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No Multiple Collisions for Mutually Repelling

Brownian Particles

Emmanuel Cépa and Dominique Lépingle

MAPMO, Université d’Orléans,

B.P.6759, 45067 Orléans Cedex 2, France

e-mail: Emmanuel.Cepa@univ-orleans.fr, dlepingl@univ-orleans.fr

Summary. Although Brownian particles with small mutual electrostatic repulsion

may collide, multiple collisions at positive time are always forbidden.

1 Introduction

A three-dimensional Brownian motion Bt = (B1

t , B2

t , B3

t ) does not hit the
axis {x1 = x2 = x3} except possibly at time 0. An easy proof is obtained
by applying Ito’s formula to Rt = [(B1

t − B2

t )2 + (B1

t − B3

t )2 + (B2

t − B3

t )2]
and remarking that up to the multiplicative constant 3 the process R is the
square of a two-dimensional Bessel process for which {0} is a polar state. This
remark will be our guiding line in the sequel.

We consider a filtered probability space (Ω,F , (Ft)t>0, P) and for N > 3
the following system of stochastic differential equations

dX i
t = dBi

t + λ
∑

16j 6=i6N

dt

X i
t − Xj

t

, i = 1, 2, . . . , N

with boundary conditions

X1

t 6 X2

t 6 · · · 6 XN
t , 0 6 t < ∞ ,

and a random, F0-measurable, initial value satisfying

X1

0
6 X2

0
6 · · · 6 XN

0
.

Here Bt = (B1

t , B2

t , . . . , BN
t ) denotes a standard N -dimensional (Ft)-Brownian

motion and λ is a positive constant. This system has been extensively studied
in [5], [7], [2], [1], [3], [6]. For comments on the relationship between this sys-
tem and the spectral analysis of Brownian matrices, and also conditioning of
Brownian particles, we refer to the introduction and the bibliography in [3].
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When λ >
1

2
, establishing strong existence and uniqueness is not difficult,

because particles never collide, as proved in [7]. The general case with arbitrary
coupling strength is investigated in [2] and it is proved in [3] that collisions

occur a.s. if and only if 0 < λ <
1

2
. As for multiple collisions (three or more

particles at the same location), it has been stated without proof in [9] and
[4] that they are impossible. The proof we give below, with a Bessel process
unexpectedly coming in, is just an exercise on Ito’s formula.

2 A key Bessel process

We consider for any t > 0

St =
N

∑

j=1

N
∑

k=1

(Xj
t − Xk

t )2 .

Theorem 1 For any λ > 0, the process S divided by the constant 2N is the

square of a Bessel process with dimension (N − 1)(λN + 1).

Proof. It is purely computational. Ito’s formula provides for any j 6= k

(Xj
t − Xk

t )2 = (Xj
0
− Xk

0
)2 + 2

∫ t

0

(Xj
s − Xk

s )d(Bj
s − Bk

s )

+2λ
∑

16l 6=j6N

∫ t

0

Xj
s − Xk

s

Xj
s − X l

s

ds + 2λ
∑

16m 6=k6N

∫ t

0

Xk
s − Xj

s

Xk
s − Xm

s

ds

+2 t .

Adding the N(N − 1) equalities we get

St = S0 + 2

N
∑

j=1

N
∑

k=1

∫ t

0

(Xj
s − Xk

s )d(Bj
s − Bk

s )

+ 4λ

N
∑

j=1

N
∑

k=1

∑

16l 6=j6N

∫ t

0

Xj
s − Xk

s

Xj
s − X l

s

ds + 2N(N − 1)t .

But
N

∑

j=1

N
∑

k=1

∑

16l 6=j6N

∫ t

0

Xj
s − Xk

s

Xj
s − X l

s

ds

=

N
∑

j=1

N
∑

k=1

∑

16l 6=j6N

[
∫ t

0

Xj
s − X l

s

Xj
s − X l

s

ds +

∫ t

0

X l
s − Xk

s

Xj
s − X l

s

ds

]

= N2(N − 1)t −
N

∑

l=1

N
∑

k=1

∑

16j 6=l6N

∫ t

0

X l
s − Xk

s

X l
s − Xj

s

ds

=
1

2
N2(N − 1)t .
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For the martingale term, we compute

N
∑

j=1

(

N
∑

k=1

(Xj
s − Xk

s ))2

=
N

∑

j=1

N
∑

k=1

N
∑

l=1

(Xj
s − Xk

s )(Xj
s − X l

s)

=

N
∑

j=1

N
∑

k=1

N
∑

l=1

(Xj
s − Xk

s )2 +

N
∑

j=1

N
∑

k=1

N
∑

l=1

(Xj
s − Xk

s )(Xk
s − X l

s)

=
N

2
Ss .

Let B′ be a linear Brownian motion independent of B. The process C
defined by :

Ct =

∫ t

0

1I{Ss>0}

N
∑

j=1

N
∑

k=1

(Xj
s − Xk

s )dBj
s

√

N
2

Ss

+

∫ t

0

1I{Ss=0}dB′
s

is a linear Brownian motion and we have

St = S0 + 2

∫ t

0

√

2NSsdCs + 2N(N − 1)(λN + 1)t ,

which completes the proof. ⊓⊔

3 Multiple collisions are not allowed

Since multiple collisions do not occur for Brownian particles without interac-
tion, we can guess they do not either in case of mutual repulsion. Here is the
proof.

Theorem 2 For any λ > 0, multiple collisions cannot occur after time 0.

Proof. i) For 3 6 r 6 N and 1 6 q 6 N − r + 1, let

I = {q, q + 1, . . . , q + r − 1}
SI

t =
∑

j∈I

∑

k∈I

(Xj
t − Xk

t )2

τI = inf{t > 0 : SI
t = 0} .

ii) We first consider the initial condition X0. From [2], Lemma 3.5, we
know that for any 1 6 i < j 6 N and any t < ∞, we have a.s.
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∫ t

0

du

Xj
u − X i

u

< ∞ .

Therefore for any u > 0 there exists 0 < v < u such that X1

v < X2

v <
· · · < XN

v a.s. In order to prove P(τI = ∞) = 1, we may thus assume
X1

0
< X2

0
< · · · < XN

0
a.s., which implies for any I that SI

0
> 0 and so

τI > 0 a.s.
iii) We know ([8], XI, section 1) that {0} is polar for the Bessel process√

St/
√

2N , which means that τI = ∞ a.s. for I = {1, 2, . . . , N}. We will
prove the same result for any I by backward induction on r = card(I). As-
sume there are no s-multiple collisions for any s > r. Then

SI
t = SI

0
+ 4

∑

j∈I

∑

k∈I

∫ t

0

(Xj
s − Xk

s )dBj
s

+ 4λ
∑

j∈I

∑

k∈I

∑

l/∈I

∫ t

0

Xj
s − Xk

s

Xj
s − X l

s

ds + 2r(r − 1)(λr + 1)t .

We set for n ∈ N
∗, τI

n = inf{t > 0 : SI
t 6

1

n
}. For any t > 0,

log SI
t∧τI

n
= log SI

0
+ 4

∑

j∈I

∑

k∈I

∫ t∧τI
n

0

Xj
s − Xk

s

SI
s

dBj
s

+ 2λ
∑

j∈I

∑

k∈I

∑

l/∈I

∫ t∧τI
n

0

(Xj
s − Xk

s )

SI
s

[

1

Xj
s − X l

s

− 1

Xk
s − X l

s

]

ds

+ 2r[(r − 1)(λr + 1) − 2]

∫ t∧τI
n

0

ds

SI
s

> −∞ .

>From the induction hypothesis we deduce that for j, k ∈ I and l /∈ I, a.s.
on {τI < ∞}, (Xj

τI − X l
τI )(X

k
τI − X l

τI ) > 0 and so

∫ t∧τI

0

(Xj
s − Xk

s )

Ss

[

1

Xj
s − X l

s

− 1

Xk
s − X l

s

]

ds

= −
∫ t∧τI

0

(Xj
s − Xk

s )2

Ss

ds

(Xj
s − X l

s)(X
k
s − X l

s)
−∞ .

The martingale (Mn,Ft∧τI
n
)n>1 defined by

Mn = 4
∑

j∈I

∑

k∈I

∫ t∧τI
n

0

Xj
s − Xk

s

SI
s

dBj
s
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has associated increasing process An = 8r

∫ t∧τI
n

0

ds

SI
s

. It follows that Mn +

1

4
[(r − 1)(λr + 1) − 2]An either tends to a finite limit or to +∞ as n tends

to +∞. Then for any t > 0, log SI
t∧τI > −∞ and so P(τI = ∞) = 1, which

completes the proof. ⊓⊔

4 Brownian particles on the circle

We now turn to the popular model of interacting Brownian particles on the
circle ([9], [3]). Consider the system of stochastic differential equations

dX i
t = dBi

t +
λ

2

∑

16j 6=i6N

cot(
X i

t − Xj
t

2
)dt , i = 1, 2, . . . , N

with the boundary conditions

X1

t 6 X2

t 6 · · · 6 XN
t 6 X1

t + 2π , 0 6 t < ∞ .

As expected we can prove there are no multiple collisions for the particles

Zj
t = ei Xj

t that live on the unit circle. The proof is more involved and will
be deduced by approximation from the previous one.

Theorem 3 Multiple collisions for the particles on the circle do not occur

after time 0 for any λ > 0.

Sketch of the proof. For the sake of simplicity, we only deal with the N -
collisions. Let

Rt =

N
∑

j=1

N
∑

k=1

sin2(
Xj

t − Xk
t

2
)

σn = inf{t > 0 : Rt 6 1

n} .

We apply Ito’s formula to log Rt and get

log Rt∧σn
= log R0 +

N
∑

j=1

∫ t∧σn

0

Hj
s dBj

s +

∫ t∧σn

0

Ls ds

for some continuous processes Hj and L. We divide each integral into an
integral over {Rs >

1

2
} and an integral over {Rs < 1

2
}. The first type integrals

do not pose any problem. When Rs < 1

2
, we replace Xj

s with

Y j
s = Xj

s or Y j
s = Xj

s − 2π

in such a way that for any j, k we have | Y j
s −Y k

s |< π/3. The processes Hj and
L have the same expressions in terms of X or Y . With this change of variables
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we may approximate sin x by x, cosx by 1 and replace the trigonometric
functions by approximations of the linear ones which we have met in the
previous sections. We obtain that

log Rt∧σn
= log R0 + Mn +

1

4
[(N − 1)(λN + 1) − 2]An +

∫ t∧σn

0

Ds ds

where Mn is a martingale with associated increasing process An and D is a.s.
a locally integrable process. Details are left to the reader as well as the case
of an arbitrary subset I like those in Section 3. ⊓⊔
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3. Cépa E., Lépingle D. Brownian particles with electrostatic repulsion on the circle:

Dyson’s model for unitary random matrices revisited. Esaim Prob. Stat, 5, 203-

224, 2001.
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