

a ¼
2

n0ðnb � 1Þ
ð17Þ

In order to develop a satisfactory viscous modelling at a high stress levels, the so constructed linear viscoelastic model

is complemented by a viscoplastic one.

i
µ

i
τlog

0
n

c
n

∆

Fig. 1. Triangular spectrum distribution of the relaxation times.
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2.2. Viscoplastic behaviour

A generalised Norton-type model integrating the concept of the elastic domain [7] is used to report the plastic strains

delay in the equivalent virgin material. This model is based on a kinematics hardening, usually used when the material

is submitted to cyclic loading, and on a constant yield stress. For polymer-based materials, a same yield stress is used

for both classical plasticity and viscoplasticity. Moreover, the elastic and viscoplastic behaviours are assumed to be

independent for the considered loading rates and the restoring phenomena negligible.

In the absence of viscoelastic and plastic flows, the state of the material is assumed to be completely defined by the

elastic strains ee and a tensorial hardening variable a3. The Clausius–Duhem inequality gives in this case the following

state law and intrinsic dissipation Invp:

r̂r ¼ q
oŵw

oee
; Invp ¼

T _eevpr̂r� T _aa3X 3P 0 ð18Þ

X 3 ¼ qoŵw=oa3 being the thermodynamic force associated with a3. _ee
vp represents the viscoplastic strain rate tensor (the

total strains e are composed of an elastic part ee and a viscoplastic part evp i.e. e ¼ ee þ evp).

ŵw is chosen of the following form when neither plasticity nor viscoelasticity are considered:

ŵwðee; a3Þ ¼
1

2q
TeeAee þ

d3

2q
Ta3a3 ð19Þ

what leads to a classical linear kinematics hardening, d3 being a material parameter:

X 3 ¼ d3a3 ð20Þ

Assuming a normal dissipative process [2,3], the kinetics variables ð _eevp; _aa3Þ associated with a given set of thermody-

namic forces ðr̂r;X 3Þ belong to the subdifferential of a non-negative continuous convex function Cðr̂r;X 3Þ i.e. [8]

T _eevpðr̂r� r̂r�Þ � T _aa3ðX 3 � X
�

3ÞPCðr̂r;X 3Þ � Cðr̂r�;X �

3Þ; 8½ðr̂r�;X �

3Þ; ðr̂r;X 3Þ� ð21Þ

Hence, introducing the following maximum dissipation principle [1]:

Inrvpðr̂r;X 3; _ee
vp; _aa3Þ ¼ max

8ðr̂r� ;X �

3
Þ
Inrvpðr̂r

�;X �

3; _ee
vp; _aa3Þ ð22Þ

with

Inrvpðr̂r
�;X �

3; _ee
vp; _aa3Þ ¼

T _eevpr̂r� � T _aaX �

3 � Cðr̂r�;X �

3Þ ð23Þ

it comes from the optimality conditions of �Inrvp:

oð�InrvpÞ

or̂r�






ðr̂r;X 3Þ

¼ � _eevp þ
oC

or̂r�






ðr̂r;X 3Þ

¼ 0;
oð�InrvpÞ

oX �

3






ðr̂r;X 3Þ

¼ _aa3 þ
oC

oX �

3






ðr̂r;X 3Þ

¼ 0 ð24Þ

The viscoplasticity can hence be interpreted as a regularisation of the classical time-independent plasticity [9,10]: the

maximum viscoplastic dissipation is represented by a regularised function Inrvpðr̂r;X 3; _ee
vp; _aa3Þ. The admissible ther-

modynamic forces field is then enlarged since, contrary to the classical plasticity, the viscoplastic flow take place for

stresses outside of the elastic domain fr̂r;X 3=fvpðr̂r;X 3Þ6 0g. So:

Cðr̂r;X 3Þ ¼
C
_

if fvp > 0

0 if fvp 6 0

(

ð25Þ

Choosing C such as:

Cðr̂r;X 3Þ ¼ C
_

ðfvpÞ ¼ K
1

N þ 1
hfvpi

Nþ1

� 
¼ KC

^

ðfvpÞ; hfvpi ¼
1

2
ðfvp þ jfvpjÞ ð26Þ

it comes:

_eevp ¼ Khfvpi
N ofvp

or̂r
; _aa3 ¼ �Khfvpi

N ofvp

oX 3

ð27Þ

N is a parameter characterising the material rate-sensitivity and K an other parameter which can be regarded as a

penalty coefficient [11,12], C
^

ðfvpÞ playing the role of a penalty function for stresses outside the elastic domain. The

classical time-independent plasticity model is recovered when K ! 1. In this case, the functional C
_

ðfvpÞ converges to
the indicator function of the elastic domain.
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In the present study, the elastic domain is defined by the following yield function:

fvpðr̂r;X 3Þ ¼ ðr̂r� X 3Þ � s0; ðr̂r� X 3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðr̂r� X 3ÞMðr̂r� X 3Þ

q
ð28Þ

where s0 is a constant yield stress and M a fourth order tensor describing the anisotropy of plastic [1] and viscoplastic

flows associated with friction between the flaw walls.

With respect to the reference frame Rf , the yield stress is reached by shearing in the planes ð~xx1;~xx2Þ and ð~xx2;~xx3Þ [1].
Hence:

M ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

2

6666664

3

7777775
ð29Þ

M�1 being positive definite, it induces an inner product hð�Þ; ð�Þ�iM ¼ Tð�ÞM�1ð�Þ� and an associated norm

kð�ÞkM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�Þ; ð�ÞiM

q
.

Defining a viscoplastic multiplier _kkvp homogeneous to an equivalent viscoplastic strain rate such as:

_kkvp ¼ k _eevpkM ð30Þ

the following ‘‘dynamic’’ yield function can be introduced by taking account of Eq. (27a):

f dynvp ðr̂r;X 3;
_kkvpÞ ¼ fvpðr̂r;X 3Þ �

_kkvp

K

 !1=N

ð31Þ

It verifies:

f dynvp 6 0 if fvp 6 0

f dynvp ¼ 0 if fvp > 0
ð32Þ

As illustrated by the authors in [13], the concept of ‘‘dynamic’’ yield function allows a unified treatment of plastic and

viscoplastic behaviours by suitably generalising the approach exploited in the classical time-independent plasticity (see

box 2). Such a function has been used in [14] where a continuous viscoplastic formulation is presented, and an ana-

lytical viscoplastic tangent operator is developed in [15] under some restrictive assumptions concerning the second rate

of _kkvp resulting from the consistency condition _ff dynvp ¼ 0. In [12], the relation between the viscoplastic multiplier _kkvp and

the yield function fvp is established for various viscoplastic models.

3. Instantaneous and creep strains

Assuming that the state of the equivalent virgin material is completely defined by the elastic strains ee, a set of

second order tensors n
i
(i 2 N ) corresponding to viscoelastic flow elementary mechanisms, a scalar hardening variable

a and three tensorial hardening variables aj (j ¼ 1; 2 and 3), the Clausius–Duhem inequality gives the following state

law and intrinsic dissipation In:

r̂r ¼ q
o

oee
ŵwðee; n

i
; a; ajÞ;

In ¼ Inveðr̂r; vi; _ee
ve; _nn

i
Þ þ Inpðr̂r;X 1;X 2;R; _ee

p; _aa1; _aa2; _aaÞ

þ Invpðr̂r;X 3; _ee
vp; _aa3ÞP 0

ð33Þ

Inp is the intrinsic dissipation plastic component established in [1], where X 1, X 2 and R are the thermodynamic forces

associated with a1, a2 and a respectively, and _eep the plastic strain rate tensor (the total strains e are composed of an

elastic part ee, a viscoelastic part eve, a plastic part ep and a viscoplastic part evp i.e. e ¼ ee þ eve þ ep þ evp).

Each component Inve (Eq. (2b)), Inp and Invp Eq. (18b) being independent of the kinetics variables whose depend the

two others, three uncoupled dissipative processes can be defined:

Inveðr̂r; vi; _ee
ve; _nn

i
ÞP 0; Inpðr̂r;X 1;X 2;R; _ee

p; _aa1; _aa2; _aaÞP 0; Invpðr̂r;X 3; _ee
vp; _aa3ÞP 0 ð34Þ
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what allows a simple superposition of the constitutive models built through the previous sections (see [1, Sections 2.1

and 2.2]) in order to take account for instantaneous and creep strains in the material (see box 3).

4. Integration algorithm of the layer behaviour

Within an incremental method associated with the Newton�s iterative scheme, the basic problem is to update the

state of the material in a fashion consistent with the constitutive model knowing the total incremental strains De. So,

for the proposed modelling of the elasto-dissipative mechanisms in a layer (see box 1 of [1] and box 3):

fnr; nD; nni; nX 1; nX 2; nX 3g þ De ! fnþ1r; nþ1D; nþ1ni; nþ1X 1; nþ1X 2; nþ1X 3g ð35Þ

nð�Þ meaning the previous convergent quantities and nþ1ð�Þ the current ones. The relationships between these quantities

i.e. incremental laws, are derived from the model constitutive equations.

4.1. Elastic–viscoelastic incremental laws

The time-integration of the elastic–viscoelastic constitutive equations (see box 1) over the time interval ½tn; tnþ1� leads
to:

nþ1r̂r ¼ nr̂rþ ADe� ADeve; Deve ¼
X

i

Dn
i

ð36Þ

By using the generalised trapezoidal or mid-point scheme [16], the elementary kinetics _nn
i
give:

Dn
i
¼ nþ1ni � nni ¼

Dt

si
nþ1 liSver̂r
h

� n
i

i
¼

Dt

si
liSveðnþ1r̂rÞ
h

� nþ1ni

i
; Dt ¼ tnþ1 � tn ð37Þ

where nþ1ð�Þ ¼ ð1� 1Þnð�Þ þ 1nþ1ð�Þ; 06 16 1. 1

Hence:

nþ1ni ¼
1� eDð1� 1Þ

ð1þ eD1Þ
nni þ

eDli
ð1þ eD1Þ

S
ve
ðnþ1r̂rÞ; eD ¼

Dt

si
ð38Þ

and then:

Deve ¼
X

i

eDli
1þ eD1

!
S
ve
ðnþ1r̂rÞ �

X

i

eD

1þ eD1
nni ð39Þ

Coming back in Eq. (36), it comes finally:

nþ1r̂r ¼ H nr̂r

"

þ ADe�
X

i

eDli
1þ eD1

!

ð1� 1ÞAS
ve
ðnr̂rÞ þ A

X

i

eD

1þ eD1
nni

#

; H�1 ¼ I þ
X

i

eDli
1þ eD1

!

1AS
ve

ð40Þ

4.1.1. Accuracy analysis

An accuracy analysis of this numerical model can be performed by comparing the algorithmic and exact stresses

using a standard Taylor series expansion in powers of Dt. The expansion of the algorithmic stresses (Eq. (40)) gives:

nþ1r̂r ¼ nr̂rþ D
d

dD
ðnþ1r̂rÞ

D¼0





 þ
1

2
D2 d2

dD2
ðnþ1r̂rÞ






D¼0

þ � � � ; D � Dt ð41Þ

where:

d

dD
ðnþ1r̂rÞ






D¼0

¼ An _ee� A
X

i

1

si
liSveðnr̂rÞ
h

� nni

i

d2

dD2
ðnþ1r̂rÞ






D¼0

¼ An€ee� 21A
X

i

li
si
S
ve
A n _ee

(

�
X

i

1

si
liSveðnr̂rÞ
h

� nni

i)

þ 21A
X

i

1

s2i
liSveðnr̂rÞ
h

� nni

i ð42Þ

1 The generalised trapezoidal and mid-point schemes are equivalent in this case.
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Compared to the following expansion of the exact solution:

nþ1r̂r ¼ nr̂rþ Dn
_̂rr̂rrþ

1

2
D2

n
€̂rr̂rrþ � � � ð43Þ

where:

n
_̂rr̂rr ¼ An _ee� A

X

i

1

si
liSveðnr̂rÞ
h

� nni

i

n
€̂rr̂rr ¼ An€ee� A

X

i

li
si
S
ve
A n _ee

(

�
X

i

1

si
liSveðnr̂rÞ
h

� nni

i)

þ A
X

i

1

s2i
liSveðnr̂rÞ
h

� nni

i ð44Þ

it shows a second order accuracy for 1 ¼ 1=2 in the usual sense of the local truncation error.

4.1.2. Stability analysis

It is now well established that the notion of B-stability [17–21] provides a relevant definition of the non-linear

stability in the sense that arbitrary perturbations in the initial conditions for an initial value problem are attenuated by

the used algorithm. This notion needs the identification of a ‘‘natural norm’’ for the integrated continuum problem

relative to which the crucial contractivity property can be verified.

Consider the following standard problem of evolution obtained from the viscoelastic constitutive equations (see box

1) and Eq. (6):

_RR ¼ Gð _EE � _NNÞ ¼ f ½Rðt ¼ 0Þ; t�; Rðt ¼ 0Þ ¼ R0 ð45Þ

where:

R ¼

r̂r

v
1

v
2

..

.

v
i

..

.

0

BBBBBBBBB@

1

CCCCCCCCCA

; _EE ¼

_ee

0

0

..

.

0

..

.

0

BBBBBBBB@

1

CCCCCCCCA

; _NN ¼

P
i
_nn
i

� _nn
1

� _nn
2

..

.

� _nn
i

..

.

0

BBBBBBBBB@

1

CCCCCCCCCA

; G ¼

A 0 � � � 0

0 1
l1
A
ve

..

.

..

.
1
l2
A
ve

. .
. ..

.

1
li
A
ve

0

0 � � � � � � 0 . .
.

2

6666666666664

3

7777777777775

ð46Þ

G�1 being positive definite, it induces an inner product hð�Þ; ð�Þ
�
iG ¼ Tð�ÞG�1ð�Þ

�
and an associated norm

kð�ÞkG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�Þ; ð�ÞiG

q
. From Eq. (3), it can be easily verified that qkRk

2

G=2 corresponds to the dual specific free energy

function. The notion of B-stability could then be exploited for the considered viscoelasticity if the evolution equations

Eq. (45) are contractive relatively to the norm kð�ÞkG in the sense that [20]:

d

dt
Rk � R�k2G ¼ 2TðR� R�ÞG�1ð _RR� _RR

�

Þ6 0 8t ð47Þ

R and R� being solutions corresponding to two different initial conditions R0 and R�

0 respectively, for a given strain rate

tensor _EE.

From Eqs. (45) and (46):

d

dt
Rk � R�k2G ¼ 2T

X

i

_nn
�

i
�
X

i

_nn
i

!

ðr̂r� r̂r�Þ þ 2
X

i

Tð _nn
i
� _nn

�

i
Þðv

i
� v�

i
Þ

¼ 2
X

i

T _nn
�

i
ðr̂r� r̂r�Þ � ðv

i

h
� v�

i
Þ
i
þ 2

X

i

T _nn
i
ðr̂r� � r̂rÞ � ðv�

i

h
� v

i
Þ
i

ð48Þ

Introducing the dual potential X
 of the viscoelastic dissipation potential X ¼ Pve=2 (Eq. (11)) such as:

X
ðr̂r; v
i
Þ ¼ sup

_nn
i

T _nn
i
ðr̂r� v

i
Þ �

1

2

si

li

T _nn
i
A
ve
_nn
i

� � !
¼

1

2

li
si

Tðr̂r� v
i
ÞS

ve
ðr̂r

h
� v

i
Þ
i

ð49Þ

it comes (X
 is a convex function):
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X
ðr̂r�; v�
i
Þ � X
ðr̂r; v

i
ÞP T _nn

i
ðr̂r� � r̂rÞ � ðv�

i
� v

i
Þ

h i
8 ðr̂r; r̂r�Þ; ðv

i
; v�
i
Þ

h i
ð50Þ

and then:

d

dt
Rk � R�k

2

G6 2
X

i

X
ðr̂r; v
i
Þ

h
� X
ðr̂r�; v�

i
Þ
i
þ 2

X

i

X
ðr̂r�; v�
i
Þ

h
� X
ðr̂r; v

i
Þ
i
¼ 0 ð51Þ

The contractivity property being so established on the assumption of convexity of the dual potential X
, the algorithm

leading to Eq. (40) is said B-stable if the following discrete counterpart Eq. (47) is verified:

nþ1Rk � nþ1R
�k

2

G6 nRk � nR
�k

2

G ð52Þ

nþ1R and nþ1R
� are two algorithmic solutions corresponding to the initial conditions nR and nR

� respectively, for a given

strain increment DE. Obtained from the numerical integration of Eq. (45) 2 such as:

nþ1R ¼ nRþ GðDE � DNÞ; nþ1R
� ¼ nR

� þ GðDE � DN�Þ ð53Þ

where:

DN ¼

P
i Dni

�Dn
1

�Dn
2

..

.

�Dn
i

..

.

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

¼

P
i Dt

li
si
S
ve
ðnþ1r̂r� nþ1viÞ

�Dt
l1
s1
S
ve
ðnþ1r̂r� nþ1v1Þ

�Dt
l2
s2
S
ve
ðnþ1r̂r� nþ1v2Þ

..

.

�Dt
li
si
S
ve
ðnþ1r̂r� nþ1viÞ

..

.

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

; Dt ¼ tnþ1 � tn; 06 16 1 ð54Þ

Eq. (52) is equivalent to:

nþ1Rk � nþ1R
�k

2

G � nRk � nR
�k

2

G ¼ 2TnRðDN
� � DNÞ þ 2TnR

�ðDN� DN�Þ þ GðDN�

""" � DNÞ
"""
2

G
6 0 ð55Þ

with:

GðDN�

""" � DNÞ
"""
2

G
¼ T ðnþ1R½ � nRÞ � ðnþ1R

� � nR
�Þ�ðDN� � DNÞ ð56Þ

Hence:

nþ1Rk � nþ1R
�k2G � nRk � nR

�k2G ¼ 2Tnþ1RðDN
� � DNÞ þ 2Tnþ1R

�ðDN� DN�Þ þ ð1� 21ÞkGðDN� � DNÞk
2

G

¼ 2
X

i

T
Dn�

i
½ðnþ1r̂r� nþ1r̂r

�Þ � ðnþ1vi � nþ1v
�

i
Þ� þ 2

X

i

T
Dn

i
½ðnþ1r̂r

� � nþ1r̂rÞ

� ðnþ1v
�

i
� nþ1viÞ� þ ð1� 21ÞkGðDN� � DNÞk

2

G ð57Þ

The time-integration of the convexity condition (Eq. (50)) following the generalised trapezoidal and mid-point rules

over ½tn; tnþ1� giving respectively:

Dt nþ1X

ðr̂r�; v�

i
Þ

h
� nþ1X


ðr̂r; v
i
Þ
i
P

T
Dn

i
ðnþ1r̂r

� � nþ1r̂rÞ � ðnþ1v
�

i

h
� nþ1viÞ

i

Dt X
ðnþ1r̂r
�; nþ1v

�

i
Þ

h
� X
ðnþ1r̂r; nþ1viÞ

i
P

T
Dn

i
ðnþ1r̂r

� � nþ1r̂rÞ � ðnþ1v
�

i

h
� nþ1viÞ

i ð58Þ

it comes finally:

nþ1Rk � nþ1R
�k2G � nRk � nR

�k2G6 ð1� 21Þ GðDN� � DNÞ
"""

"""
2

G
ð59Þ

what allows us to conclude that these two integration schemes applied to the considered viscoelastic constitutive

equations are unconditional B-stable for 1P 1=2.

2 This procedure is strictly equivalent to the one used to establish Eq. (40).
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4.1.3. Exact integration for creep behaviours

In the particular case of creep behaviours, an exact time-dependent function n
i
ðtÞ can be obtained by solving the

following constant coefficients first order differential equation (see box 1):

_nn
i
þ

1

si
n
i
¼

li
si
S
ve
r̂r ð60Þ

So:

n
i
ðtÞ ¼ liSver̂rþ eð�t=siÞ n

i
ðt0Þ

h
� liSver̂r

i
ð61Þ

and over the time interval ½tn; tnþ1�:

nþ1ni ¼ liSveðnr̂rÞ þ e
�eDð Þ n

i

h
� liSveðnr̂rÞ

i
; eD ¼

Dt

si
; Dt ¼ tnþ1 � tn ð62Þ

From Eqs. (36) and (13), it comes in this case:

nþ1r̂r ¼ nr̂rþ ADe� A
X

i

1þ eð�eDÞ
# $

liSveðnr̂rÞ
h

� nni

i
ð63Þ

4.2. Elasto-viscoplastic incremental laws

The time-integration of the elasto-viscoplastic constitutive equations (see box 2) over the time interval ½tn; tnþ1� leads
to:

nþ1r̂r ¼ nr̂rþ ADe� ADevp; nþ1X 3 ¼ nX 3 þ d3Da3; Da3 ¼ Devp ð64Þ

By using the generalised trapezoidal and mid-point schemes [16], the viscoplastic strain rate tensor _eevp gives respec-

tively:

Devp ¼ Dt ð1� 1Þn _kkvp
Mðnr̂r� nX 3Þ

ðnr̂r� nX 3Þ

"

þ 1nþ1
_kkvp
Mðnþ1r̂r� nþ1X 3Þ

ðnþ1r̂r� nþ1X 3Þ

#

;

n
_kkvp ¼ K ðnr̂r� nX 3Þ

D
� s0

EN
;

nþ1
_kkvp ¼ K ðnþ1r̂r� nþ1X 3Þ

D
� s0

EN

ð65Þ

and:

Devp ¼ Dtnþ1
_kkvp
Mðnþ1r̂r� nþ1X 3Þ

ðnþ1r̂r� nþ1X 3Þ
;

nþ1
_kkvp ¼ K ðnþ1r̂r� nþ1X 3Þ

D
� s0

EN
;

nþ1ð�Þ ¼ ð1� 1Þnð�Þ þ 1nþ1ð�Þ

ð66Þ

with Dt ¼ tnþ1 � tn and 06 16 1. These two algorithms are equivalent for 1 ¼ 0 and 1 ¼ 1, otherwise, they lead to

different procedures. In particular, the yield condition is assumed to be verified at an intermediate time tnþ1 for the

generalised mid-point rule i.e. fvpðnþ1r̂r; nþ1X 3Þ > 0 but not necessarily at the end of the time interval.

As shown through Eqs. (65) and (66), the updated variables at the end of the time interval (Eq. (64)) depend on the

formal expression of ðnþ1r̂r� nþ1X 3Þ. Hence, using:

ðnþ1r̂r� nþ1X 3Þ ¼
nþ1

_kkvp

K

 !1=N

þ s0 ð67Þ

at different times, one obtains:

ðnþ1r̂r� nþ1X 3Þ ¼
trT nr̂rþ ADe� nX 3 � Dt

n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
ð1� 1ÞðAþ d3IÞMðnr̂r� nX 3Þ

" #

;

trT�1 ¼ I þ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1ðAþ d3IÞM

ð68Þ
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for the trapezoidal rule, and for the mid-point one:

ðnþ1r̂r� nþ1X 3Þ ¼
miT nr̂rþ ADe� nX 3 � Dt

nþ1
_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

ð1� 1ÞðAþ d3IÞMðnr̂r� nX 3Þ

" #

;

miT�1 ¼ I þ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1ðAþ d3IÞM

ð69Þ

Accuracy and non-linear stability analysis of these rules are presented Appendix A. A second order accuracy is es-

tablished for 1 ¼ 1=2 in the usual sense of the local truncation error and an unconditional B-stability for 1P 1=2 is

recovered for the mid-point rule. For the trapezoidal one, the B-stability analysis is not performed herein and remains,

to our knowledge, an open problem.

4.3. Generalised elasto-dissipative incremental laws

The time-integration of the elastic–viscoelastic–plastic–viscoplastic constitutive equations (see box 3) over the time

interval ½tn; tnþ1� leads to:
3

nþ1r̂r ¼ nr̂rþ ADe� ADeve � ADep � ADevp

nþ1X 1 ¼ nX 1 þ d1De
p � c1

Z tnþ1

tn

_kkpMX 1 dt

nþ1X 2 ¼ nX 2 þ d2De
p

nþ1X 3 ¼ nX 3 þ d3De
vp

ð70Þ

Without loss of generality, the use of a fully implicit integration, for the sake of simplicity, gives:

Deve ¼
X

i

eDli
1þ eD

!

S
ve
ðnþ1r̂rÞ �

X

i

eD

1þ eD
nni

Dep ¼
Dkp

s0
Mðnþ1r̂r� nþ1X Þ ¼

Dkp

s0
Mnþ1ðr̂r� X Þ

Devp ¼ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

Mðnþ1r̂r� nþ1X 3Þ ¼ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

Mnþ1ðr̂r� X 3Þ

ð71Þ

with Eq. (38):

nni ¼
1

1þ eD
n�1ni

h
þ eDliSveðnr̂rÞ

i
; eD ¼

Dt

si
ð72Þ

From Eqs. (70b), (70c) and (71b), it comes:

nþ1X ¼ KnX 1 þ nX 2 þ
Dkp

s0
ðd1Kþ d2IÞMnþ1ðr̂r� X Þ; K�1 ¼ I þ Dkpc1M ð73Þ

Hence:

nþ1X ¼ Y ðKnX 1 þ nX 2Þ þ
Dkp

s0
Y ðd1Kþ d2IÞMnþ1r̂r; Y �1 ¼ I þ

Dkp

s0
ðd1Kþ d2IÞM ð74Þ

and then:

nþ1ðr̂r� X Þ ¼ U nþ1r̂r� Y ðKnX 1 þ nX 2Þ; U ¼ I �
Dkp

s0
Y ðd1Kþ d2IÞM ð75Þ

From Eqs. (70d) and (71c), it comes:

nþ1X 3 ¼ ZnX 3 þ d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

ZMnþ1r̂r; Z�1 ¼ I þ d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

M ð76Þ

3 Refer to [1] for more details concerning the plastic modelling (material parameters, plastic multiplier, . . .).
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and then:

nþ1ðr̂r� X 3Þ ¼ V nþ1r̂r� ZnX 3; V ¼ I � d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

ZM ð77Þ

Coming back in Eq. (70a), one obtains finally:

nþ1r̂r ¼ W nr̂rþ ADeþ A
X

i

eD

1þ eD
nni þ

Dkp

s0
AMY ðKnX 1

"

þ nX 2Þ þ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

AMZnX 3

#

;

W �1 ¼ I þ
X

i

eDli
1þ eD

!

AS
ve
þ
Dkp

s0
AMU þ Dt

nþ1
_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

AMV

ð78Þ

Accuracy and stability properties are preserved by a behaviours superposition. Refer to [20] for accuracy and

B-stability analysis of classical plasticity.

For a creep behaviour (see Section 4.1.3), this relation becomes:

nþ1r̂r ¼ W nr̂rþ ADe� A
X

i

1þ eð�eDÞ
# $

liSveðnr̂rÞ
h(

� nni

i
þ
Dkp

s0
AMY ðKnX 1 þ nX 2Þ

þ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

AMZnX 3

)

;

W �1 ¼ I þ
Dkp

s0
AMU þ Dt

nþ1
_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

AMV

ð79Þ

The Cauchy true stresses are deduced from the effective stresses (Eq. (78) or Eq. (79)) as follows (Eq. (1)):

nþ1r ¼ Lnþ1r̂r; L�1 ¼ I þ AHðnþ1DÞ; nþ1D ¼ nDþ Dkd ð80Þ

Dkd being the increment of the damage variable over the time interval ½tn; tnþ1�.
All these relations can be naturally interpreted as a strain-based multi-step predictor–corrector scheme [22–25]:

(i) Elastic–viscoelastic prediction in the effective stress space

(ii) Plastic–viscoplastic correction in the effective stress space

(iii) Elastic–viscoelastic–plastic–viscoplastic prediction in the true stress space

(iv) Damage correction in the true stress space

4.4. Multi-step predictor–corrector scheme

4.4.1. Elastic–viscoelastic prediction

An elastic–viscoelastic prediction nþ1r̂r
trial for a time step Dt ¼ tnþ1 � tn is given by Eq. (40) or Eq. (63). It is obtained

by freezing plastic and viscoplastic flows i.e. nþ1X i ¼ nX i; i ¼ 1, 2 and 3.

In a Kirchhoff shell context as introduced in [1], the zero normal stress assumption is not necessarily verified in the

effective stress space i.e. r̂r33 6¼ 0. Hence:

S
ve
¼

0 0 0 0

0
b2
E2

�b23
m23
E2

0

0 �b23
m23
E2

b2
E2

0

0 0 0 b12
G12

2

6664

3

7775 ð81Þ

and:

A ¼

1
E1

� m12
E1

� m12
E1

0

� m12
E1

1
E2

� m23
E2

0

� m12
E1

� m23
E2

1
E2

0

0 0 0 1
G12

2

6664

3

7775

�1

¼

A11 A12 A13 0

A12 A22 A23 0

A13 A23 A33 0

0 0 0 A44

2

664

3

775 ð82Þ

The normal strain increment De33 is computed from the true stress-strain relationships of the damaged elastic material

by freezing its degradation i.e. nþ1D ¼ nD [1]:
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De33 ¼
�m12ðE1 þ m23E1ð1� nDÞÞ

E1 � m212E2ð1� nDÞ
De11 �

ðm23E1 þ m212E2Þð1� nDÞ

E1 � m212E2ð1� nDÞ
De22 ð83Þ

If the plastic and viscoplastic yield conditions are not violated i.e.

fpðnþ1r̂r
trial; nX 1; nX 2Þ < 0; fvpðnþ1r̂r

trial; nX 3Þ < 0 or fvpðnþ1r̂r
trial; nX 3Þ < 0;

nþ1r̂r
trial ¼ ð1� 1Þnr̂rþ 1nþ1r̂r

trial; 06 16 1 ð84Þ

the current step is considered to be elastic and the trial stresses nþ1r̂r
trial are admissible and are accepted as the current

effective stresses for the given strain increment De (where De33 is given by Eq. (83)).

4.4.2. Plastic correction

If a plastic correction is necessary, it is performed by using Eq. (78) or Eq. (79) for a fully implicit integration:

nþ1r̂r ¼ W Wþ
Dkp

s0
AMY ðKnX 1 þ nX 2Þ

� 
;

W ¼ nr̂rþ ADeþ A
X

i

eD

1þ eD
nni 6¼ nþ1r̂r

trial or W ¼ nþ1r̂r
trial

W �1 ¼ I þ
X

i

eDli
1þ eD

!

AS
ve
þ
Dkp

s0
AMU or W �1 ¼ I þ

Dkp

s0
AMU

ð85Þ

K, Y and U being given by Eqs. (73)–(75) respectively. The unknown multiplier Dkp is determined by solving the non-

linear equation fpðnþ1r̂r; nþ1X Þ ¼ �ffpðDkpÞ ¼ 0 where nþ1X is defined by Eq. (74).

The optimal choice of 1 may depend on the nature of the problem under consideration [16]. When large strain

increments are considered, the fully implicit method corresponding to 1 ¼ 1 is probably optimal. On the other hand, in

problems where strain increments remain small, the choice 1 ¼ 0:5 may yield improved accuracy with respect to the

fully implicit procedure.

4.4.3. Viscoplastic correction

If a viscoplastic correction is necessary, it is performed by using in the general case:

nþ1r̂r ¼ Q1

I � ð1� 1Þ
X

i

eDli
1þ eD1

 !
AS

ve

" #

nr̂rþ ADeþ A
X

i

eD

1þ eD1
nni

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
W

8
>><

>>:
� Dt

n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0

� ð1� 1ÞAM I � d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1Z1M

!

nðr̂r� X 3Þ þ Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1AMZ1
nX 3

9
>>=

>>;
ð86Þ

with:

ðQ1Þ
�1

¼ I þ 1
X

i

eDli
1þ eD1

 !

AS
ve

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
P

þDt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1AMV 1;

V 1 ¼ I � d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1Z1M ;

ðZ1Þ
�1

¼ I þ d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1M

ð87Þ

for the generalised trapezoidal scheme (Eqs. (40) and (65)), nþ1
_kkvp being determined by enforcing the ‘‘dynamic’’ yield

condition (Eq. (31), see also Eq. (67)) at the end of the time step i.e.

f dynvp ðnþ1r̂r; nþ1X 3; nþ1
_kkvpÞ ¼ �ff dynvp ðnþ1

_kkvpÞ ¼ nþ1ðr̂r� X 3Þ � s0 �
nþ1

_kkvp

K

 !1=N

¼ 0 ð88Þ
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where:

nþ1X 3 ¼ Z1
nX 3 þ d3Dt

n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
ð1� 1ÞMnðr̂r

"

� X 3Þ þ d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1Mnþ1r̂r

#

ð89Þ

or:

nþ1r̂r ¼ Q1 I � ð1� 1Þ
X

i

eDli
1þ eD1

 !

AS
ve

" #

nr̂rþ ADeþ A
X

i

eD

1þ eD1
nni

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
W

8
>>>><

>>>>:

� Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

AM

� ð1� 1Þ I � d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1Z1M

!

nðr̂r� X 3Þ � 1Z1
nX 3

" #
9
>>>>=

>>>>;

ð90Þ

with:

ðQ1Þ
�1

¼ I þ 1
X

i

eDli
1þ eD1

 !
AS

ve

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
P

þDt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1AMV 1;

V 1 ¼ I � d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N þ s0
1Z1M ;

ðZ1Þ
�1

¼ I þ d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

1M

ð91Þ

for the generalised mid-point scheme (Eqs. (40) and (66)), nþ1
_kkvp being determined by enforcing the ‘‘dynamic’’ yield

condition at the intermediate time tnþ1 i.e. (nþ1ð�Þ ¼ ð1� 1Þnð�Þ þ 1nþ1ð�Þ)

f dynvp ðnþ1r̂r; nþ1X 3; nþ1
_kkvpÞ ¼ �ff dynvp ðnþ1

_kkvpÞ ¼ nþ1ðr̂r� X 3Þ � s0 �
nþ1

_kkvp

K

 !1=N

¼ 0 ð92Þ

where:

nþ1X 3 ¼ ð1½ � 1ÞI þ 1Z1�nX 3 þ 1Z1 d3Dt
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

ð1½ � 1ÞMnðr̂r� X 3Þ þ 1Mnþ1r̂r�

( )

ð93Þ

For a creep behaviour (Section 4.1.3) some of these relations are simplified by using the trial stresses nþ1r̂r
trial (Eq. (63))

as a substitute for W in Eqs. (86) and (90), and by cancelling P in Eqs. (87) and (91).

4.4.3.1. Local iterative solution procedure. The unknowns nþ1
_kkvp and nþ1

_kkvp being determined by enforcing the

‘‘dynamic’’ yield condition at the end of the time step and at the intermediate time tnþ1 for the generalised trapezoidal

and mid-point schemes respectively, highly non-linear problems have to be solved and the use of an advanced nu-

merical technique such as a line- search method [26,27] is greatly recommended to produce a robust solution algorithm

since, for the considered problems, the classical Newton�s iterative scheme often fails.

A line-search method is an iterative method which guide the solution towards convergence by adjustment of a scalar

multiplier g such as:

nþ1
_kkvp ¼ nþ1

_kk0vp þ gD0; D0 ¼ �
�ff dynvp ðnþ1

_kk0vpÞ

d�ff
dyn
vp ðnþ1

_kk0vpÞ
; d�ff dynvp ðnþ1

_kk0vpÞ ¼
d�ff dynvp ðnþ1

_kkvpÞ

dnþ1
_kkvp







nþ1k

0
vp

ð94Þ

nþ1
_kk0vp represents the previous convergent solution. As �ff dynvp can be undefined at the origin, a dichotomy method is used

to allow the iterative process initiation for the first viscoplastic increment.

Since a perturbation dg of g induces a perturbation dnþ1
_kkvo of nþ1

_kkvo i.e.

nþ1
_kkvo þ dnþ1

_kkvo ¼ nþ1
_kk0vo þ gð þ dgÞD0 ð95Þ
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the original problem �ff dynvp ðnþ1
_kkvpÞ ¼ 0 can be replaced by the equivalent one �ggðgÞ ¼ 0. In practice, it is unprofitable to

determine g by solving �ggðgÞ ¼ 0, it is better to minimise the ratio jrðgÞj ¼ j�ggðgÞ=�ggð0Þj (slack line search). Hence, while

jrðgÞjP 10�10 (user tolerance), g is updated by using:

giþ1 ¼ gi
�ggð0Þ

�ggð0Þ � �ggðgiÞ

� 	
ð96Þ

if rðgÞ < 0, else, by using an extrapolation which has to be limited by an amplification coefficient (see [26] for more

details).

4.4.3.2. Comparative accuracy analysis. Optimal algorithms being obtained for 1 ¼ 1=2, an accuracy analysis is per-

formed hereafter in order to compare the generalised trapezoidal and mid-point rules. These schemes lead to two

different procedures in viscoplasticity for 1 2�0; 1½.
Considering an elasto-viscoplastic behaviour, such an analysis concerns a single loading direction since, using

Kirchhoff shell elements, the viscoplastic flow occurs only by shearing in the plane ð~xx1;~xx2Þ. The algorithmic shear

solutions r̂r12 and ðX3Þ12 (see boxes 4 and 5) can then be compared to the analytical ones Ref r̂r12ðtÞ and RefðX3Þ12ðtÞ
obtained by solving the following differential system:

Ref _̂rr̂rr12 ¼ A44 _cc12 � A44K
Ref r̂r12 �

RefðX3Þ12 � s0
# $N

Refð _XX3Þ12 ¼ d3K
Ref r̂r12 �

RefðX3Þ12 � s0
# $N

;

c12 ¼ kt

8
><

>:
ð97Þ

with the initial conditions: Ref r̂r12ðtiÞ ¼ s0 and RefðX3Þ12ðtiÞ ¼ 0; ti ¼ s0=kA44, corresponding at the outset of the visco-

plastic flow, k represents a constant shear strain rate.

Figs. 2–4 show the obtained results for a total shear value c12 ¼ 0:05, divided into 10 equal increments

(Dc12 ¼ 0:005). The considered sample is a square plate 1� 1 mm2, composed of a single layer orientated along the

shear direction. Its material properties are [28]: A44 ¼ G12 ¼ 9300 MPa, d3 ¼ 7366 MPa, K ¼ 2:5710�11 and s0 ¼ 13:37
MPa. Four values are considered for the rate-sensitivity parameter N which affects the non-linearity of the problem to

be solved (Eq. (88) or Eq. (92)): N ¼ 1, 3.93 (identified for this material), 5 and 10.

Fig. 2 shows the relative errors on the algorithmic solutions for various loading rates in the case 1 ¼ 1 (the trap-

ezoidal and mid-point rules lead to a same procedure in this case). When 1% error can be reached for r̂r12, more than

25% error are recorded for ðX3Þ12. In each case, the maximum error i.e. its value and the corresponding rates, strongly

(a)

(b)

Fig. 2. Relative errors on the algorithmic solutions for a fully implicit integration: (a) r̂r12 and (b) ðX3Þ12.
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depends on the rate-sensitivity parameter N . The greater the N value, the more important error at high loading rates,

the minimum error is obtained for N ¼ 10 for the considered rate range.

Fig. 3 shows the relative errors on the algorithmic solutions obtained for various loading rates by using the gen-

eralised mid-point rule in the case 1 ¼ 1=2. When the error on r̂r12 slightly increases (�3.5%), the one on ðX3Þ12 ap-

preciably decreases (�)3%). In each case, a same effect of the rate-sensitivity parameter N is observed. The greater the

(a)

(b)

Fig. 3. Relative errors on the algorithmic solutions for the generalised mid-point rule in the case 1 ¼ 0:5: (a) r̂r12 and (b) ðX3Þ12.

Fig. 4. Relative errors on the algorithmic solutions for the generalised trapezoidal rule in the case 1 ¼ 0:5: (a) r̂r12 and (b) ðX3Þ12.
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N value, the more important error at low loading rates, the maximum error is obtained for N ¼ 10 for the considered

rate range.

Fig. 4 shows the relative errors on the algorithmic solutions obtained for various loading rates by using the gen-

eralised trapezoidal rule in the case 1 ¼ 1=2. When the error on r̂r12 becomes negligible (�0.03%), the one on ðX3Þ12
reaches a maximum of �)1.5%. In this last case, the effect of the rate-sensitivity parameter N is comparable to the one

observed for 1 ¼ 1.

The development of state variables integration algorithms with improved performance has received considerable

attention in the recent literature on computational viscoplasticity. In this, the fully implicit method (1 ¼ 1) has been

particularly emphasised, mainly because of its simplicity and wider range of applicability. Nevertheless, in the present

case, this method needs a great number of increments to converge towards a satisfactory algorithmic solutions in

comparison with the semi-implicit (1 ¼ 1=2) generalised trapezoidal scheme which seems to be the more interesting

approach (but for which the B-stability remains an open problem). The rate-sensitivity parameter effects that depend

on the used algorithm are appreciably attenuated by this approach.

4.4.4. Plastic–viscoplastic correction

If a plastic–viscoplastic correction is necessary, it can be performed by using Eq. (78) or Eq. (79), for example, in the

case of a fully implicit integration. The unknowns Dkp and nþ1
_kkvp derive from the yield conditions:

(a)

(b)

Fig. 5. (a) Original and (b) refined search of simultaneous zero-crossing curves of both functions �ffp and �ffvp in the case of multi-modal problems.
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fpðnþ1r̂r; nþ1X Þ ¼ �ffpðDkp; nþ1
_kkvpÞ ¼ 0; f dynvp ðnþ1r̂r; nþ1X 3; nþ1

_kkvpÞ ¼ �ffvpðDkp; nþ1
_kkvpÞ ¼ 0 ð98Þ

nþ1X and nþ1X 3 being given by Eqs. (74) and (76) respectively.

It has been verified that such a coupled problem can be multi-modal (see Fig. 5). Hence, in order to assure the

determination of positive solutions, a grid-search method [29] is used in association with the classical Newton�s iter-

ative scheme to define available starting values (see box 6). A first search in a positive region of dimension two with

lower left co-ordinates ð0; 0Þ, gives lower left co-ordinates and dimension of squares where there are simultaneous zero-

crossing curves of both functions �ffpðDkp; nþ1
_kkvpÞ and �ffvpðDkp; nþ1

_kkvpÞ (zero-crossing curves intersection give the solu-

tions of the non-linear system, Eq. (98)). To keep track of the squares of various sizes that are to be searched further by

refinement until there is a final set of squares having crossing of dimension less than the user entered precision,

software stack 4 is used. In practice, lower left co-ordinates found in the original search are sufficient to efficiently

initiate the Newton�s iterative scheme.

4.4.5. (Visco)elasto-(visco)plastic prediction–damage correction

The final state of the material is obtained after a (visco)elasto-(visco)plastic prediction where the degradation of the

material is stopped:

nþ1r
trial ¼ Lnþ1r̂r; L�1 ¼ I þ AHðnDÞ ð99Þ

If the damage yield condition is not violated, the current step is evaluated to be (visco)elasto-(visco)plastic, the trial

stresses nþ1r
trial are admissible and are accepted as final stresses. Otherwise, a damage correction is necessary and is

(a)

(b)

Fig. 6. Numerical models and loading cycles in (a) pure traction and (b) pure internal pressure.

4 The stack is just a list of the co-ordinates and dimension of each of the squares to be searched further.
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performed by updating the damage variable which is expressed in term of the unknown damage multiplier Dkd (see [1]

for more details).

5. Algorithmic tangent operator

The necessity to take account of the numerical integration procedure into the evaluation of the tangent operator B

such as:

d½nþ1r� ¼ Bd½nþ1e� ð100Þ

has been first outlined in [30] and in [31,32] a consistent tangent operator has been effectively defined for elasto-plastic

models in order to guarantee the asymptotically quadratic rate of convergence which characterises the full Newton–

Raphson algorithm. By replacing the consistency condition classically adopted in plasticity with an analogous relation

based on the ‘‘dynamic’’ yield function (Eq. (31)), such an operator has been recently generalised for viscoplastic

models [12,15].

As the proposed theory herein encompasses a viscoelastic behaviour (Eq. (40) or Eq. (63)), the determination of a

consistent tangent operator is non-trivial. The numerical perturbation technique [33–35] becomes then a very inter-

esting alternative to evaluate B. This technique consists of the following steps:

(i) Each component of the strain increment De is successively perturbed: Dek ¼ Deþ dk

(ii) Evaluate the corresponding effective stress state nþ1r̂r
k following the algorithm in box 7

(a)

(b)

Fig. 7. (a) Semi-analytical and (b) numerical results in pure traction.
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(iii) Compute the effective stress perturbation: dr̂rk ¼ nþ1r̂r
k � nþ1r̂r

(iv) Compute the column vector: Ck ¼ dr̂rk=dk

(v) Compose the (4� 4) matrix bCC
v ep

¼ ½C1;C2;C3;C4�
(vi) Reduce bCC

v ep
to a (3� 3) matrix by using the relationship between de33, de22 and de33 (Eq. (83))

(vii) Compute

B ¼ L�
LAH 0

nþ1rðnþ1
TrH 0LÞ

nþ1
TrðH 0LAH 0 � H 00Þnþ1rþ y0

" #
bCC
v ep

; H 0 ¼
oH

oD
; H 00 ¼

1

2

o
2H

oD2

(see [1, Section 5])

This tangent operator is redefined in Appendix B when a viscous regularisation is used to correct ill-posed standard

boundary value problems for which finite element computations exhibit spurious mesh sensitivity when the mesh is

refined to vanishing size.

6. Applications

In this section, the comparison between semi-analytical results obtained with the classical laminate theory, suitably

extended for non-linear analysis [28], and numerical results obtained through the implementation of the proposed

modelling into the finite element code CASTEM2000�, is investigated.

The considered tests concern a ½þ55;�55�6 layer tube (length¼ 180 mm, mid-radius¼ 31 mm, thickness¼ 2 mm).

The following material constants have been used:

Fig. 8. (a) Semi-analytical and (b) numerical results in pure internal pressure.
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E1 ¼ 38910 MPa; E2 ¼ 9900 MPa; G12 ¼ 3799 MPa; m12 ¼ 0:25; m23 ¼ 0:2; n0 ¼ 9:03; nb ¼ 30;

nc ¼ 7:84; bt ¼ 1:74; btt ¼ 1; blt ¼ 0:85; Yc ¼ 0:0027 MPa; q ¼ 1:246 MPa; p ¼ 0:816;

s0 ¼ 14:23 MPa; d1 ¼ 25000 MPa; d2 ¼ 1800 MPa; c1 ¼ 900; K ¼ 2:2� 1011 ½MPa�
�N

S; N ¼ 1:75;

d3 ¼ 12000 MPa

(a) (b)

(c)

Fig. 9. Creep loading conditions.

(a)

(b)

(c)

Fig. 10. Semi-analytical (right hand side) and numerical (left hand side) creep strains.
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The used meshing and the progressive repeated loading conditions in pure traction and in pure internal pres-

sure are shown Fig. 6. The pure traction test has been performed by using 768 elements and 55 equal increments

when 640 elements and 63 equal increments have been used in pure internal pressure. For these two tests, a good

agreement is obtained (see Figs. 7 and 8) between the finite element results and the semi-analytical ones. Very sat-

isfactory results have also been obtained (see Figs. 10 and 11) in the case of creep behaviours in pure traction (see

Fig. 9).

7. Conclusion

In addition to the time-independent behaviour model presented in the first part of this article within the context of a

meso–macro approach, a viscous one is proposed herein to account for creep strains at the layer level. This model

consists of a viscoelastic component based on a relaxation times triangular spectrum and of a viscoplastic component

based on a generalised Norton-type dissipation potential integrating the elastic domain concept. In order to allow a

same treatment of viscoplastic and classical plastic problems, a ‘‘dynamic’’ yield function is incorporated in the usual

viscous format. Using the well-known generalised trapezoidal and mid-point integration rules, second order accurate

and B-stable state computation algorithms are proposed in association with reliable local iterative solution procedures

(b)

(a)

Fig. 11. Semi-analytical (a) and numerical (b) creep strains.
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within a multi-step predictor–corrector scheme. Considering an elasto-viscoplastic behaviour, a comparative accuracy

analysis shows that the generalised trapezoidal rule, for which the B-stability remains, to our knowledge, an open

question, is more accurate than the generalised mid-point rule. Since the viscoelasticity renders non-trivial the de-

termination of a consistent tangent operator with the proposed state computation algorithms, a perturbation technique

is suggested to derive an algorithmic tangent operator. This operator can be easily reformulated when a visco-damage

model is considered to overcome localisation problems.

Following the methodology proposed in the first part of this article, the inter-laminar stresses can be evaluated

taking account of the viscous behaviours.

In order to compare the proposed modelling with experimental results, a reliable parameters identification method

must be developed. In a forthcoming paper, an inverse technique using local methods associated with a genetic al-

gorithm will be presented and applied to multi-axial tests. Moreover, the proposed model will be complemented in

order to account for micro-cracks closure–opening effects using a strain criterion.

Appendix A. Viscoplastic numerical models accuracy and stability analysis

A.1. Accuracy analysis

As done Section 4.1.1, an accuracy analysis of the obtained viscoplastic numerical models (Eqs. (64)–(69)) can be

performed by comparing algorithmic and exact stresses using the Taylor series expansion expressed by Eqs. (41) and

(43).

For the generalised trapezoidal and mid-point rules, the stresses first and second time derivatives are:

d

dDt
ðnþ1r̂rÞ






Dt¼0

¼ An _ee� A
n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
Mðnr̂r� nX 3Þ

" #

d2

dDt2
ðnþ1r̂rÞ






Dt¼0

¼ An€ee� 21A
n
€kkvp ðn _kkvp=KÞ

1=N
1� 1

N

5 6
þ s0

h i

ðn _kkvp=KÞ
1=N þ s0

h i2 Mðnr̂r� nX 3Þ þ
n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
Mðn _̂rr̂rr� n

_XX 3Þ

8
><

>:

9
>=

>;

ðA:1Þ

Compared to the exact ones (see box 2):

n
_̂rr̂rr ¼ A

n
_ee� A

n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
Mðnr̂r� nX 3Þ

" #

n
€̂rr̂rr ¼ An _ee� A

n
€kkvp ðn _kkvp=KÞ

1=N
1� 1

N

5 6
þ s0

h i

ðn _kkvp=KÞ
1=N þ s0

h i2 Mðnr̂r� nX 3Þ þ
n
_kkvp

ðn _kkvp=KÞ
1=N

þ s0
Mðn _̂rr̂rr� n

_XX 3Þ

8
><

>:

9
>=

>;

ðA:2Þ

they show a second order accuracy for 1 ¼ 1=2 in the usual sense of the local truncation error.

A.2. Stability analysis

Consider the standard evolution problem given by Eq. (45) where:

R ¼
r̂r

X 3

 !

; _EE ¼
_ee

0

 !

; _NN ¼
_eevp

� _aa3

 !

¼

_kkvp
ofvp

or̂r

_kkvp
ofvp

oX 3

0

@

1

A; G ¼
A 0

0 d3I

" #

ðA:3Þ
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This problem is contractive relative to the norm kð�ÞkG if:

d

dt
Rk � R�k

2

G ¼ 2 _kk�vp

Tofvp

or̂r






r̂r� ;X �

3

ðr̂r� r̂r�Þ þ
Tofvp

oX 3






r̂r� ;X �

3

ðX 3 � X
�

3Þ

" #

þ 2 _kkvp

Tofvp

or̂r






r̂r;X 3

ðr̂r�

"

� r̂rÞ

þ
T
ofvp

oX 3






r̂r;X 3

ðX �

3 � X 3Þ

#

6 0 8t ðA:4Þ

fvp (Eq. (28)) being a convex function, it verifies:

fvpðr̂r
�;X �

3Þ � fvpðr̂r;X 3ÞP
Tofvp

or̂r






r̂r;X 3

ðr̂r� � r̂rÞ þ
Tofvp

oX 3






r̂r;X 3

ðX �

3 � X 3Þ; 8 ðr̂r�;X �

3Þ; ðr̂r;X 3Þ
# $

ðA:5Þ

Hence:

d

dt
Rk � R�k

2

G6 2 _kk�vp fvpðr̂r;X 3Þ
#

� fvpðr̂r
�;X �

3Þ
$
þ 2 _kkvp fvpðr̂r

�;X �

3Þ
#

� fvpðr̂r;X 3Þ
$

ðA:6Þ

This inequality can be reformulated taking account of Eq. (31), so:

d

dt
Rk � R�k

2

G6 2 _kk�vp f dynvp ðr̂r;X 3;
_kkvpÞ þ

_kkvp

K

 !1=N

� f dynvp ðr̂r�;X �

3;
_kk�vpÞ �

_kk�vp

K

 !1=N
2

4

3

5þ 2 _kkvp

2

4f dynvp ðr̂r�;X �

3;
_kk�vpÞ

þ
_kk�vp

K

 !1=N

� f dynvp ðr̂r;X 3;
_kkvpÞ �

_kkvp

K

!1=N
3

5 ðA:7Þ

For f dynvp ðr̂r;X 3;
_kkvpÞ6 0 and f dynvp ðr̂r�;X �

3;
_kk�vpÞ6 0 i.e. fvpðr̂r;X 3Þ6 0 and fvpðr̂r

�;X �

3Þ6 0, the contractivity property is

verified since _kkvp ¼ _kk�vp ¼ 0. Otherwise, for _kkvp > 0 and _kk�vp > 0 (Eq. (31))

f dynvp ðr̂r;X 3;
_kkvpÞ ¼ f dynvp ðr̂r�;X �

3;
_kk�vpÞ ¼ 0 ðA:8Þ

what leads to:

d

dt
Rk � R�k

2

G6 2
_kk�vp

K

 !1=N
2

4 �
_kkvp

K

!1=N
3

5ð _kkvp � _kk�vpÞ ðA:9Þ

_kkvp and _kk�vp being positive, it comes then immediately d
dt

R� R�k k
2

G6 0.

Established by using the properties of the ‘‘dynamic’’ yield function f dynvp , this result extends the contractivity

property obtained in [20] for a linear viscoplastic model of Perzyna type.

The algorithm obtained by using the mid-point scheme (Eqs. (64), (66), (67) and (69)) is said B-stable if the con-

dition (Eq. (52)) is verified, the algorithmic solutions being given by:

nþ1R ¼ nRþ GðDE � DNÞ; nþ1R
� ¼ nR

� þ GðDE � DN�Þ ðA:10Þ

where:

DN ¼ Dtnþ1
_kkvp
Mðnþ1r̂r� nþ1X 3Þ

ðnþ1r̂r� nþ1X 3Þ

1

�1

� 	
¼

Dtnþ1
_kkvp

ofvp

or̂r





nþ1r̂r;nþ1X 3

Dtnþ1
_kkvp

ofvp

oX 3





nþ1r̂r;nþ1X 3

0

B@

1

CA ðA:11Þ

Considering the relation (Eq. (57)) such as:

nþ1Rk � nþ1R
�k

2

G � nRk � nR
�k

2

G ¼ 2Tnþ1RðDN
� � DNÞ þ 2Tnþ1R

�ðDN� DN�Þ þ ð1� 21Þ GðDN� � DNÞ
"""

"""
2

G

¼ 2Dtnþ1
_kk�vp

T
ofvp

or̂r






nþ1r̂r

� ;nþ1X
�

3

ðnþ1r̂r� nþ1r̂r
�Þ þ

T
ofvp

oX 3






nþ1 r̂r

�;nþ1X
�

3

ðnþ1X 3 � nþ1X
�

3Þ

" #

þ 2Dtnþ1
_kkvp

T
ofvp

or̂r






nþ1r̂r;nþ1X 3

ðnþ1r̂r
�

"

� nþ1r̂rÞ þ
T
ofvp

oX 3






nþ1r̂r;nþ1X 3

ðnþ1X
�

3 � nþ1X 3Þ

#

þ ð1� 21Þ GðDN� � DNÞ
"""

"""
2

G
ðA:12Þ
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the integration of the convexity condition (Eq. (A.5)) following the mid-point rule, so:

Dt fvpðnþ1r̂r
�; nþ1X

�

3Þ
#

� fvpðnþ1r̂r; nþ1X 3Þ
$
PDt

T
ofvp

or̂r






nþ1 r̂r;nþ1X 3

ðnþ1r̂r
� � nþ1r̂rÞ þ

T
ofvp

oX 3






nþ1r̂r;nþ1X 3

ðnþ1X
�

3 � nþ1X 3Þ

" #

ðA:13Þ

leads to:

nþ1Rk � nþ1R
�k

2

G � nRk � nR
�k

2

G6 2Dtnþ1
_kk�vp fvpðnþ1r̂r; nþ1X 3Þ
#

� fvpðnþ1r̂r
�; nþ1X

�

3Þ
$

þ 2Dtnþ1
_kkvp fvpðnþ1r̂r

�; nþ1X
�

3Þ
#

� fvpðnþ1r̂r; nþ1X 3Þ
$
þ ð1� 21Þ GðDN�

""" � DNÞ
"""
2

G
ðA:14Þ

Now, using Eq. (67):

nþ1Rk � nþ1R
�k2G � nRk � nR

�k2G6 2Dtnþ1
_kk�vp f dynvp ðnþ1r̂r; nþ1X 3; nþ1

_kkvpÞ þ
nþ1

_kkvp

K

 !1=N
2

4

� f dynvp ðnþ1r̂r
�; nþ1X

�

3; nþ1
_kk�vpÞ �

nþ1
_kk�vp

K

!1=N
3

5þ 2Dtnþ1
_kkvp fvpðnþ1r̂r

�; nþ1X
�

3; nþ1
_kkvpÞ þ

nþ1
_kk�vp

K

 !1=N
2

4

� fvpðnþ1r̂r; nþ1X 3; nþ1
_kk�vpÞ �

nþ1
_kkvp

K

!1=N
3

5þ ð1� 21Þ GðDN�

""" � DNÞ
"""
2

G
ðA:15Þ

If the viscoplastic yield condition is enforced at the intermediate time tnþ1 2 ½tn; tnþ1�:

f dynvp ðnþ1r̂r; nþ1X 3; nþ1
_kkvpÞ6 0 if fvpðnþ1r̂r; nþ1X 3Þ6 0; nþ1

_kkvp ¼ 0

f dynvp ðnþ1r̂r; nþ1X 3; nþ1
_kkvpÞ ¼ 0 if fvpðnþ1r̂r; nþ1X 3Þ > 0; nþ1

_kkvp > 0
ðA:16Þ

this inequality becomes during a viscoplastic flow:

nþ1Rk � nþ1R
�k

2

G � nRk � nR
�k

2

G6 2Dt
nþ1

_kk�vp

K

 !1=N
2

4 �
nþ1

_kkvp

K

!1=N
3

5
nþ1

_kkvp

�
� nþ1

_kk�vp

�
þ ð1� 21Þ GðDN� � DNÞ

"""
"""
2

G

ðA:17Þ

nþ1
_kkvp and nþ1

_kk�vp being positive, it comes finally that the generalised mid-point scheme applied to the considered

viscoplastic constitutive equations is unconditionally B-stable for 1P 1=2. For the generalised trapezoidal scheme, the

B-stability remains an open problem.

Appendix B. Formulation of a time-dependent damage model

Considering the time-independent damaged elastic behaviour model defined in [1, Eq. (7)]:

_rr ¼ bSS
�1

_ee� _DD
ofd

or

� 	
; bSS ¼ A�1 þ HðDÞ; fd ¼

1

2
TrH 0r� yðDÞ; H 0 ¼

oH

oD
ðB:1Þ

with, from the consistency condition _ffd ¼ 0:

_DD ¼

T ofd
or

� �
bSS
�1
_ee

T ofd
or

� �
bSS
�1

ofd
or

� �
� TrH 00rþ y0

; y 0 ¼
oy

oD
; H 00 ¼

1

2

o
2H

oD2
ðB:2Þ

it comes:

_rr ¼ Bed _ee; Bed ¼ bSS
�1

�

bSS
�1

ofd
or

T bSS
�1

ofd
or

� �

T ofd
or

� �
bSS
�1

ofd
or

� �
� TrH 00rþ y0

ðB:3Þ

The so constructed constitutive equations for the time-independent damage, where the strain rates _DDofd=oD arrive

from the loss of stiffness, are closed to the classical plasticity ones including, for example, a stress softening which
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induces a contraction of the elastic domain (see Fig. 12). Localisation under quasi-static loading conditions is then

associated with a loss of ellipticity of the governing equations [35–37]. Standard boundary value problems become ill-

posed and any numerical attempts to capture the solution will be meaningless since this solution is non-unique (strain

rate jumps through singular surfaces) i.e. finite element computations exhibit spurious mesh sensitivity when the mesh

is refined to vanishing size. These numerical difficulties may be overcome by viscous regularisation [38–40]. This

technique retains the time-independent damage model characteristics and renders well-posed the considered boundary

value problems.

In order to account for loading rate dependency and to regularise eventual localisation problems, a viscous damage

mechanism is introduced in this appendix. Such a model accounts for retardation of the micro-cracks growth in the

polymer matrix and then of the elastic module damage degradation.

Considering a linear Perzyna-type regularisation [41,42], the damage variable evolution equation governing a visco-

damage behaviour is obtained from its time-independent counterpart [1] by replacing the Lagrange multiplier _kkd by

Kdhfdi, where hfdi ¼ ðfd þ jfdjÞ=2, fd being the damage yield function (Eq. (B.1)) i.e.

_DD ¼ Kdhfdi ðB:4Þ

By analogy with the viscoplastic behaviour (Section 2.2), the time-independent damage is recovered when Kd ! 1.

A fully implicit integration (which leads to a first order accurate and B-stable algorithm) of this relation over the

time interval ½tn; tnþ1�, gives:

nþ1D ¼ nDþ DtKdhfdðnþ1r; nþ1DÞi; nþ1r ¼ I
h

þ AHðnþ1DÞ
i�1

nþ1r̂r ðB:5Þ

This provides a non-linear equation �ffdðnþ1DÞ ¼ 0 to be solved using the Newton�s method or any other suitable root

finder in order to obtain the current damage variable nþ1D.

The key idea to evaluate an algorithmic tangent operator with a visco-damage model following the procedure

adopted in [1], is to replace the damage consistency condition dfd ¼ 0 by the analogous condition d�ffd ¼ 0. Hence:

B ¼ L�
LAH 0

nþ1rðnþ1
TrH 0LÞ

nþ1
TrðH 0LAH 0 � H 00Þnþ1rþ y 0 þ 1

DtKd

� �

2

4

3

5bCC
v ep

ðB:6Þ

Fig. 12. Stress–strain curve of a damaged material by shearing-strain softening. The considered material is a single layer composite oriented along

the loading direction: E1 ¼ 60100 MPa, E2 ¼ 22350 MPa, G12 ¼ 9300 MPa, Yc ¼ 0:0024 MPa, p ¼ 0:61 and q ¼ 0:41.

26



Box 1: Constitutive frame of the viscoelastic equivalent virgin material

Box 2: Constitutive frame of the viscoplastic equivalent virgin material

Stress–strain relationship:

r̂r ¼ Aee

ee ¼ e� eveðn
i
Þ

See Eq. (4) for A

Evolution laws:

_eeve ¼
P

i
_nn
i

_nn
i
¼ 1

si
ðliSver̂r� n

i
Þ

See Eq. (5) for S
ve
¼ A�1

ve

Incremental law:
_̂rr̂rr ¼ Að _ee� _eeveÞ

Relaxtion times:

si ¼ 10ni ; ni ¼ nc � n0 þ ði� 1ÞD; D ¼ 2n0
nb�1

See

(Fig. 1) for n0 nd nc

Weighting coefficients:

li ¼ þ 2
n0ðnb�1Þ

½ni � ðnc � n0Þ� if ni 2 ½ðnc � n0Þ; nc�

li ¼ � 2
n0ðnb�1Þ

½ni � ðnc þ n0Þ� if ni 2 ½nc; ðnc þ n0Þ�

Stress–strain relationship:

r̂r ¼ Aee

ee ¼ e� evp

‘‘Dynamic’’ yield criterion:

f dynvp ¼ ðr̂r� X 3Þ � s0 �
_kkvp

K

� �1=N
6 0

ðr̂r� X 3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðr̂r� X 3ÞMðr̂r� X 3Þ

q

See Eq. (29) for M . s0 is the initial threshold and _kkvp
a viscoplastic multiplier

Evolution laws:

_eevp ¼ _kkvp
Mðr̂r�X 3Þ

ðr̂r�X 3Þ
_aa3 ¼ _eevp

Incremental laws:

_̂rr̂rr ¼ Að _ee� _eevpÞ
_XX 3 ¼ d3 _aa3
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Box 3: Instantaneous and time-dependent behaviours of the equivalent virgin material

Box 4: Generalised trapezoidal scheme accuracy

(i) Elastic prediction
Knowing the shear strain increment Dc12 and the state of the material at the end of the previous convergent incre-

ment (nr̂r12; nðX3Þ12), compute the elastic trial state:

nþ1r̂r
trial
12 ¼ nr̂r12 þ A44Dc12; nþ1ðX3Þ12 ¼ nðX3Þ12

Check the viscoplastic yield function:

IF

fvp½nþ1r̂r12; nþ1ðX3Þ12� ¼ nþ1ðr̂r� X3Þ12 � s0 < 0

the current step is elastic ðnþ1r̂r12 ¼ nþ1r̂r
trial
12 Þ

ELSE

(ii) Viscoplastic correction

Compute:

nþ1r̂r12 ¼ q1½nr̂r12 þ A44Dc12 � A44Dtnlð1� 1Þð1� d3Dtnþ1l1z
1Þnðr̂r� X3Þ12 þ A44Dtnþ1l1z

1
nðX 3Þ12�

nþ1ðX3Þ12 ¼ z1½nðX3Þ12 þ d3Dtnlð1� 1Þnðr̂r� X3Þ12 þ d3Dtnþ1l1nþ1r̂r12�

with:

ðq1Þ�1 ¼ 1þ A44Dtnþ1l1v
1; v1 ¼ 1� d3Dtnþ1l1z

1; ðz1Þ�1 ¼ 1þ d3Dtnþ1l1nþ1l
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N þ s0

Compute the unknown nþ1
_kkvp by solving:

�ff dynvp ðnþ1
_kkvpÞ ¼ nþ1ðr̂r� X3Þ12 � s0 � ðnþ1

_kkvp=KÞ
1=N ¼ 0

(iii) Relative error

Compute:

Ref r̂r12ðtnþ1Þ � nþ1r̂r12

Rer̂r12ðtnþ1Þ

RefðX3Þ12ðtnþ1Þ � nþ1ðX3Þ12
ReðX3Þ12ðtnþ1Þ

Stress–strain relationship:
r̂r ¼ Aee

ee ¼ e� eve � ep � evp

Yield criteria:

fp ¼ ðr̂r� X Þ � s0 6 0

r̂r� Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðr̂r� X ÞMðr̂r� X Þ

q
; X ¼ X 1 þ X 2

f dynvp ¼ fvp �
_kkvp

K

� �1=N
¼ ðr̂r� X 3Þ � s0 �

_kkvp

K

� �1=N
6 0

See [1] for the plastic constitutive equations

Evolution laws:

_eeve ¼
P

i
1
si
ðliSver̂r� n

i
Þ

_eep ¼ _kkp
Mðr̂r�X Þ

ðr̂r�X Þ

_eevp ¼ _kkvp
Mðr̂r�X 3Þ

ðr̂r�X 3Þ

See box 1 for the relaxation times si and the

weighting coefficients li

Incremental laws:
_̂rr̂rr ¼ Að _ee� _eeve � _eep � _eevpÞ
_XX 1 ¼ d1 _ee

p � _kkpc1MX 1
_XX 2 ¼ d2 _ee

p

_XX 3 ¼ d3 _ee
vp
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Box 5: Generalised mid-point scheme accuracy

(i) Elastic prediction

Knowing the shear strain increment Dc12 and the state of the material at the end of the previous convergent increment

ðnr̂r12; nðX3Þ12Þ, compute the elastic trial state:

nþ1r̂r
trial
12 ¼ nr̂r12 þ A44Dc12; nþ1ðX3Þ12 ¼ nðX3Þ12

and:

nþ1r̂r
trial
12 ¼ nr̂r12 þ 1A44Dc12; nþ1ðX3Þ12 ¼ nðX3Þ12

Check the viscoplastic yield function:

IF

fvp½nþ1r̂r12; nþsðX3Þ12� ¼ nþ1ðr̂r� X3Þ12 � s0 < 0

the current step is elastic ðnþ1r̂r12 ¼ nþ1r̂r
trial
12 Þ

ELSE

(ii) Viscoplastic correction

Compute:

nþ1r̂r12 ¼ q1 nr̂r12f þ A44Dc12 � A44Dtnþ1l½ð1� 1Þð1� d3Dtnþ1l1z
1Þnðr̂r� X3Þ12 � 1z1ðnX 3Þ12�

7

nþ1ðX3Þ12 ¼ z1fnðX3Þ12 þ d3Dtnþ1l½ð1� 1Þnðr̂r� X3Þ12 þ 1nþ1r̂r12�g

with:

ðq1Þ
�1

¼ 1þ A44Dtnþ1l1v
1; v1 ¼ 1� d3Dtnþ1l1z

1; ðz1Þ
�1

¼ 1þ d3Dtnþ1l1nþ1l
nþ1

_kkvp

ðnþ1
_kkvp=KÞ

1=N
þ s0

Compute the unknown nþ1
_kkvp by solving:

�ff dynvp ðnþ1
_kkvpÞ ¼ nþ1ðr̂r� X3Þ12 � s0 � ðnþ1

_kkvp=KÞ
1=N ¼ 0

(iii) Relative error

Compute:

Ref r̂r12ðtnþ1Þ � nþ1r̂r12

Rer̂r12ðtnþ1Þ

RefðX3Þ12ðtnþ1Þ � nþ1ðX3Þ12
ReðX3Þ12ðtnþ1Þ

Box 6: Grid-search method associated with the classical Newton�s iterative scheme

(i) Select an original square region in the positive Dkp and nþ1
_kkvp domain. This region is divided into m2 squares, where

the integer m is user determined.

(ii) Locate the squares having simultaneous zero-crossing curves of both functions �ffp and �ffvp within their boundaries.

(iii) Store the lower left corner co-ordinates ðDkip;nþ1
_kkivpÞ of the squares with simultaneous zero-crossing curves and their

dimensions li in a stack.

(iv) Use the classical Newton’s iterative scheme with the co-ordinates of the stored squares as starting values.

DO I ¼ 1 TO SQUARENB

DO WHILE NEWTOL IS NOT SATISFIED

o�ffp=oDkp o�ffp=onþ1
_kkvp

o�ffvp=oDkp o�ffvp=onþ1
_kkvp

� i
dDkp

dnþ1
_kkvp

� 	i
¼ �

�ffpðDk
i
p; nþ1

_kkivpÞ
�ffvpðDk

i

p; nþ1
_kkivpÞ

" #

;
Dk

iþ1
p

nþ1
_kkiþ1
vp

 !

¼
Dkip

nþ1
_kkivp

 !

þ
dDkp

dnþ1
_kkvp

� 	i

IF Dkiþ1
p < 0 OR nþ1

_kkiþ1
vp < 0 GO TO THE NEXT SQUARE

END DO

IF CONVERGENCE, GO OUT

END DO

(v) If the dimension of the square at the top of the stack is greater than the desired precision e, where e is user deter-

mined, take it from the stack, set the number of grid divisions m to 2 and go to (ii) to refine the search.

(vi) If the dimension of the square at the top of the stack is less than or equal to the desired precision, take it from the

stack and go to (v).
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Box 7: Multi-step predictor–corrector scheme

(i) Elastic–viscoelastic prediction in the effective stress space

Knowing the total strain increment De and the state of the material at the previous convergent increment

(nr̂r; nni; nX 1; nX 2; nX 3) compute the trial stresses nþ1r̂r
trial

Check the plastic yield function:

IF fpðnþ1r̂r
trial; nX 1; nX 2Þ < 0

Check the viscoplastic yield function:

IF fvpðnþ1r̂r
trial; nX 3Þ < 0; nþ1r̂r

trial ¼ ð1� 1Þnr̂rþ 1nþ1r̂r
trial

the current step is elastic ðnþ1r̂r ¼ nþ1r̂r
trialÞ

ELSE

Viscoplastic correction:

Compute nþ1r̂r; nþ1X 3

the viscoplastic multipliernþ1
_kkvp is obtained by solving �ff dynvp ðnþ1

_kkvpÞ ¼ 0

END IF

ELSE

Check the viscoplastic yield function:

IF fvpðnþ1r̂r
trial; nX 3Þ < 0

Plastic correction

Compute nþ1r̂r; nþ1X 1; nþ1X 2

the plastic multiplier increment Dkp is obtained by solving �ffpðDkpÞ ¼ 0

ELSE

Plastic and viscoplastic correction

Compute nþ1r̂r; nþ1X 1, nþ1X 2; nþ1X 3

the multipliers Dkp and nþ1
_kkvp are obtained by solving

�ffpðDkpÞ ¼ 0
�ff dynvp ðnþ1

_kkvpÞ ¼ 0

 

END IF

END IF

(ii) Elastic–viscoelastic–plastic–viscoplastic prediction in the true stresses space

Knowing the damage variable nD at the end of the previous convergent increment compute the trial stresses:

nþ1r
trial ¼ Lnþ1r̂r; L�1 ¼ I þ AHðnDÞ

Check the damage yield function:

IF fdðnþ1r
trial; nDÞ < 0

the current step is such as nþ1r ¼ nþ1r
trial

ELSE

Damage correction

Compute the final stresses and damage variable:

nþ1r ¼ Lnþ1r̂r; L�1 ¼ I þ AHðnþ1DÞ

nþ1D is obtained by solving fdðnþ1r; nþ1DÞ ¼ 0

END IF
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