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An introspective algorithm for the integer

determinant

Jean-Guillaume Dumas Anna Urbańska

Abstract

We present an algorithm computing the determinant of an integer
matrix A. The algorithm is introspective in the sense that it uses sev-
eral distinct algorithms that run in a concurrent manner. During the
course of the algorithm partial results coming from distinct methods
can be combined. Then, depending on the current running time of
each method, the algorithm can emphasize a particular variant. With
the use of very fast modular routines for linear algebra, our imple-
mentation is an order of magnitude faster than other existing imple-
mentations. Moreover, we prove that the expected complexity of our
algorithm is only O

(

n3 log2.5(n‖A‖)
)

bit operations in the dense case

and O
(

Ωn1.5 log2(n‖A‖) + n2.5 log3(n‖A‖)
)

in the sparse case, where
‖A‖ is the largest entry in absolute value of the matrix and Ω is the
cost of matrix-vector multiplication in the case of a sparse matrix.

1 Introduction

One has many alternatives to compute the determinant of an integer matrix.
Over a field, the computation of the determinant is tied to that of matrix
multiplication via block recursive matrix factorizations [17]. On the one
hand, over the integers, a näive approach would induce a coefficient growth
that would render the algorithm not even polynomial. On the other hand,
over finite fields, one can nowadays reach the speed of numerical routines
[10].

Therefore, the classical dense approach over the integers is to reduce the
computation modulo some primes of constant size and to recover the integer
determinant from the modular computations. For this, at least two variants
are possible: Chinese remaindering and p-adic lifting.

The first variant requires either a good a priori bound on the size of
the determinant or an early termination probabilistic argument [11, §4.2].
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It thus achieves an output dependant bit complexity of O (nω log(|det(A)|))
where ω is the exponent of matrix multiplication (3 for the classical al-
gorithm, and 2.375477 for the Coppersmith-Winograd method). Of course,
with the coefficient growth, the determinant size can be as large as O(n log(n))
(Hadamard’s bound) thus giving a large worst case complexity.

Now the second variant uses system solving and p-adic lifting [4] to get
an approximation of the determinant with a O

(

n3(log(n) + log(‖A‖))2
)

bit
complexity [22]. Indeed, every integer matrix is unimodularly equivalent to
a diagonal matrix S = diag{s1, . . . , sn} with si|si+1. This means that there
exist integer matrices U, V with det U,detV = ±1, such that A = USV .
The si are called the invariant factors of A. Then, solving a system with a
random right hand side will reveal sn as the common denominator of the
solution vector entries with high probability.

The idea of [1] is thus to combine both approaches, i.e. to approximate
the determinant by system solving and recover only the remaining part
(det(A)/sn) via Chinese remaindering.

Then G. Villard remarked that at most O(
√

log(|det(A)|) invariant fac-
tors can be distinct and that we can expect that only the last O(log(n)) of
those are nontrivial [15]. This remark, together with a preconditioned p-adic
solving to compute the i-th invariant factor lead to a O∼(n2+ω/2) worst case
algorithm [15], where O∼ hides some logarithmic factors, and an algorithm
with an expected O(n3(log(n) + log(‖A‖))2 log2(n)) complexity.

Note that the actual best worst case complexity algorithm for dense ma-
trices is O∼(n2.7), which is O∼(n3.2) without fast matrix multiplication, by
[19]. Unfortunately, these last two worst case complexity algorithms, though
asymptotically better than [15], are not the fastest for the generic case or
for the actually attainable matrix sizes. The best expected complexity algo-
rithm is the Las Vegas algorithm of Storjohann [24] which uses an expected
number of O∼(nω) bit operations. In section 5 we compare the performance
of this algorithm to ours, based on the experimental results of [25].

For sparse matrices the classical approach using Chinese remaindering
gives the complexity of O(Ωn log(|det(A)|)).

In this paper, we propose a new way to extend the idea of [23, 26] to get
the last consecutive invariant factors with high probability in section 3.2.
Then we combine this with the scheme of [1]. This combination is made in
an adaptive way. This means that the algorithm will choose the adequate
variant at run-time, depending on discovered properties of its input. More
precisely, in section 4, we propose an algorithm which uses timings of its first
part to choose the best termination. This particular kind of adaptation was
introduced in [21] as introspective; here we use the more specific definition
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of [12]. Furthermore, we show how to modify the algorithm in the case of a
sparse matrix. In section 4.2 we prove that the expected complexity of our
algorithm is

O(n3(log(n) + log(‖A‖))2
√

log(n)

bit operations in the case of dense matrices, gaining a log1.5(n) factor com-
pared to [15]. For the sparse case, using a sparse linear solver of [16], we
claim the expected complexity

O
(

Ωn1.5(log(n) + log(‖A‖)) log(n) + n2.5(log(n) + log(‖A‖)) log(‖A‖) log(n)
)

,

assuming that the cost of one matrix-vector product is Ω. Our analysis
leads to the conclusion that the ideas of [1, 15] can also be applied to the
sparse case. By moving to the sparse solver of [16] inside the algorithm
of [15] we could obtain an algorithm with a worst case time complexity
of O

(

n3(log(n) + log(‖A‖))1.5 log(‖A‖) log2(n)
)

and the expected complex-
ity of O≈ (n2.5(log(n) + log(‖A‖)) log(‖A‖) log2(n)

)

, where O≈ hides some
(log(n) + log(‖A‖)) factors.

Moreover, we are able to detect the worst cases during the course of
the algorithm and thus switch to the asymptotically fastest method. In
general this last switch is not required and we show in section 5 that when
used with the very fast modular routines of [7, 10] and the LinBox library
[8], our algorithm can be an order of magnitude faster than other existing
implementations.

A preliminary version of this paper was presented in the Transgressive
Computing 2006 conference [13]. Here we give better asymptotic results
for the dense case, adapt our algorithm to the sparse case and give more
experimental evidences.

2 Base Algorithms and Procedures

In this section we present the procedures in more details and describe their
probabilistic behavior. We start by a brief description of the properties of
the Chinese Remaindering loop (CRA) with early termination (ET) (see
[5]), then proceed with the LargestInvariantFactor algorithm to compute sn

(see [1, 15, 23]). We end the section with a summary of ideas of Abbott et
al. [1], Eberly et al. and Saunders et al. [23].

2.1 Output dependant Chinese Remaindering Loop (CRA)

CRA is a procedure based on the Chinese remainder theorem. Determi-
nants are computed modulo several primes pi. Then the determinant is
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reconstructed modulo p0 · · · pn in the symmetric range via the Chinese re-
construction. The integer value of the determinant is thus computed as
soon as the product of the pi exceeds 2|det(A)|. We know that the product
is sufficiently big if it exceeds some upper bound on this value or, proba-
bilistically, if the reconstructed value remains identical for several successive
additions of modular determinants. The principle of this early termination
(ET) is thus to stop the reconstruction before reaching the upper bound, as
soon as the determinant remains the same for several steps [5].

Algorithm 2.1 is an outline of a procedure to compute the determinant
using CRA loops with early termination, correctly with probability 1 − ǫ.
We start with a lemma.

Lemma 2.1. Let H be an upper bound for the determinant (e.g. H can
be the Hadamard’s bound: |det(A)| ≤ (

√
n‖A‖)n). Suppose that primes pi

greater than l ≥ 4 are randomly sampled form a set P with |P | ≥ ⌈2 logl(H)⌉.
Then let rt be the value of the determinant modulo p0 · · · pt computed in the
symmetric range. We have :

(i) rt = det(A), if t ≥ N =

{

⌈logl(|det(A)|)⌉ if det(A) 6= 0

0 whenever det(A) = 0
;

(ii) if rt 6= det(A) then there are at most R =⌈logl(
| det(A)−rt|

p0···pt
)⌉ primes

pt+1 such that rt = det(A) mod p0 · · · ptpt+1;

(iii) if rt = rt+1 = · · · = rt+k and k ≥ ⌈ log(1/ǫ)
log(P ′)−log(logl(H))⌉, where P ′ =

|P | − t − 1, then P(rt 6= det(A)) < ǫ.

Proof. For (i), notice that −⌊p0···pt

2 ⌋ ≤ rt < ⌈p0···pt

2 ⌉. Then rt = det(A)
as soon as p0 · · · pt ≥ 2|det(A)|. With l being the lower bound for pi this
reduces to t ≥ ⌈logl |det(A)|⌉ when det(A) 6= 0.
For (ii), we observe that det(A) = rt + Kp0 . . . pt and it suffices to estimate
the number of primes greater than l dividing K.
For (iii) we notice that k primes dividing K are to be chosen with probability

less than
(R

k)
(|P |−(t+1)

k )
. The latter is bounded by ( R

P ′ )
k since R ≤ ⌈logl(

2H
2 )⌉ ≤

|P ′|. Solving for k for the latter to be less than ǫ gives the result.

To compute the modular determinant in algorithm 2.1 we use the LU
factorization procedure in the dense case (complexity O(nω)).

In the sparse case, sparse elimination can be used in practice e.g. for
extremely sparse matrices [9]. In general, black box method are prefered.
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Algorithm 2.1 Early Terminated CRA

Require: An integer matrix A.
Require: 0 < ǫ < 1.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least

1 − ǫ.

1: H = (
√

n‖A‖)n; P ′ = |P | − ⌈logl(H)⌉; i = 0; // Hadamard’s bound
2: repeat

3: Get a prime pi from the set P ;
4: P = P\{pi}
5: Compute det(A) mod pi;
6: Reconstruct ri, the determinant modulo p0 · · · pi; // by Chinese

remaindering
7: k = max{t : ri−t = · · · = ri}; R = ⌈logl

H+|ri|
p0p1...pi−k

⌉
8: Increment i;
9: until

R(R−1)...(R−k+1)
(|P |−n)(|P |−n−1)...(|P |−n−k+1) < ǫ or

∏

pi > 2H + 1

The idea is to precondition the matrix so that its characteristic polynomial
equals its minimal polynomial [14, 2]; and then to compute the minimal
polynomial via Wiedemann’s algorithm [27]. The complexity of the sparse
modular determinant computation is then O(Ωn) [9, Table 4].

Early termination is particularly useful in the case when the computed
determinant is much smaller than the a priori bound. The running time of
this procedure is output dependant.

2.2 Largest Invariant Factor

A method to compute sn for integer matrices was first stated by V. Pan
[22] and later in the form of the LargestInvariantFactor procedure (LIF) in
[1, 15, 5, 23]. The idea is to obtain a divisor of sn by computing a rational
solution of the linear systems Ax = b. If b is chosen at random from a
sufficiently large set, then the computed divisor can be as close as possible
to sn with high probability. Indeed, with A = USV , we can equivalently
solve SV x = U−1b for y = V x, and then solve for x. As U and V are
unimodular, the least common multiple of the denominators of x and y,
d(x) and d(y) satisfies d(x) = d(y)|sn(A).

Thus, solving Ax = b enables us to get sn(A) with high probability. The
cost of solving using Dixon p-adic lifting [4] is O

(

n3(log(n) + log(‖A‖))2 + n log2(‖b‖)
)
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as stated by [20]. For the sparse matrix case a sparse linear solver of [16]
can be used and by similar reasoning as in [20], the cost of one solving is
that of O(n1.5(log(n)+log(‖A‖))+n0.5 log(‖b‖)) matrix-vector products and
O(n2(log(n)+ log(‖A‖))(n0.5 +log(‖A‖))+n2 log(‖b‖)(log(n)+ log(‖A‖))+
n log2(‖b‖) additional arithmetic operations.

The algorithm takes as input parameters β and r which are used to
control the probability of correctness. r is the number of successive solvings
and β is the size of the set from which the values of a random vector b are
chosen, i.e. a bound for ‖b‖. With each system solving, the output s̃n of the
algorithm is updated as the lcm of the current solution denominator d(x)
and the result obtained so far.

The following theorem characterizes the probabilistic behavior of the LIF
procedure.

Theorem 2.2. Let A be a n× n matrix, H its Hadamard’s bound, r and β
be defined as above. Then the output s̃n of Algorithm LargestInvariantFactor
of [1] is characterized by the following properties.

i) Let r = 1, p be a prime, l ≥ 1, then P(pl|sn(A)
s̃n

) ≤ 1
β ⌈

β
pl ⌉;

ii) if r = 2, β = ⌈(n + 1)H⌉ then E
(

log(sn(A)
s̃n

)
)

= O(1);

iii) if r = 2, β = 6 + ⌈2 log(log(H))⌉ then sn(A) = s̃n with probability at
least 1/3;

iv) if r = ⌈2 log(log(H))⌉, β ≥ 2 then E
(

log(sn(A)
s̃n

)
)

= O(1);

v) if r = ⌈log(log(H)) + log(1
ǫ )⌉, 2 | β and β ≥ 2 then sn(A) = s̃n with

probability at least 1 − ǫ;

Proof. The proofs of (i), (ii) and (iv) are in [1]. The proof of (iii) is in [15].
To prove (v) we slightly modify the proof of (iv) in the following manner.
From (i) we notice that for every prime p dividing sn(A), the probability
that it divides the missed part of sn(A) satisfies:

P

(

p | sn(A)

s̃n

)

≤
(

1

2

)r

.

As there are at most log(H) such primes, we get

P(sn(A) = s̃n) ≥ 1−log(H)(1/2)r ≥ 1−log(H)2− log(log(H))−log( 1
ǫ
) = 1−log(H)

1

log(H)
ǫ.
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Remark 2.3. Theorem 2.2 enables us to produce a LIF procedure, which
gives an output s̃(n) close to sn(A) with a time complexity O(n3(log(n) +
log(‖A‖))2) in the case of dense matrices (see (ii), notice that β is large).
Then for the sparse case we can produce an algorithm with O(n2(log(n) +
log(‖A‖))(n0.5 + log(‖A‖)) log(log(H))) complexity (see (iv)). In this case
log(log(H)) repetitions are performed and log(β) can be at most O(n0.5) in
order not to interfere in the complexity.

2.3 Abbott-Bronstein-Mulders, Saunders-Wan and Eberly-
Giesbrecht-Villard ideas

Now, the idea of [1] is to combine both the Chinese remainder and the
LIF approach. Indeed, one can first compute sn and then reconstruct only
the remaining factors of the determinant by reconstructing det(A)/sn. The
expected complexity of this algorithm is O

(

n3 log(| det(A)/sn(A) |)
)

which
is unfortunately O∼(n4) in the worst case.

Then Saunders and Wan [23, 26] proposed a way to compute not only
sn but also sn−1 (which they call a bonus) in order to reduce the size of the
remaining factors d/(snsn−1). The complexity doesn’t change.

Also, Eberly, Giesbrecht and Villard have shown that for the dense
case the expected number of non trivial invariant factors is small, namely
less than ⌈3logλ(n)⌉ + 29 if the entries of the matrix are chosen in a set
of λ consecutive integers [15]. As they also give a way to compute any
si(A), this leads to an algorithm with expected complexity O(n3(log(n) +
log(‖A‖))2 log(n) logλ(n)).

First, our analysis yields that the expected number of invariant factors
for a random sparse matrix can be bounded by O(log(n)) as well, while for
a dense matrix the bound can be refined as O(log0.5(n)).

Second, our idea is to extend the method of Saunders and Wan to get
the last invariant factors of A slightly faster than by [15]. Thanks to the
adaptive approach it is possible to remove the log(n) factor form expected
complexity of [15]. Moreover, we will show in the following sections that
it enables us to build an adaptive algorithm solving a minimal number of
systems.

Note that the analysis yields that it should be possible to change a log(n)
factor in the expected complexity of [15] to a log log(n) employing the bound
for the expected number of invariant factors twice. Indeed their extra log(n)
factor comes from the algorithm where n non trivial invariant factors are to
be computed. But in the expected case, as they have only logα(n) of those,
this extra factor could be consequently reduced.
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3 Computing the product of O(log(n)) last invari-
ant factors

3.1 On the number of invariant factors

The result in [15] says that a n×n matrix with entries chosen randomly and
uniformly from a set of size λ has the expected number of invariant factors
bounded by ⌈3 logλ(n)⌉ + 29. In search for some sharpening of this result
we prove the following theorems.

Theorem 3.1. Let A be a dense matrix with entries chosen randomly and
uniformly from a set of size λ ≥ 3. Let p be a prime. The expected number
of non-trivial invariant factors of A divisible by p is at most 3.

Theorem 3.2. Let A be a dense matrix with entries chosen randomly and
uniformly from a set of size λ ≥ 3. The expected number of non trivial

invariant factors of A is at most
⌈

√

2 logλ(n)
⌉

+ 2.

Theorem 3.3. Let A be a non-singular sparse matrix with Ω non-zero en-
tries which are chosen randomly and uniformly from a set of size λ ≥ 3.
Then the expected number of nontrivial invariant factors of A is at most
⌈logλ(n) + logλ(logλ(n) + 2)⌉ + 7.

In order to prove the theorems stated above, we need first the following
lemma.

Lemma 3.4. For λ ≥ 12, the sum over the primes p:
∑

8<p<λ

(

1
λ⌈λ

p ⌉
)j

can

be bounded by (1
2 )j .

Proof. We will consider primes from the interval λ
2k+1 ≤ p < λ

2k , k =

0, 1, . . . max{⌈log(λ)⌉ − 3, 2} separately. For the kth interval, ⌈λ
p ⌉ equals

2k+1. In each interval there are at most ⌈ λ
2k+2 ⌉ odd numbers and at most

λ
2k+2 primes: if in the interval there are more than 3 odd numbers, at least
one of them is divisible by 3 and is therefore composite. For this to happen
it is enough that λ ≥ 12. We may therefore calculate:

∑

8<p<λ

(

1

λ
⌈λ

p
⌉
)j

≤
⌈log(λ)⌉−3
∑

k=0

λ

2k+2

(

2k+1

λ

)j

≤ 1

2λj−1

(

2⌈log(λ)⌉−2
)j−1

≤
(

1

2

)j

.
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Remark 3.5. For λ = 2l, the sum over k can be made from 0 up to l − 2,
instead of ⌈log(λ)⌉ − 3 and we can therefore include more primes in the sum:
∑

4<p<2l

(

1
2l ⌈2l

p ⌉
)j

≤
(

1
2

)j
.

Proof. (Theorem 3.1) The main idea of the proof is similar to that of [15].
Let A be a random matrix with entries chosen uniformly and randomly

from the set {0, 1, 2 . . . λ−1}. Let MDepi(p, k) denote the event that the first
i columns of A mod p have rank at most i−k over Zp. Surely, MDepk(p, k)
means that the first k columns of A are 0 mod p, and thus the probability is
(

1
λ⌈λ

p ⌉
)kn

. Now, 1
λ⌈λ

p ⌉ denotes the probability that an entry of the matrix

is determined modulo p and is equal to λ−1 if p ≥ λ or less than 2
p+1 in the

case p < λ. We are now going to find P(MDepi(p, k) | ¬MDepi−1(p, k))
for i > k. Since the event MDepi−1(p, k) did not occur, Ai−1 has p-rank
at least (i − k) and at most (i − 1). For MDepi,k to occur it must be
(i − k). Thus there exists a set of i − k rows Li−k which is full rank mod
p. Consider any row vj that is left. As vj is a combination of Li−k, then
say its first i− k entries can be chosen randomly and its remaining k entries
are determined mod p. More precisely, for λ ≥ p the probability that vj is
in the span of Li−k is at most λ−k. For p < λ this probability is ( 1

λ⌈λ
p ⌉)k

which is always less than ( 2
p+1)k. As there are n − i + k rows outside Li−k,

the probability that none of them is linearly independent of Li−k over Zp is
at most ( 2

p+1)k(n−i+k) for p < λ and ( 1
λ)k(n−i+k) for p ≥ λ.

Now, since P(MDepi(p, k)∧¬MDepi−1(p, k)) ≤ P(MDepi(p, k) | ¬MDepi−1(p, k)),
we can bound P(MDepi(p, k)) ≤ P(MDepk(p, k))+P(

⋃i
j=k+1(MDepj(p, k)∧

¬MDepj−1(p, k))) by

P(MDepi(p, k)) ≤
(

2

p + 1

)k(n−i+k) (p + 1)k

(p + 1)k − 2k
for p < λ

and

P(MDepi(p, k)) ≤
(

1

λ

)k(n−i+k) λk

λk − 1
for p ≥ λ.

Now, suppose that the number of invariant factors of A divisible by p is
at least j (event Ij(p)). This implies that the first columns of A have rank
at most n− j mod p, or that MDepn−j+k(p, k) has occurred for all k = 0..j.
This proves in particular that P (Ij(p)) ≤ MDepn(p, j).

Thus, we have that the expected number of invariant factor divisible by
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p < λ satisfies:

n
∑

j=0

j (P (Ij(p)) − P (Ij+1(p))) =
n
∑

j=1

P (Ij(p)) ≤
n
∑

j=1

MDepn(p, j) ≤
n
∑

j=1

(

2

p + 1

)jj (p + 1)j

(p + 1)j − 2j

The latter is decreasing in p and is therefore less than its value at p = 2,
which is lower than 2.4. For p ≥ λ the result is even sharper:

n
∑

j=0

j (P (Ij(p)) − P (Ij+1(p))) ≤
n
∑

j=0

(

1

λ

)jj λj

λj − 1
≤

n
∑

j=1

(

1

3

)jj 3

2

the latter being lower than 0.52.

Proof. (Theorem 3.2) In addition to MDepi(p, k) introduced earlier, let
Depi denote an event that the first i columns of A are linearly indepen-
dent and MDepi(k), an event that either of MDepi(p, k) occurred. Recall
from [15, §6] that P(Dep1 ∨ MDep1(k)) ≤ λ−n, and P(Depi | ¬(Depi−1 ∨
MDepi−1(k))) ≤ λ−n+i−1.

To bound P(MDepi(k) | ¬(Depi−1(k) ∨ MDepi−1(k))) we sum the re-
sults for all primes.

First, we bound this probability by

P (MDepi(p, k) | ¬(Depp,i−1(k) ∨ MDepi−1(p, k))) ≤ P(MDepi(p, k) | ¬MDepi−1(p, k))

and the latter has been shown to be ( 1
λ⌈λ

p ⌉)k(n−i+k) in the proof of theorem
3.1. Thus we have

∑

p<λ

P (MDepi(p, k) | ¬(Depp,i−1(k) ∨ MDepi−1(p, k))) ≤
∑

p<λ

(
1

λ
⌈λ

p
⌉)k(n−i+k)

and then we treat separately the smallest primes to get

∑

p<λ

(
1

λ
⌈λ

p
⌉)k(n−i+k) ≤

(

2

3

)k(n−i+k)

+

(

2

4

)k(n−i+k)

+

(

2

6

)k(n−i+k)

+

(

2

8

)k(n−i+k)

+
∑

8<p<λ

(
1

λ
⌈λ

p
⌉)k

≤
(

2

3

)k(n−i+k)

+

(

1

2

)k(n−i+k)

+

(

1

3

)k(n−i+k)

+

(

1

4

)k(n−i+k)

+

(

1

2

)k(n−i+k)

thanks to lemma 3.4.
For primes p ≥ λ we should estimate the number of primes dividing the

(i − 1)th minor. By the Hadamard’s bound (notice that Depi−1 does not

hold), the minors are bounded in absolute value by ((i−1)λ2)
i−1
2 . Therefore
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the number of primes p ≥ λ dividing the minor is at most i−1
2 (logλ(i−1)+2)).

Summarizing,

P((MDepi(k) ∧ Depi) | ¬(Depi−1 ∨ MDepi−1(k))) ≤
(

1

λ

)n−i+1

+

(

2

3

)k(n−i+k)

+

(

1

2

)k(n−i+k)

+

(

1

3

)k(n−i+k)

+

(

1

4

)k(n−i+k)

+

(

1

2

)k(n−i+k)

+
i − 1

2
(logλ(i − 1) + 2)

(

1

λ

)k(n−i+k)

for 2 ≤ i ≤ k.
Now, as in the previous proof, we use the union of the cases to get rid

of the negative terms and the facts that (p+1)k

(p+1)k−2k ≤ p+1
p−1 and λk

λk−1
≤ λ

λ−1
to get:

P(MDepi(k)) ≤ λ−n +
λ

λ − 1

(

1

λ

)n−i+1

+ 3

(

2

3

)k(n−i+k)

+ 2

(

1

2

)k(n−i+k)

+
3

2

(

1

3

)k(n−i+k)

+
4

3

(

1

4

)k(n−i+k)

+ 2

(

1

2

)k(n−i+k)

+
i − 1

2
(logλ(i − 1) + 2)

(

1

λ

)k(n−i+k) λ

λ − 1
.

(1)

We can now compute the expected number of non trivial invariant fac-
tors.

Once again, the probability that the number of non trivial invariant
factors is at least j is lower than P(MDepn−j+k(k)) for j > k.

Now, let us fix h =
⌈

√

2 logλ(n)
⌉

. Then, we have that h2 ≥ 2 logλ(n) ≥
logλ(n)+logλ(logλ(n)+2) since λ, n ≥ 3. This gives also λh2

> n(logλ(n)+2)
and

1 > n (logλ(n) + 2)

(

1

λ

)h2

λ2

2λh(λ − 1)2
.

Thus, the expected number of non trivial invariant factors is bounded
by:

h
∑

j=1

1 +

n
∑

j=h+1

P(MDepn−j+h(h))

11



which in turns is bounded by

h +
n
∑

j=h+1

(

λ−n +
λ

λ − 1

(

1

λ

)j−h+1

+ 3

(

2

3

)jh

+ 2

(

1

2

)jh

+
3

2

(

1

3

)jh

+
4

3

(

1

4

)jh

+ 2

(

1

2

)jh

+
n − j + h − 1

2
(logλ(n − j + h − 1) + 2)

(

1

λ

)jh λ

λ − 1

)

≤ h + f(n, λ) +
n

2
(logλ(n) + 2)

λ

λ − 1

n
∑

j=h+1

(

1

λ

)jh

≤
⌈

√

2 logλ(n)
⌉

+ f(n, λ) + 1.

where f(n, λ) ≤ n−h
λn + 1

(λ−1)2
+ 3

(

2
3

)h(h+1) 3h

3h−2h + 4

2h2 (2h−1)
+ 3

2·3h2 (3h−1)
+

4

3·4h2 (4h−1)
< 0.85 as soon as n ≥ λ ≥ 3.

Proof. (Theorem 3.3) We assume that the matrix A is a sparse n×n matrix,
with Ω non-zero entries. The non-zero entries are chosen randomly and
independently from a set {0, 1, . . . λ − 1}. Furthermore, we assume, that A
is nonsingular, i.e. in particular, in each row and column there is at least
one non-zero entry, and also P(Depi) = 0 for all i.

Let U be a n×n matrix with all entries non-zero, det(U) = 1. Then the
Smith form of B = AU is the same as the Smith form of A. The proof of
the dense case in theorem 3.2 carries over the sparse case by choosing h = 1
on matrix B.

First, MDepi(p, 1) means that all entries of the first column of B are 0
mod p. This translated to the entries of A gives a set of n linear equations
with a total of Ω variables. The n sets of variables are distinct. This means
that it suffices to take all but one entry randomly, and then fix the last one.
This leads to the probability

P(MDepi(p, 1)) ≤
(

1

λ

⌈

λ

p

⌉)n

.

While considering the case of P(MDepi(p, 1) | ¬MDepi−1(p, 1)) we first
notice, that we can find a (i − 1) × (i − 1) non-zero minor, say the first
(i− 1) rows of B. Then the first (i− 1) values in the remaining i-th column
determine the constants such that the last column is a linear combination
of the first (i − 1) columns. This again leads to the condition in a form of
(n− i+1) linear equations. By the same reasoning as above, the probability
is

P(MDepi(p, 1) | ¬MDepi−1(p, 1)) ≤
(

1

λ

⌈

λ

p

⌉)n−i+1

12



Now, we separate the case where j ≥ ⌈logλ(n) + logλ(logλ(n) + 2)⌉ = g and
the lower values of j to get

g
∑

j=1

1 +
n
∑

j=g+1

(

3

(

2

3

)j

+ 2

(

1

2

)j

+
3

2

(

1

3

)j

+
4

3

(

1

4

)j

+ 2

(

1

2

)j

+
n − j + 1

2
(logλ(n − j + 1) + 2))

≤ g + f(n, λ) +
n

2

λ2

(λ − 1)2
1

λg+1
≤ ⌈logλ(n) + logλ(logλ(n) + 2)⌉ + f(n, λ) +

1

8
.

where f(n, λ) ≤ 2g

3g−2 + 1
2g−3 + 1

4·3g−2 + 1
9·4g−2 ≤ 6.49

3.2 Extended Bonus Ideas

In his thesis [26], Z. Wan introduces the idea of computing the penultimate
invariant factor (i.e. sn−1) of A while computing sn using two system solv-
ings. The additional cost is comparatively small, therefore sn−1 is referred
to as a bonus. Here, we extend this idea to the computation of the (n−k)th
factor with (k + 1) solvings in the following manner:

1. The (matrix) solution of AX = B, where B is a n × k multiple right
hand side can be written as s̃−1

n N where s̃n approximates sn(A) and
the minors of N give some divisors of the last k invariant factors of A:
see lemma 3.6.

2. We are actually only interested in getting the product of these invariant
factors. This information is in the gcd of all k × k minors of N . We
show that by taking the gcd of only a small subset of these minors,
only very few extra factors are introduced: see lemma 3.9.

3. Then we show that repeating this solving twice with two distinct right-
hand sides B1 and B2 is in general sufficient to remove those extra
factors and to get a very fine approximation of the actual product of
the last k invariants: see lemma 3.10.

3.2.1 The last k invariant factors

Let X be a (matrix) rational solution of the equation AX = B, where B =
[bi], i = 1, . . . , k+1 is a random n×(k+1) matrix. Then the coordinates of X
have a common denominator s̃n and we let N = [ni], i = 1, . . . , k + 1 denote
the matrix of numerators of X. Thus, X = s̃−1

n N and gcd(Nij , s̃n) = 1.

13



Following Wan, we notice that sn(A)A−1 is an integer matrix, the Smith
form of which is equal to

diag

(

sn(A)

sn(A)
,

sn(A)

sn−1(A)
, . . . ,

sn(A)

s1(A)

)

.

Therefore, we may compute sn−k(A) when knowing sk+1

(

sn(A)A−1
)

. The
trick is that the computation of A−1 is not required: we can perturb A−1

by right multiplying it by B. Then, sk+1(sn(A)A−1B) is a multiple of
sk+1(sn(A)A−1). Instead of sn(A)A−1B we would prefer to use s̃nA−1B
which is already computed and equal to N . The relation between A and N
is as follows.

Lemma 3.6. Let s̃−1
n N , gcd(s̃n, N) = 1 be a solution to the equation AX =

B, where B is n×k and the entries of B are uniformly and randomly chosen
from the set {0, 1, . . . β − 1}. Then

s̃n

gcd(si+1(N), s̃n)
|sn−i(A), i = 1, 2 . . . , k.

Proof. The Smith forms of sn(A)A−1B and N are connected by the relation
sn(A)

s̃n
si(N) = si(sn(A)A−1B), i = 1, . . . , (k+1). Therefore sn(A)

sk+1(sn(A)A−1B) =
s̃n

sk+1(N) , and thus s̃n

gcd(sk+1(N),s̃n) is an (integer) factor of sn−k(A). More-

over, the under-approximation is solely due to the choice of B and the over-
estimation it can introduce in sn(A)A−1B compared to sn(A)A−1.

Remark 3.7. Taking gcd(sk+1(N), s̃n) is necessary as s̃n

sk+1(N) may be a ra-

tional number. Moreover, this allows us to consider p|s̃n in all probability
consideration throughout the paper.

3.2.2 Complexity reduction: using only a small subset of minors

and reintroducing a few undesired factors

In fact we are interested in computing the product πk = snsn−1 · · · sn−k+1(A)
of the invariant factors of A. Then, following the idea of Abbott [1], we
would like to reduce the computation of the determinant to the computa-
tion of det(A)

π̃k
, where π̃k is a factor of πk that we have obtained. We can

compute π̃k as s̃k
n/ gcd(s1s2 · · · sk(N), s̃k

n). The product of the first k invari-
ant factors of a matrix is equal to the gcd of all its k × k minors. In our
approach it suffices to compute ⌊n/k⌋ of those. In the following lemmas we
show that by repeating the choice of matrix B twice, we will omit only a
finite number of bits in πk. We start with a technical lemma.

14



Lemma 3.8. For n × n matrix M with entries chosen randomly and uni-
formly from the set {0, 1 . . . S − 1}, the probability that pl < S divides the
determinant det(A) is at most 3

pl .

Proof. To check whether ordp(det(A)) ≥ l we will consider a process of
diagonalization for M mod pl as described in Algorithm LRE of [5]. It
consists of diagonalization and reduction steps. At the i-th diagonalization
step, if an invertible entry is found, it is placed in the (i, i) pivot position and
the ith row and column are zeroed. If no invertible entry is found, we proceed
with a reduction step i.e. we consider the remaining (n − i + 1, n − i + 1)
submatrix divided by p. The problem now reduces to determining whether
ordp of an (n − i + 1, n − i + 1) matrix is greater than l − n + i − 1.

In the probabilistic consideration we need to determine the distribution
of entries mod pi after each reduction step. First, for M with entries chosen
uniformly and randomly from the set {0, 1 . . . S − 1}, the probability that
one entry is determined mod pi, i ≤ l, is less than βi(0) = 1

S ⌈ S
pi ⌉, from [26,

Lemma 5.9].
Now we look at the (n−m)× (n−m) remaining submatrix M (m) after

k reductions and m diagonalization steps. We need only to consider that
i ≤ l − 2k since each reduction is performed on a matrix of order at least 2
and reduces the determinant by at least p2. Moreover, we observe that, apart
from the reductions, the entries of this new matrix can also be considered
as uniformly distributed. To see this one can think e.g. of a22 − a21

a11
a12

with a11 and a12 fixed by the last triangularization step. Then one has one
degree of freedom, say for a21 and then a22 is fixed. Then, the probability
that the free entry is determined mod pi is at most βi(k) = 1

Nk
⌈Nk

pi ⌉, where

Nk =
⌈

⌈ ⌈ S
p ⌉

...

⌉

p

⌉

(the division is repeated k times). Moreover, since k is less

than ⌈l/2⌉ − 1 and l ≤ logp(S), we have Nk ≥ S
pk ≥

√
S and since pi < Nk

we have

βi(k) ≤ Nk + pi − 1

pNk
≤ 2pi

pi(pi + 1)
=

2

pi + 1

throughout the diagonalization process. We therefore now set βi = 2
pi+1

and

use it as a bound for βi(k) in our calculations.
The proof is inductive. First, for l = 1, [26, Thm 5.13] gives

P (p ∤ det(M)) ≥
n
∏

i=1

(1 − βi
1).
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This transforms to

P (p | det(M)) ≤
n
∑

i=1

βi
1 ≤ β1

1 − β1
. (2)

Thus, the probability can be bounded by min(1, 2
p−1) and therefore by 3

p .
Then for n = 2, l = 2:

P (p2 | det(M)) ≤ (1−P (p | aij∀i,j))β2+P (p | aij∀i,j) ≤ β2+β4
1 ≤ 2

p2 + 1
+

(

2

p + 1

)4

≤ 3

p2
.

Now we suppose inductively that P (pi | det(M)) ≤ 3
pi for all i < l. Then

for n = 2, 1 < l < n the induction gives that the probability is

P (pl | det(M)) ≤ (1 − P (p | aij∀i,j))βl + P (p | aij∀i,j)P (pl−2 | det(M/p))

≤ βl(k) + β1(k)4P (pl−2 | det(M/p)) ≤ 2

pl + 1
+

(

2

p + 1

)4 3

pl−2
.

Notice that we sum over all possible diagonalization/reduction steps combi-
nations. The latter is less than 3

pl when

β1(k)43p2 ≤ 1. (3)

With β1(k) ≤ 2
p+1 this means that 48

(1+1/p)2(p+1)2
= 48

(p+2+1/p)2
≤ 1 which is

fulfilled for p > 3. For primes p = 2, 3 we have to use a sharper bound for

βl(k). Since pl < Nk and l > 2 we have β1(k) ≤ pl+1+p−1
(pl+1)p

≤ pl−1+1
pl+1

< p+1
p2+1

.

This allows us to prove the inequality (3) for p = 3 since (2
5 )427 < 0.7. For

p = 2 and l > 3 also ( 9
17 )412 < 0.95 . For the remaining case p = 2, l = 3 we

can bound P (p | det(M/p)) by 1 instead of 3
2 and then one can prove that

β3(k) + β1(k)4 ≤ 2
9 + (5

9)4 < 0.32 ≤ 3
8 .

Now we will consider n > 2. Again we can sum over all possible diag-
onalization/reduction steps combinations and the resulting bound for the
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probability is

P (pl | det(M)) ≤
n
∑

i=l

(1 − P (p | aij∀i,j≤n)) . . . (1 − P (p | a
(n−i+1)
ij ∀i,j≤i+1))β1(k)i

2

+
l−1
∑

i=2

(1 − P (p | aij∀i,j≤n)) . . . (1 − P (p | a
(n−i+1)
ij ∀i,j≤i+1))β1(k)i

2
P (pl−i | det(M (n−i

+ (1 − P (p | aij∀i,j≤n)) . . . (1 − P (p | a
(n−1)
ij ∀i,j≤2))βl(k)

≤
n
∑

i=l

β1(k)i
2
+

l−1
∑

i=2

β1(k)i
2
P (pl−i | det(M (i)/p)) + βl(k)

(4)

for l ≤ n and similarly for l > n

P (pl | det(M)) ≤
n
∑

i=2

(1 − P (p | aij∀i,j≤n)) . . . (1 − P (p | an−i+1
ij ∀i,j≤i+1))β1(k)i

2
P (pl−i | det(M (n−i)/p

+ (1 − P (p | an−i+1
ij ∀i,j≤n)) . . . (1 − P (p | an−1

ij ∀i,j≤2))βl(k)

≤
n
∑

i=2

β1(k)i
2
P (pl−i | det(M (i)/p)) + βl(k). (5)

Again, we can use the induction to get the bound P
(

pl−i | det(M (n−i)/p)
)

≤
3

pl−i . Then, we can then bound both sums by

P (pl | det(M)) ≤
∞
∑

i=2

β1(k)i
2 3

pl−i
+ βl(k) ≤ 3β1(k)4

pl−2

1

(1 − β1(k)5p)
+ βl(k).

(6)
To prove the inequality P (pl | det(M)) ≤ 3

pl , again, we have to consider

several cases. For p > 3 we use the bound β1 and βl for β1(k) and βl(k)
respectively. Then we have

3 · 24p2(p + 1)

pl((p + 1)5 − p25)
+

2

pl + 1
<

2

pl
+

1

pl

48p2(p + 1)

(p + 1)5 − (p + 1)24
<

2

pl
+

1

pl

48p2

(p + 1)4 − 24

<
2

pl
+

1

pl

48p2

25p2 + 4 · 5p2 + 6 · p2 + 4 · 5 + 1 − 16
<

2

pl
+

1

pl

48p2

51p2
<

3

pl
.

For p = 3 it can be explicitly checked that P (pl | det(M)) < 3
pl using the

bound p+1
p2+1

for β1(k) (notice, that l > 1). In this case we get 1
3l

3( 2
5
)432

(1−(3 2
5
)5)

+

2
3l < 1

3l 2.75.
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For p = 2 we have to consider 22, 23, 24 and 2l for l > 4 separately. Let
us rewrite (4) and (5) in this cases.

• l = 2:

P (22 | det(M)) ≤
n
∑

i=2

β1(k)i
2
+ β2(k) ≤ β1(k)4

1

1 − β1(k)5
+ β2(k).

As β1(k) ≤ 2+1
4+1 we have 0.65 < 0.75.

• l = 3:

P (23 | det(M)) ≤
n
∑

i=3

β1(k)i
2
+ β1(k)4P (2 | det(M (n−2)/p)) + β3(k)

≤ β1(k)9
1

1 − β1(k)7
+ β1(k)4P (2 | det(M (n−2)/p)) + β3(k).

As β1(k) ≤ 4+1
8+1 we have 0.33 < 0.375.

• l = 4:

P (24 | det(M)) ≤
n
∑

i=4

β1(k)i
2
+ β1(k)9P (2 | det(M (n−3)/p)) + β1(k)4P (22 | det(M (n−2)/p)) +

≤ β1(k)16
1

1 − β1(k)9
β1(k)9P (2 | det(M (n−3)/p)) + β1(k)4P (22 | det(M (n−2)/p)) + β4(k).

As β1(k) ≤ 8+1
16+1 we have 0.18 < 0.1875.

• l > 4:We use inequality (6) with β1(k) bounded by p4+1
p5+1

. Therefore we

get P (2l | det(M)) < 1
2l

(

3(24+1)422

(25+1)4((25+1)5)−2(24+1)
+ 2
)

< 2.92 1
2l < 3

2l .

We now discuss the impact of choosing only a few minors in the com-
putation of s1 . . . sk+1(N). Here, ordp(x) denotes the highest power of p
dividing x.

Lemma 3.9. Let B,N and s̃n be as defined in lemma 3.6. Suppose that B is
a random matrix with entries chosen uniformly from the set {0, 1, . . . S − 1}
and k = O(log(n)). Let N = [N1| . . . Nµ|N ′]T where Ni are (k + 1)× (k + 1)
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matrices, µ = max{⌊n/(k+1)⌋; 2}. Then the size of the over-approximation
due to the partial gcd computations is bounded as follows:

∞
∑

l=1

∑

pl|s̃n

P

(

ordp

(

gcdi=1...µ(det(Ni))

gcd(minors(N))

)

= l

)

l log(p) ∈ O(1)+log2(H)

(

3√
S

)µ

,

(7)
where H is a bound for s̃n.

Proof. First, we notice, that by the formula N = s̃nA−1B the distribution
of the entries of N is linked to that of a random matrix B. Therefore, we
may consider that an entry of N is determined modulo pl with the same

probability as an entry of B i.e. 1
S

⌈

S
pl

⌉

and that lemma 3.8 holds for the

minors of N .
Now, in the sum (7) we notice that

∞
∑

l=1

∑

pl|s̃n

P
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)

l log(p) =
∞
∑

l=1

∑

pl|s̃n

P
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) ≥ l

)

log(p)

Let us first consider primes p such that pl ≤ S. Therefore from Lemma
3.8 we get that

P(pl|det(Ni)) ≤
3

pl
.

Then (7) can be bounded by

∞
∑

l=1

∑

pl|s̃n,pl≤S

P
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)

l log(p) ≤
∞
∑

l=1

∑

pl|s̃n,pl≤S

P
(

pl| gcd
i=1...µ

(det(Ni))
)

log(p)

≤ log 2(2 +
∞
∑

l=3

(
3

2l
)µ) + log 3(1 +

∞
∑

l=2

(
3

3l
)µ) + log 5(1 +

∞
∑

l=2

(
3

5l
)µ) +

∑

5<pl<S

∞
∑

l=1

log(p)(
3

pl
)µ

≤ 2.19 + 1.78 + 2.36 +
∑

5<pl<S

3µ log(p)

pµ − 1
≤ 6.33 + 3µ

∫ ∞

6

log(x)

xµ − 1
dx ≤ 6.33 + 6.09

For p > S, following Eq. (2) we get P(p|det(M)) ≤ ∑n
i=1 βi

1 ≤ β1

1−β1
,

where β1 as defined in the proof of lemma 3.8 is 1
S

⌈

S
p

⌉

. For p ≥ S this

gives β1 = 1
S and the probability can be bounded by 1

S−1 . Suppose now

that p < S but pl ≥ S. Then the probability P(pl|det(M)) is less than
P(p⌊logp(S)⌋|det(M)) and consequently can be bounded by 3min(1

p , p
S ) which

is less than 3√
S
.
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Thus, the sum over pl > S can be bounded by

∞
∑

l=1

∑

pl|s̃n,pl>S

P
(

pl| gcd
i=1...µ

(det(Ni))
)

log(p) ≤
∑

p|s̃n

⌊logp(H)⌋
∑

l=⌈logp(S)⌉

(

3√
S

)µ

log(p)

≤
∑

p|s̃n

logp(H) log(p)

(

3√
S

)µ

≤
∑

p|s̃n

log(H)

(

3√
S

)µ

≤ log2(H)

(

3√
S

)µ

,

where H is a bound for s̃n (the Hadamard’s bound for A).
With µ being about n

O(log(n)) , the expected size of overestimation due to

partial gcd calculation is O(1) + log2(H)
(

3√
S

)µ
.

3.2.3 Removing the undesired factors

In the preceding section, we saw that taking only a subset of the possible
minors of N potentially introduces extra factors. In lemma 3.6 we have
mentioned that the choice of B can also introduce some over-estimation.
We now show that repeating the solving twice with two distinct random
right-hand sides B1 and B2 is in general sufficient to remove those extra
factors.

Lemma 3.10. Let A be an n × n integer matrix and Bi, i = 1, 2 be n ×
k matrices with the entries uniformly and randomly chosen from the set
{0, 1, . . . S − 1}. Then for M = sn(A)A−1

log

(

πk(A)

sn(A)k
gcd

(

s2 · · · sk(MB1), s2 · · · sk(MB2), sn(A)k
)

)

∈ O(1)+
k log2(H)

S
.

Proof. First, notice that πk(A) = sn(A)k

s1...sk(M) . Therefore

log

(

πk(A)

sn(A)k
gcd(s1 · · · sk(MB1), s1 · · · sk(MB2))

)

= log

(

gcd(s1 · · · sk(MB1), s1 · · · sk(MB2), sn(A)

s1 · · · sk(M)

The latter is less than

∑

p|sn(A)

log(p)lP(ordp

(

gcd
(

s1 · · · sk(MB1), s1 · · · sk(MB2), sn(A)k
)

s1 · · · sk(M)
= l

)

=

∑

p|sn(A)

log(p)P(ordp

(

gcd(s1 · · · sk(MB1), s1 · · · sk(MB2), sn(A)k

s1 · · · sk(M)
) ≥ l

)
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Now, [26, Lem. 5.17] states that for every matrix M there exist a full

rank k × n, k ≤ n, matrix V , such that ordp(
s1···sk(MB)
s1···sk(M) ) is less or equal

ordp(det(V B)). Using this, we can then link the previous probability to the
probability that pl divides the determinant of ViBi. The entries of the latter
can be treated as randomly distributed with the same distribution as Bi.
Moreover, we only have to consider p|sn(A).

For pl < S Lemma 3.8 gives P(Bi : ordp(
s1···sk(MBi)
s1···sk(M) ) ≥ l) = P(Bi :

ordp(det(ViBi)) ≥ l) ≤ 3
pl ,.

Now the expected size of the under-estimation is less than or equal to

log(2)(1 +

∞
∑

l=2

(
3

2l
)2) + log(3)

∞
∑

l=1

(
3

3l
)2 + log(5)

∞
∑

l=1

(
3

5l
)2 +

∑

5<p≤H

∞
∑

l=1

log(p)(
3

pl
)2

≤ 1.75 + 1.79 + 0.88 +

∫ ∞

6
log(x)

9

x2 − 1
dx,

which is O(1).
For pl ≥ S the expected size of underestimation is

∑

p|sn(A)

logp(Hk)
∑

l=⌈logp(S)⌉
l log(p)(

3√
S

)2 ≤ k16 log2(H)

S
,

which gives the result.

It is worth noting that the above mentioned schemes could lead to an
algorithm to compute several last (or first) invariant factors with possibly
better probabilistic behavior and expected complexity than that of [15].

4 Introspective Algorithm

Now we should incorporate algorithm 2.1 and the ideas presented in sections
2.2 and 3.2 in the form of an introspective algorithm. Indeed, we give a recipe
for an auto-adaptive program that implements several algorithms of diverse
space and time complexities for solving a particular problem. The best path
is chosen at run time, from a self-evaluation of the dynamic behavior (here
we use timings) while processing a given instance of the problem. This kind
of auto-adaptation is called introspective in [12]. In the following, CRA
loop refers to algorithm 2.1, slightly modified to compute det(A)/K. If we
re-run the CRA loop, we use the already computed modular determinants
first whenever possible.

Informally, the general idea of the introspective scheme is:

21



1. Initialize the already computed factor K of the determinant to 1;

2. Run fast FFLAS LU routines (or the Wiedemann’s algorithm in the
case of a sparse matrix) in the background to get several modular
determinants di = det(A) mod pi.

3. From time to time try to early terminate the Chinese remainder re-
construction of det(A)/K.

4. In parallel or in sequential, solve random systems to get the last in-
variant factors one after the other.

5. Update K using the extended bonus ideas.

6. Loop back to step (2) until an early termination occurs or until the
overall timing shows that the expected complexity is exceeded.

7. In the latter exceptional case, switch to a better worst case complexity
algorithm.

More precisely, the full algorithm in shown on page 23.

4.1 Introspectiveness: dynamic choice of the thresholds

The introspective behavior of algorithm 4.1 depends paramountly on the
number of system solvings and on the size of the random entries.

The parameter imax controls the maximal total number of system solv-
ings authorized before switching to a best worst-case complexity algorithm.
The choice of imax has to be discussed in terms of the matrix type and
expected number of invariant factors estimated for A.

First, depending on the size of the set from which we are sampling the
random right-hand sides, a minimum number of solvings is required to get
a good probability of correctness. We thus define this to be imin.

In the dense case, the (ii) part of theorem 2.2 states that imin = 2 is
sufficient.

In the sparse case, the (iv) part of theorem 2.2 has to be used and
therefore a number of repetitions imin = ⌈2 log(log(H))⌉ is required.

Then this number imin has also to be augmented if the expected number
of non trivial invariant factors is high. We thus set

imax = max(imin,E(#factors(A))).

In the dense case E(#factors(A)) is less than ⌈
√

2 logλ(n)⌉ + 2 as shown
in theorem 3.2 ; in the sparse case, theorem 3.3 ensures that the expected
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Algorithm 4.1 Extended Bonus Determinant Algorithm

Require: An integer n × n matrix A.
Require: 0 < ǫ < 1, an error tolerance.
Require: A stream S of random integers uniformly chosen from the

{0, 1 . . . , β}
Require: H - Hadamard’s bound for A.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least

1 − ǫ.

1: k = log(1/ǫ)/⌈log( P ′

logl(H))⌉; see Lem. 2.1(iii)
2: for i = 1 to k do

3: run the CRA loop for det(A) ; //see Alg. 2.1
4: if early terminated then Return determinant end if

5: end for

6: imax = imax(A), imin = imin(A); //see §4.1
7: π̃0 = 1;K = 1;
8: kdone = 0; kapp = 0; j = 0;
9: while kdone ≤ imax do

10: i = kdone + 1;
11: while i ≤ imax do

12: Generate b
(j)
i a random vector of dimension n from the stream S;

13: Compute s̃n by solving Ax
(j)
i = b

(j)
i ; //see Section 2.2

14: if i = 1 then i = 2;π̃1 = s̃n;
15: else

16: N := s̃nX, where X = [x
(j)
l ]l=0,...i; //see Section 3.2;

17: π̃i = 0;
18: for l = 1, . . . ⌊n/i⌋ do

19: π̃i = gcd(π̃i,det(Nl)), where Nl is the lth minor of N ;
20: end for

21: i=i+1;
22: end if

23: K = lcm(π̃i,K); π̃i = K;
24: Resume CRA looping on d = det(A)/K for at most the time of one

system solving;
25: if early terminated then Return d · K; end if

26: if i > imin then

27: if π̃i = π̃i−1 then

28: if i > kapp then

29: kdone = kapp; kapp = i; j = j + 1 mod 2; break;
30: else

31: Resume CRA looping on d = det(A)/K for at most the time
of (imax − i) system solvings;

32: if early terminated then Return d · K;
33: else i = imax; end if

34: end if

35: end if

36: end if

37: end while

38: end while

39: run an asymptotically better integer determinant algorithm;
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number of non trivial invariant factors is less than ⌈logλ(n)+ logλ(logλ(n)+
2)⌉ + 7.

Now, random vectors are randomly sampled a set of size β. For a dense
matrix A we can take β = ⌈(n + 1)H⌉ to get a good probability of success
together with a fast execution, as shown in theorem 2.2(ii) and lemma 3.10.
For a sparse matrix we should take β > 9, but we are restricted to log(β) ∈
O(n0.5). The choice β = max(9, 2

√
n) is sufficient to keep a small asymptotic

cost of the system solvings while still remaining in the O(1) estimations of
lemmata 3.9 and 3.10. Then the good probability of success is preserved
to the cost of a small increase (part (iv) of theorem 2.2) in the number of
solvings.

Additionally, (see lemma 3.10) we should ensure that πk is computed
twice using different matrices B. We therefore introduce the variables kdone

and kapp which store respectively the number of factors computed at least
twice (up to O(1))) or once (thus only approximated).

4.2 Correctness and complexity

Theorem 4.1. Algorithm 4.1 correctly computes the determinant with prob-
ability 1 − ǫ.

Proof. Termination is possible only by the early terminated CRA loop or
by the determinant algorithm used in the last step. The choice of k from
theorem 2.1(iii) and the choice of the determinant algorithm from [18, 25]
ensures that a 1 − ǫ probability is obtained.

The following theorem gives the complexity of the algorithm.

Theorem 4.2. The expected complexity of Algorithm 4.1 in the case of a
dense matrix is

O≈ (nω log(1/ǫ) + n3(log n + log(‖A‖))2 log0.5(n)
)

where O≈ hides some log(log(n)) factors. For a sparse matrix A we get

O≈ (nΩ log(1/ǫ) + n2(log n + log(‖A‖))(n0.5 + log(‖A‖)) log(n)
)

.

The pessimistic complexity depends on the algorithm used in the last step.
In the case of a sparse matrix, the space complexity is O(n2 log2(n)).

Proof. To analyze the complexity of the algorithm we would consider the
complexity of each step for the dense and sparse case respectively.
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For a dense matrix A, with k defined as in line 1, the complexity of
the initial CRA iterations is O (nω log(1/ǫ)). The while loop is constructed
in a way that we perform at most 2imax iterations (see subsection 4.1 for
the bound on imax) with log(‖B‖) = O(n log(n)). Therefore the cost is

O
(

n3(log(n) + log(‖A‖))2
√

log(n)
)

. Considering the time limit, this is also

the time of all CRA loop iterations. Now, for the computation of the ⌊n
i ⌋

determinants det(Nl), an exact integer determinant algorithm for dense ma-
trices has to be used. Here, as the matrices are small, a simple Chinese

remaindering of LU’s is sufficient. Its overall cost is O
(

⌊n/i⌋i4(log(i) +

n(log(n) + log(‖A‖) + log(‖B‖))
)

bit operations, which for i = 2, . . . , imax

with imax being O(log(n)) is O∼(n2) and is thus negligible.
For a sparse matrix A, we use the Wiedemann’s algorithm in the CRA

iterations, thus, the complexity of the first step is O(Ωn log(1/ǫ)). With a
O≈(log(n)) bound for imax, the while loop will cost at most n1.5(log(n) +
log(‖A‖) log(n)Ω + O(n2(log(n) + log(‖A‖))(n0.5 + log(‖A‖)) log(n)). The
cost of computing π̃i is again negligible.

With the expected number of invariant factors bounded by imax (see
Thm.3.2), it is expected that the algorithm will return the result before
the end of the while loop, provided that the under-estimation of π̃imax is
not too big. But by updating s̃n O(log(n)) times and updating the product
π̃imax twice, it is expected that the overall under-estimation will be O(1) (see
Theorem 2.2 and Lemma 3.10), thus it is possible to recover it by several
CRA loop iterations.

The space complexity in the case of a sparse matrix A is connected with
the cost of storing matrix N . It is a n × log(n) matrix with entries of size
n log(n). Thus, the space complexity is n2 log2(n).

In the last step, for a sparse matrix, a modified algorithm of Eberly,
Saunders and Villard [15] can be used instead as an already large number of
non-trivial invariant factors have been found. Thus, in practice their binary
search has many chances to be the most efficient. For a dense matrix we
propose e.g. the best worst case O∼(n3.2 log(‖A‖)) algorithm of Kaltofen [19]
and refer to [18] for a survey on the complexity of determinant algorithms.

5 Experiments and Further Adaptivity

The described algorithm is implemented in the LinBox exact linear algebra
library [8]. In a preliminary version imax is set to 2 or 1 and the switch in
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the last step is not implemented. This is however enough to evaluate the
performance of the algorithm and to introduce further adaptive innovations.

Comparing the data from table 1 we notice that the algorithm with
imax = 1 (which is in fact a slightly modified version of Abbott’s algorithm
[1]) runs better for small n. Those timings have been evaluated on a set of
matrices which have the same Smith form as diag{1, 2, .., n} and the number
of invariant factors of about n

2 . For every matrix, with each step, the size of

n imax = 1 imax = 2 n imax = 1 imax = 2

100 0.17 0.22 300 5.65 5.53
120 0.29 0.33 350 9.76 9.64
140 0.48 0.55 400 14.99 14.50
160 0.73 0.78 600 57.21 54.96
180 1.07 1.16 800 154.74 147.53
200 1.49 1.51 1000 328.93 309.61
250 2.92 3.00 2000 3711.26 3442.29

Table 1: Comparison of the performance of Algorithm 4.1 with imax set to
1 and 2 on engineered matrices.

sn−i decreases whilst the cost of its computation increases. This accounts
for better performances of Abbott’s algorithm, which computes only sn. For
bigger n calculating sn−1 starts to pay out. The same pattern repeats in
further iterations.

The switch between winners can be explained by the fact that in some
situations, obtaining sn−i by LU -factorization (which costs log(sn−i)

log(l) the time

of LU) outperforms system solving. Then, this also holds for all consecutive
factors and the algorithm based on CRA only wins. The condition can be
checked a posteriori by approximating the time of LUs needed to compute
the actual factor. We can therefore construct a condition that would allow
us to turn to the CRA loop in an even more appropriate moment. This can
be done by changing the condition in line 27 (π̃i = π̃i−1) to

log(
π̃i

π̃i−1
) ≤ time(solving)

time(LU)
log(l),

if the primes used in the CRA loop are greater than l. This would result
with a performance close to the best and yet flexible. If, to some extend,
sn−i could be approximated a priori, this condition could be checked before
its calculation. This would require a partial factorization of sn−i+1 and
probability considerations as in section 3.1 and [15].
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For a generic case of random dense matrices our observation is that
the bound for the number of invariant factors is quite crude. Therefore
the algorithm 4.1 is constructed in a way that minimizes the number of
system solvings to at most twice the actual number of invariant factors for
a given matrix. Under the assumption that the approximations s̃n and π̃i

are sufficient, this leads to a quick solution.
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Figure 1: Comparison of our algorithm with other existing implementation.
Tested on random dense matrices of the order 400 to 10000, with entries
{-8,-7,. . . ,7,8} Using fast modular routines puts our algorithm several times
ahead of the others. Scaling is logarithmic.

Indeed for random dense matrices, the algorithm nearly always stopped
with early termination after one system solving. This together with fast
underlying arithmetics of FFLAS [7] accounted for the superiority of our
algorithm as seen in figure 1 and 2 where comparison of timings for different
algorithms are presented.

Figure 3 gives a comparison of the performance of sparse and dense
variants of our algorithm. For the sparse solver of [16] we used the best
blocking on our machine (blocks size ranging from 25 for the 200 × 200
matrix to 500 for the 20000 × 20000 matrix were used). The figure shows
that using the dense algorithm outperforms the sparse solver on our matrix
set/machine architecture by a factor of 3.3 to 2.3. Still, Thanks to the space-
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Figure 2: Comparison of our algorithm with early terminated Chinese re-
maindering algorithm (LU) and the algorithm of Abbott et al. [1] (LIF).
Tested on random dense matrices of the order 40 to 1000, with entries {-
100,-99,. . . ,99,100}. When matrix size exceeds 80 the adaptive algorithm
wins. Scaling is logarithmic.
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Figure 3: Comparison of sparse and dense variants of our determinant algo-
rithm. Scaling is logarithmic.

efficiency of the sparse algorithm we are able to compute determinants of
20000 × 20000 matrix for which the dense solver thrashes.

6 Conclusions

In this paper we have presented an algorithm computing the determinant
of an integer matrix which can have dense or sparse variants. The expected
time complexity depends on the cost of the system solving procedure used
and the expected number of invariant factors. This gives O

(

n3(log(n) + log(‖A‖))2 log0.5(n)
)

for the dense case and O
(

n2(log(n) + log(‖A‖))(n0.5 + log(‖A‖)) log(n)
)

for
the sparse case when the cost of matrix-vector product is O(n). Our algo-
rithm uses an introspective approach so that its actual expected complexity
is only O

(

nα(log(n) + log(‖A‖))βk
)

if the number k of invariant factors is
smaller than a priori expected but greater than imin; α = 3 or 2.5, β = 2, 1
depending on the matrix type. The actual running time can be even smaller,
assuming that any under-estimation resulting from probabilistically correct
procedures can be compensated sooner than expected. Moreover, the adap-
tive approach allows us to switch to the algorithm with best worst case
complexity if it happens that the number of nontrivial invariant factors is
unexpectedly large. This adaptivity, together with very fast modular rou-
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tines, allows us to produce an algorithm, to our knowledge, faster by at least
an order of magnitude than other implementations.

Ways to further improve the running time are to reduce the number
of iterations in the solvings or to group them in order to get some block
iterations as is done e.g. in [3]. A modification to be tested, is to try
to reconstruct sn with only some entries of the solution vector x = n/d.
Parallelization is also to be considered. There, all the LU iterations in one
CRA step can be done in parallel. An equivalently efficient way is to perform
several p-adic liftings in parallel, but with less iterations [6]. There the issue
is to perform an optimally distributed early termination.
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