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a and Stéphane Roux
b,1

aLMT-Cachan
ENS de Cachan / CNRS-UMR 8535 / Université Paris 6
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Abstract

Identification of local anisotropy and determination of principal axes is addressed
through different methods that are designed to be tolerant to the non-smooth char-
acter of images on the pixel scale. These different tools are validated on various
examples, and their performances are compared. The most powerful, robust and
accurate method consists in computing the curvature tensor of the auto-correlation
function of regularized images using fast Fourier transforms.
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1 Introduction

Estimating the anisotropy of images or zones of images, and the correspond-
ing orientation field has a wide range of applications in texture analysis. From
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fingerprints to transmission electron microscopy, many cases require the iden-
tification of anisotropy as a major characteristic of texture or pattern recog-
nition. As a result, numerous techniques for estimating local orientation fields
have been proposed in the past.

One of the earliest approaches, introduced by Rao [1], to determine the prin-
cipal orientation field from an image uses the direction of local gray-level
gradients. The local principal anisotropy direction is perpendicular to the gra-
dient. Hanbury et al. [2] used the algorithm suggested by Rao to describe
the vector field of oriented textures. From this first analysis, mathematical
morphology was applied to characterize the texture, namely circular centered
gradient operator for texture segmentation and circular centered top-hat op-
erator for defect detection. The method was validated [2] through the analysis
of a wood plank picture, i.e., segmentation into regions of uniform orientation.

Since then, a number of variants have been introduced, most of them also
based on gradients. One such popular method is based on the Principal Com-
ponent Analysis (PCA) of local gradient [3,4]. By applying the PCA to the
autocovariance matrix of the gradient vectors provides the 2-dimensional prob-
ability density function of these vectors. The main direction of gradient is then
obtained from the autocovariance matrix. Determining the local orientation
can be used for segmentation or defect detection. Bazen et al. [5] used PCA
applied to the autocovariance matrix of the gradient vectors for fingerprint
segmentation. First the image is low-pass filtered for noise suppression, then
the directional field is estimated and finally a coherence-based segmentation
provides the identification of the basic shape of the fingerprint used for clas-
sification, encoding and recognition.

Some improvements on methods first based on the calculation of gradients
have been developed. Gu et al. [6] proposed a new approach for the orienta-
tion field of fingerprints. It is based on the combination of the two models
by a weight function. A polynomial model is used to approximate the orien-
tation field globally and a point-charge model at each singular point is used
to improve the approximation locally. Feng et al. [7,8] presented a technique
based on the Principal Component Analysis and the multiscale decomposition
to improve the robustness to noise. Stuke et al. [9] proposed a method to ana-
lyze superimposed oriented patterns. The definition of a generalized structure
tensor (GST) is used to detect the number of orientation based on confidence
measures calculated by the invariants of the GST.

All the above methods rely on the strong hypothesis that gradients are well-
defined, and hence that they can be computed and used in a safe way. Another
very successful method has been developed by Bigün et al. [10–12] for images
(movies) that are invariant in one (or more) directions. The latter provides
an anisotropy orientation computed in the least squares sense in the Fourier
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domain. Some more technical details will be presented in Section 2.

Often associated with the determination of the orientation field, the estima-
tion of the amplitude of the local anisotropy is an important issue. Germain
et al. [13] proposed a scattering indicator that associates anisotropy measure-
ments with the scale at which the texture is observed. Scharcanski et al. [14]
first used an extension of Rao’s algorithm to determine the orientation and
then proposed a measure for the local anisotropy considering that the stronger
the local anisotropy, the higher the local alignment of gradient vectors.

Most of the established techniques are hence based on the analysis of the
local gradient field, which make them very sensitive to noise. Schematically
summarizing most of the above mentioned approaches, different filtering pro-
cedures are introduced to restore a meaningful gradient field, from which the
basic algorithm can be used. In a number of well-documented cases, these ap-
proaches provide a satisfactory tool, which may be tolerant to small amplitude
uncorrelated noise. However, there remain cases, such as the glass wool images
studied in a further section of the present paper, where these approaches give
poor results. The key question is to know whether it is legitimate or not to
filter the image without loosing information, or in other words, if noise and
information-carrying parts of the image can be easily separated through an
adapted filtering.

The purpose of this paper is to present and discuss a different philosophy of
the approach from which different algorithms are proposed. A class of methods
that do not require the underlying image to be smooth (at least in the sense of
differentiability so that a meaningful gradient can be computed) is considered.
The paper is organized as follows. Section 2 presents a brief description of
some classical tools alluded to above. In Section 3, the key requirement of
robustness and sensitivity is introduced, together with general considerations
on the class of non-smooth textures that may be addressed. In Section 4,
different methods are presented and applied to some test cases in Section
5. Their relative performances are compared. An objectivity measurement is
proposed to validate the robustness of the method as a function of the quality
of the analyzed image.

2 Principles of anisotropy analysis

Most of the existing methods are based on the calculation of a gradient field.
Let f(x, y) represent a gray-scale image, and ∇f(x, y) its gradient. Based on
the discrete (pixel-based) field, a “suited” approximant G — this term is kept
as vague as possible since numerous choices of the latter have been designed
to extend the robustness and accuracy of the measured anisotropy — of the
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gradient vector ∇f is computed and denoted as

G =




Gx(x, y)

Gy(x, y)



 (1)

Rao [1] proposes to compute over windows W the tensor

Γ =
∑

W

G ⊗ G (2)

where ⊗ denotes the tensorial product. The direction of the anisotropy axis is
then perpendicular to the eigenvector associated to the largest eigenvalue.

Bazen et al. [4] defined the autocovariance matrix as the diadic tensor product
of gradient vectors averaged over a zone of interest, i.e., the tensor Γ defined
in Eq. (2). The main direction of the gradient is then given by the eigenvector
of the autocovariance matrix Γ that corresponds to the largest eigenvalue. A
local strength of the directional field that corresponds to an anisotropy degree
is defined as

Str =
λ1 − λ2

λ1 + λ2

(3)

where λ1 and λ2 correspond to the largest and smallest eigenvalues of the
autocovariance matrix Γ (Eq. (2)), respectively.

Bigün et al. [10–12] were interested in strongly anisotropic images or movies,
(such as optical flow conserving images) displaying a strict invariance along
a space(-time) direction. This invariance implies that the power spectrum
is concentrated over a plane (hyperplane) normal to the invariance direction.
Thus the orientation axis is determined thanks to a minimization of a moment
of inertia with respect to an axis going to the origin, in Fourier space. The
power density |f̂(k)|2 is interpreted as a mass density, and thus the inertia
tensor T reads

Tij =
∫∫

E2

kikj|f̂(k)|2dk1dk2 (4)

The eigenvector of T associated to the smallest eigenvalue gives the anisotropy
direction.

3 Preliminary remarks concerning anisotropy analysis

Detecting the anisotropy of a domain, hereafter called Region Of Interest or
ROI, contained in the image involves an evaluation of the change of gray levels
in different directions, the direction where the variation is the least being the
principal axis of anisotropy. Since changes in gray levels are to be considered,
most methods are based on gradients. However, although it appears to be an
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unavoidable statement, the very definition of gradients on discrete maps raises
the key aspect of pixel scale sensitivity of tools based on further exploitation
of discrete gradient fields. Different aspects may even be listed at this level of
generality:

• Scale sensitivity. Anisotropy amplitude and direction are not intrinsic con-
cepts but dependent on the scale of analysis, as discussed in details in various
articles addressing either extraction of anisotropy direction or estimate of
anisotropy amplitude [13].

• Robustness of the analysis. Random noise is ubiquitous. The robustness of
the method will thus significantly depend on the explicit or implicit choice
of the privileged scale of analysis. For instance in order to reduce the pixel
scale sensitivity, some methods use a Sobel gradient operator that allows
one to smooth out part of it.

• Smoothness of the image. Not unrelated to the previous property, it is very
often considered that in contrast to noise that is essentially assumed to be
spatially uncorrelated, the reference image is (a discretization of) a smooth
function, with very low power content in high frequency modes. In other
words, the reference image is assumed to be “differentiable”, in the sense
that gradient estimates using different scale estimators will give a quasi-
identical value for a minimum range of scales from one to, say, ten pixels.
Let us note that this can be an intrinsic property of the original image to
be analyzed, or it can also result from a low-pass filtering of the image that
will restore smoothness for a regularity-lacking image. However in the latter
case, it is important to ensure that this filtering does not erase the spatial
frequency component responsible for the dominant anisotropy.

As a result of the previous considerations, most methods implicitly assume a
smoothness of the image that allows for the use of gradient estimates. The
further extraction of the anisotropy axis then consists in seeking for a direc-
tion that is orthogonal (on average) to the gradient field. Methods that are
based on a different strategy are proposed, namely, one would like to avoid the
a priori introduction of any smoothness assumption. This may be an impor-
tant improvement for images where the anisotropy is provided by very high
frequency modes (i.e., fine texture). In the following section three different
methods are presented.
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4 Proposed methods

4.1 Power-based method

To illustrate the discussion of Section 3, Fig. 1 (top) shows an example of an
anisotropic texture, which contains high frequency contributions. In fact, for
this simple example many wavelengths are responsible for the same anisotropy.
However, as shown in Fig. 1 (bottom), through cuts along the x or y direc-
tions going through the center of the image, there are very drastic changes
of gray levels at one pixel distance. Therefore in this case, gradients will de-
pend strongly on the discrete operator used to estimate them. This map has
been obtained from a self-affine function [15] that lacks differentiability in the
continuum limit.

Even if the notion of a gradient as an intrinsic quantity independent of the
operator fails, from the cuts along the x and y directions, meaningful differ-
ences appear markedly. The lower curve in Fig. 1 (bottom), f(x, yc) at fixed
y = yc, displays very rapid variations at the pixel scale, whereas the upper
one, f(xc, y) at fixed x = xc is much smoother at short wavelengths, while
still displaying longer wavelength components. This suggests the use of an
L2-norm of the finite difference along the e direction

‖Def‖ =




∑

(x,y)

(f(x + ex, y + ey) − f(x, y))2




1/2

(5)

where ex, ey are the components of the vector e. Taking the above example,
such a norm applied only to the cuts shown in Fig. 1 (bottom), gives respec-
tively 29 and 11 gray-levels for f(x, yc) and f(xc, y). It is noteworthy that the
use of this norm does not rely on any smoothness assumption for f .

This example allows one to clarify the key property one aims to use in order to
extract the anisotropy axis. In classical approaches, once noise is properly ex-
tracted, the signal is assumed to be smooth, and thus on a local scale, one may
observe patterns as shown in Fig. (2) (top), where a mean gradient is easily
detected, hence providing an estimate of the anisotropy axis as perpendicular
to the gradient direction. In contrast, non-smooth images where typical local
pattern may rather appear as schematically depicted in Fig. (2) (bottom) is
addressed. There, instead of estimating the gradient, which may not be well
defined, one may focus on the total power, or L2-norm of the subimage in
different directions.
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4.2 Polar mapping

One possibility is to extract an annulus (radius r, R0 < r < R1) centered
at any point of interest (Fig. 3(a)) and to map it onto a rectangle [R0, R1] ×
[0, 2π] using polar coordinates (Fig. 3(b)). This mapping requires a subpixel
interpolation of the gray levels that can be conveniently performed using Q1
elementary functions (1, x, y, xy) over the natural square pixel array. Unfolding
the annulus onto a rectangle, one can compute the above norm over radial
differences for each angle. A sequence g(θ) = ‖Der

f(r, θ)‖ is obtained as a
2π-periodic function. Based on the fact that this norm will vary as a function
of the relative orientation of the radial vector, and the anisotropy axis, it is
expected that g(θ) display a cos(2(θ − θ0)) component proportional to the
anisotropy (Fig. 3(c)).

To evaluate the anisotropy axis, this function is projected onto the e2iθ func-
tion, namely computing the real and imaginary parts

Sg = (1/N)
∑N

j=1 sin(2θj)g(θj)

Cg = (1/N)
∑N

j=1 cos(2θj)g(θj)
(6)

where the index j runs over the N discrete orientations of the 2π interval, and
θj = 2jπ/N . The amplitude of the anisotropy A is then given by the norm of

this Fourier component, A =
√

C2
g + S2

g , whereas the anisotropy direction is

given by the phase φ such that Cg + iSg = −Ae2iφ.

The dual to this approach can also be considered through the computation
of the L2-norm along the orthoradial (θ) direction, still averaged over radial
directions, h(θ) = ‖Deθ

f(r, θ)‖. This function is expected now to be maximum
at the orientation of the anisotropy axis. Again, h is decomposed along the
sine and cosine of 2θ

Sh = (1/N)
∑N

j=1 sin(2θj)h(θj)

Ch = (1/N)
∑N

j=1 cos(2θj)h(θj)
(7)

The amplitude of this vector also provides an evaluation of the anisotropy

amplitude, A =
√

C2
h + S2

h, whereas the anisotropy direction is given by the

phase φ such that Ch + iSh = Ae2iφ.

The time-consuming step of this algorithm is the mapping of the annulus onto
a rectangle domain. An alternative still based on the L2-Norm is proposed in
the following subsection.
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4.3 Anisotropy tensor

Let us note that the L2-norm can in fact easily be computed for any direction
in Fourier space. Indeed, the total power is preserved in the Fourier transform,
and thus

‖Def‖
2 =

∑

k

(k.e)2|f̂(k)|2 (8)

Therefore, introducing the anisotropy tensor T defined in Eq. (4) one observes
that

‖Def‖
2 = T : (e ⊗ e) (9)

where ‘:’ is the tensorial contraction with respect to two indices. Therefore,
the anisotropy axis appears as the minor eigendirection of the anisotropy
tensor T. The anisotropy amplitude can be estimated conveniently through
dev(T)/tr(T), where tr designates the trace, and dev the norm of the devia-
tor T − (1/2)tr(T)I. Let us note that up to a factor 2, this definition would
be similar to the above defined “strength”, Str, in Eq. (3) computed over a
different tensor.

The latter formulation avoids the unnecessary and time-consuming polar map-
ping, and gives quite naturally access to the anisotropy after a numerically
efficient Fast Fourier Transform (FFT) step. This scheme is here identical to
the method introduced by Bigün et al. [10–12]. Let us note however that the
routes followed to reach this result were very different.

4.4 Auto-correlation method

Yet another approach is to compute the auto-correlation function, C(x) of the
considered region within the image

C(x) =
∫∫

f(y)f(y + x)dy −
(∫∫

f(y)dy

)2

(10)

The way this function decays with respect to the distance to the origin r = 0
represents the progressive loss of similarity of the pattern as one moves along
a given direction. Therefore, it constitutes a good candidate to estimate the
anisotropy. Moreover, the auto-correlation function is easily computed through
FFT algorithms with a very moderate computational cost. To quantify the
anisotropy and find the preferential orientation of the texture, the autocorre-
lation function is truncated at a fixed level, chosen in this study to be 80%
of the maximum value C(0). This allows us to define the domain D where
C(r)/C(0) > 0.8. This domain is then characterized by its geometrical inertia
tensor

I =
∫∫

D

y ⊗ y dy (11)
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This tensor is finally diagonalized, and its principal axis (direction of the
largest eigenvalue) is the anisotropy axis. The amplitude of anisotropy can
again be estimated using the expression of the strength, Eq. (3), or dev(I)/tr(I).

4.5 Connection between the two last proposals

The two last methods, as presented, appear as quite different. However, they
are in fact connected. As the threshold C(r)/C(0) is chosen close to unity,
the autocorrelation function for a smooth image can be approximated by a
paraboloid. Therefore the domain D will tend toward an ellipse. The inertia
tensor of this ellipse I can thus simply be related to the curvature of the auto-
correlation function at the origin. Now, the latter curvature is easily computed
in Fourier space, and is identical to the T tensor introduced above. Therefore
T−1 is proportional to I when the threshold C(r)/C(0) tends to unity. One
can easily check that the expression of the anisotropy amplitude computed
over T or I is identical.

4.6 Non smooth images

Up to now, the non-smooth character of the image has not been considered.
However, based on the last comment, it is straightforward to see how to extend
the present analysis to such non smooth images. The non-smoothness can be
characterized in a quantitative (statistical) fashion by a Holder index [15], ζ,
such that

〈[f(x + y) − f(x)]2〉 ∼ |y|2ζ (12)

The ζ index characterizes the maximum order of differentiability of f . Because
it is a discrete field, it is always possible to form finite difference “gradients”,
however as mentioned above, the latter will suffer from a strong sensitivity to
the local weight used for such an estimate. In terms of the auto-correlation
function, a singularity appears at the origin C(r)/C(0) = 1−A|r|2ζ , and thus
the above referenced “parabolic” approximation gives a poor picture of the
correlation for ζ < 1. The curvature tensor, T, is also controlled by the pixel
size. Let us note that the case ζ = 1 corresponds to a differentiable or smooth
function.

The main drawback of encountering a cases where ζ < 1, is the fact that
the small scale controls the estimators, and hence the sensitivity to noise
becomes very detrimental to their quality. In order to compensate for this,
one may resort to a suited filtering that makes gradients well defined. The
natural way of carrying out this operation is to perform an integration of
order 1− ζ. In real space this implies a convolution of the original image with
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a power-law kernel. In Fourier space, it simply consists in multiplying the
Fourier transform f̂(k) by |k|ζ−1. This operation transforms any image into a
smooth one, where gradients can now be defined safely without the pixel scale
sensitivity mentioned before.

The use of such a filter for the present method is almost transparent. In terms
of the anisotropy tensor, one simply has to compute

Tζ =
∫∫

E2

k ⊗ k

|k|2−2ζ
|f̂(k)|2dk (13)

¿From the latter tensor, the subsequent treatment remains similar to the pre-
vious analysis.

For the autocorrelation method, since C(r) is computed in Fourier space, it
suffices to multiply by the corresponding power-law of k before reverting to
real space, and thresholding the corresponding autocorrelation function. By
construction, in the vicinity of the origin, the parabolic approximation is then
suited.

Finally, for the present procedure to be operational, the index ζ has to be
known. The latter is a signature of the statistical texture of the image. To
evaluate ζ, the simplest way is to study the average over the different regions
of interest, ROI, of the power spectra, and to fit it with a power-law of |k|. The
exponent of the power-law −β is related to the index ζ through β = 2(1 + ζ).
This defines operationally the procedure where ζ is no longer a parameter to
be manually adjusted, but rather set through a well-defined characterization
of the considered image. Thus no free parameter remains.

4.7 Neutral padding

One important issue concerning the use of the present tool to analyze a texture
is the size of the region of interest (ROI). The latter is bounded by two different
properties. On the one hand, an upper limit is dictated by the texture itself.
The anisotropy axis should not vary too significantly within one single ROI,
and thus its size should be smaller than the correlation length of the orientation
field. Note that this upper bound is a physical scale, and not related to the pixel
size. On the other hand, the size of the ROI cannot be shrunk to too few pixel
sizes. One reason is that the information content has to be rich enough. But
the main reason is more subtle, and results from the use of Fourier transforms.
The latter technique assumes implicitly that the analyzed field is periodic, and
hence the right and left hand sides are adjacent to each other, as well as the
bottom and top rows. In general, this artificial assumption leads to strong
discontinuities along the border that can easily be misinterpreted as fixing
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the texture dominant orientation. Let us note that this is an edge effect, and
thus its weight as compared to the bulk vanishes as the ROI size increases.
In practice, for the studied images, ROI sizes less than 32 × 32 pixels gave
unreliable results. (Note that FFT calls for an integer power of 2 as ROI sizes,
so that less than 32 × 32 pixels means less than or equal to 16 × 16 pixels).

To reduce the lower bound, we have developed an original procedure, which
allows us to deal with 16×16 pixel or even 8×8 pixel ROIs quite safely. It
consists in padding the image in such a way that a periodicity is enforced
without altering the original image in the core of the ROI. Let us assume
that one wishes to work with an N × N ROI size. For convenience in the
present discussion, we assume the origin to be placed at the image center,
−N/2 < x < N/2 and −N/2 < y < N/2. We first embed the image in a
larger M × M frame with the same center. The difference between the two is
a domain which will be used to implement the periodicity, through a suited
padding, called “neutral padding”. In order not to introduce an additional
information that may perturb the image, the high frequency components in
Fourier space are set to zero. The number of modes is chosen to be equal to
M2−N2, so that the problem is uniquely defined. As such, the solution to this
problem can easily be formulated as a simple linear system to solve. However,
being partly formulated in real space, and partly in Fourier space, makes its
solution difficult to write explicitly in a simple manner. This would thus call for
a long computation of the solution. However, an exact solution to the problem
is not needed. Thus a simple iterative scheme (fixed point formulation) is
introduced and stops after a few iterations, so that an approximate answer is
obtained.

More precisely, let us call f(x, y) the original image, and h(m)(x, y) the mth
iterate of the padded image. One starts from a first guess h(0)(x, y) = f(x, y)
for −N/2 < x < N/2 and −N/2 < y < N/2 (see Figure 4(a)). The outskirts
of the images from the core to the border is filled by any available data; either
the original image, if it is defined, or an average gray value. The image is then
filtered in Fourier space ĥ(1)(kx, ky) = ĥ(0)(kx, ky) for −N/2 < kx < N/2 and

−N/2 < ky < N/2. Outside this core region, ĥ(1)(kx, ky) = 0. Reverting to
real space, one obtains a function h(1)(x, y) that now differs from f in its core
region. These values h(2)(x, y) = f(x, y) are forced back if −N/2 < x < N/2
and −N/2 < y < N/2, otherwise h(2)(x, y) = h(1)(kx, ky). The procedure
from h(0) to h(2) defines one step to be iterated. Upon iterations, h converges
toward the fixed point that maps exactly the prescribed image in the core, and
zero Fourier amplitude in the high frequency domain. In practice 10 iterations
provide a good approximation to the exact solution, because the convergence
is exponential (see Figure 4(b)). By construction, M has to be an integer
power of 2. However N can assume any value strictly less than M . To validate
the impact of this procedure, N = M/2 is chosen.
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For the application of the methods, the neutral padding can be used equiv-
alently either on the original image or on the image first treated with the
integration filter.

5 Application to test images

5.1 Fingerprint

The above presented methods have been applied to different images. The first
image to be tested is fingerprints where ridges form the oriented texture to
analyze. The difficulty comes from the interruption of the ridges, and the
rotation of the anisotropy close to the central vertex. The image size is 240×
240 pixels, partitioned in ROIs of size 32×32 pixels. These regions are centered
on a regular square grid with half overlap between the zones.

The results shown in Fig. 5 are the two orientations of the polar L2-method,
the auto-correlation technique and the anisotropy tensor approach. The ratio
between the two radii of the annulus for the polar method is 2, and the angle
increment is 2◦. For the polar method, results from the radial and orthoradial
orientation are quite similar, and also comparable to those obtained by the
two other methods apart from the sites located close to the edge where the
signal is poor. However, at those sites, the auto-correlation and the anisotropy
tensor methods appear as more satisfactory. One significant difference yet is
the computation time that appears to be much smaller (about 100 times)
for the auto-correlation and anisotropy tensor techniques as compared to the
polar L2 method. As previously mentioned this is due to the rectangular to
polar mapping that is a consuming step of the algorithm.

5.2 A non-smooth image: wood

If the non-smooth character of the image is considered, the original anisotropy
tensor method can be compared with the same method coupled with the in-
tegration filter. The picture of a wood plank is a good candidate for a non-
smooth image. The sequence of tree rings and the knot can be a complex
application for the original method. Figure 6(top) shows the results of the al-
gorithm using the anisotropy tensor method, Fig. 6(middle) the results when
the integration filter is added to the method and Fig. 6(bottom) the results
when the neutral padding is used after the integration filter. There are slight
differences between the results although all the methods provide reliable es-
timates even if no known reference exists. For Fig. 6(top) the orientations
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globally correspond to the visually estimated angles except for the right part
of the plank core. In Fig. 6(middle) the plank core is better solved and in
Fig. 6(bottom) both the orientations of the plank core and the knot have a
better concordance with the visually estimated angles.

5.3 Concentric circles

To test the performances of the different methods an example where the true
orientation is known at each position in the image is needed. This is achieved
by studying a picture made of concentric circles that represent an absolute
reference. The image size is 512× 512 pixels, and the size of the ROIs 32× 32
pixels. These regions are centered on a regular square grid and the distance
between the centers of two consecutive ROIs is 16 pixels.

In Fig. 7, where only one quarter of the images is shown, the two orientations of
the polar L2-method, the auto-correlation technique and the anisotropy tensor
approach are presented. A first visual inspection gives a rough evaluation of the
adequation between real orientations and estimates. For the four methods, the
calculation points are the same. The size of the region of interest is shown on
the lower right corner of all images. For the two polar methods, the results are
quite similar and in good agreement with the true orientation. The directional
field determined using the anisotropy tensor also corresponds accurately to the
expected result. Concerning the auto-correlation method, the results are quite
poor. The orientation does not fit with the circles. This can be explained by the
form of the auto-correlation function for this particular image. When the auto-
correlation function is truncated at a fixed level, the resulting domain has to
be simply connected. In Fig. 8 the auto-correlation function and its projection
after truncation are represented. In that case, the projection consists in several
domains. That method is not suited to this particular image. It would be
straightforward to mend the method so that only the connected component
to the origin is extracted. This however requires a computation time that
disqualifies the method.

Figure 9 shows the differences between the determined and true orientations
as a function of the angle for the three valid methods. The 0◦ angle corre-
sponds to a horizontal orientation. When the anisotropy tensor method with
the integration filter and the neutral padding is considered, the differences
with the true orientation are quite small with an RMS error equal to 0.35◦.
It is to be noted that the integration filter and the neutral padding allows
one to gain one order of magnitude for the RMS error compared to the raw
anisotropy tensor method. The results given by the polar radial and orthora-
dial methods are the best compared to the true orientation. The RMS error is
equal to 0.053◦ for the L2 radial method and to 0.046◦ for the L2 orthoradial
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method with a computation time equal to 178 s and 184 s respectively. This
example reveals that there is no method that outperforms the other ones in
terms of the estimated orientation as for the three methods the RMS error is
smaller than 1◦, but the computation time appears to be smaller (about 3 to
4 times) for the anisotropy tensor method with the integration filter and the
neutral padding.

5.4 Crimped glasswool

The method can also be tested on a more complex application, namely de-
termination of the texture orientation of a crimped glass wool sample. For
such images, it is to be noticed that there is a very fine texture, with a very
difficult partition between noise and information carrying signals. Moreover,
if anisotropy is clearly marked, the coherence length is rather short, and the
pattern appears as circumvoluted. On such images, classical gradient based
methods appear as inappropriate. This is thus a very severe test of the two
other methods.

Figure 11(top) shows the results of the polar L2 orthoradial method and
Fig. 11(middle) the results of the anisotropy tensor method with the inte-
gration filter to treat the non-smooth character of the image and the neutral
padding, particularly suited to the detection of very fine texture. If an absolute
measure of the quality of the method cannot be assessed on real images, one
can propose a quantitative comparison between the last two methods. How-
ever, such a comparison should accommodate for the π-periodicity of the an-
gular determination. For a given ROI centered on x, the difference between the
angles determined by both methods, the polar L2 orthoradial method and the
complete anisotropy tensor method, is calculated. Figure 11(bottom) shows
the squared anisotropy amplitude of the complete anisotropy tensor method
as a function of the angle difference between the two methods. The widespread
values is a mere reflection on the difficulty to estimate these orientations. One
can however note that large angle differences occur more frequently when the
anisotropy amplitude is low (i.e., for a low anisotropy).

5.5 Objectivity measurement

For a severe test case of the method, such as the crimped glass wool image,
the objectivity of the method is tested, i.e., the property that the orientation
is independent of the magnification/resolution of the image. From a glass wool
image, whose original size is 512× 512 pixels, the resolution of the image has
been artificially degraded, i.e., this operation leads to the construction of im-
ages at different scales. Scale no. 0 corresponds to the considered image. From

14



scale no. 1 on, each transition is characterized by the definition of super-pixels.
The latter are defined recursively from one scale to the next by averaging the
gray levels of 2× 2 neighboring pixels. This procedure is carried out until the
minimum size of the sub-image is equal to 128 pixels. The size of the ROIs is
divided by 4 from one scale to the next. The size of the real image is 512×512
pixels and the ROI covers 32 × 32 pixels. The size of the scale no. 1 picture
will be 256 × 256 and the size of the ROI 16 × 16 pixels. For the last scale,
corresponding to a 128 × 128 pixels image, the size of the ROI will be 8 × 8
pixels.

The technique used for this objectivity measurement is the anisotropy tensor
method with integration filter and neutral padding. Figure 12 shows the re-
sults for the three analyzed scales. The three maps correspond to the square
cosine of the angle values of each ROI. The results on scale no. 0 are given
in Fig. 12(top), on scale no. 1 in Fig. 12(middle) and on scale no. 2 in
Fig. 12(bottom). An excellent agreement is observed on the first two maps,
in spite of the fact that 16 pixels is a very small ROI size. On scale no. 2
the coarsening leads to significant discrepancies. Let us underline that the
corresponding ROI size, of 8 pixels is extremely small and induces a severe
sensitivity to the preferential axes.

6 Conclusions

Three methods to estimate the local orientation of a texture have been de-
scribed and tested on different images whose textures are complex. Although
inspired by a significantly different route as traditional approaches, the result-
ing tools are in some respect closely related. The results given by the methods
have then been compared in terms of accuracy and computation time:

• In terms of accuracy in anisotropy orientation, on examples where the tex-
ture is known, the auto-correlation method fails to provide a reasonable
estimate. The other methods give a good result, with a slightly more ac-
curate result for the polar L2 methods. On examples where the texture is
more complex, the polar and the complete anisotropy tensor methods give
rather different results for the same size of analyzed regions, but large angle
differences occur when the anisotropy is not clearly marked. The complete
anisotropy tensor method can detect very fine textures.

• Moreover, it has been shown that the obtained result is objective, and that
it can handle poor resolution even with very small regions of interest (down
to 16 pixel size).

• In terms of computation time, performances of the autocorrelation and the
anisotropy tensor methods are much better than the polar and angular L2-
methods.
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The conclusion is that the complete anisotropy tensor method outperforms
all others for real images. Let us note that in the case of smooth images, this
method reduces to the one introduced by Bigün et al. [10,11]. The extension
to non-smooth images allows one to deal safely with commonly encountered
cases, without introducing any free parameter. Moreover the extension to neu-
tral padding allows one to deal with very fine textures using small size of ana-
lyzing window with a reliable estimate of the orientation independently of the
resolution of the tested image.
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method with the integration filter and the neutral padding (bottom).
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