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An introspective algorithm for the integer determinant

Jean-Guillaume Dumas Anna Urbańska

Abstract

We present an algorithm computing the determinant of an integer matrix A. The
algorithm is introspective in the sense that it uses several distinct algorithms that run
in a concurrent manner. During the course of the algorithm partial results coming from
distinct methods can be combined. Then, depending on the current running time of each
method, the algorithm can emphasize a particular variant. With the use of very fast
modular routines for linear algebra, our implementation is an order of magnitude faster
than other existing implementations. Moreover, we prove that the expected complexity
of our algorithm is only O

(

n3(log(n) + log(‖A‖))2 log(n)
)

bit operations, where ‖A‖ is
the largest entry in absolute value of the matrix.

1 Introduction

One has many alternatives to compute the determinant of an integer matrix. Over a field,
the computation of the determinant is tied to that of matrix multiplication via block recur-
sive matrix factorizations [12]. On the one hand, over the integers, a näive approach would
induce a coefficient growth that would render the algorithm not even polynomial. On the
other hand, over finite fields, one can nowadays reach the speed of numerical routines [9].
The classical approach is thus to reduce the computation modulo some primes of constant
size and to recover the integer determinant from the modular computations. For this, at
least two variants are possible: Chinese remaindering and p-adic lifting. The first variant
requires either a good a priori bound on the size of the determinant or an early termination
probabilistic argument [10, §4.2]. It thus achieves an output dependant bit complexity of
O (nω log(|det(A)|)) where ω is the exponent of matrix multiplication (3 for the classical
algorithm, and 2.375477 for the Coppersmith-Winograd method). Of course, with the co-
efficient growth, the determinant size can be as large as Ω(n log(n)) (Hadamard’s bound)
thus giving a large worst case complexity.
Now the second variant uses system solving and p-adic lifting [4] to get an approximation
of this determinant with a O

(

n3(log(n) + log(‖A‖))2
)

bit complexity [16]. Indeed, every
integer matrix is unimodularly equivalent to a diagonal matrix S = diag{s1, . . . , sn} with
si|si+1. This means that there exist integer matrices U, V with detU,det V = ±1, such
that A = USV . The si are called the invariant factors of A. Then, solving a system with
a random right hand side will reveal sn as the common denominator of the solution vector
entries with high probability.
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The idea of [1] is thus to combine both approaches, i.e. to approximate the determinant by
p-adic lifting and recover only the remaining part (det(A)/sn) via Chinese remaindering.
Then G. Villard remarked that at most O(

√
n) invariant factors can be distinct and that,

in general, only the last O(log(n)) of those are nontrivial [11]. This remark, together
with a preconditioned p-adic solving computing the i-th invariant factor enable them to
produce a O∼(n2+ω/2) worst case algorithm, where O∼ hides some logarithmic factors,
and an algorithm with an expected O(n3(log(n) + log(‖A‖))2 log2(n)) complexity. Note
that the actual best worst case complexity algorithm is O∼(n2.697263 log(‖A‖)), which is
O∼(n3.2 log(‖A‖)) without fast matrix multiplication, by [14]. Unfortunately, these last
two worst case complexity algorithms, though asymptotically better, are not the fastest for
the generic case or for the actual matrix sizes. The best expected complexity algorithm is a
Las Vegas algorithm of Storjohann [18] which uses an expected number of O∼(nω log ‖A‖)
bit operations. In section 5 we compare the performance of this algorithm to ours, based
on experimental results of [19].
In this paper, we propose a new way to extend the idea of [17, 20] to get the last consecutive
invariant factors with high probability in section 3.2. Then we combine this with the scheme
of [1]. This combination, is made in an adaptive way. This means that the algorithm will
choose the adequate variant at run-time, depending on discovered properties of its input.
More precisely, in section 4, we propose an algorithm which uses timings of its first part to
choose the best termination. This particular kind of adaptation was somewhat introduced in
[15] as introspective ; we use here the more specific definition of [3]. This enables us to prove
in section 4.1 an expected complexity of O

(

n3(log(n) + log(‖A‖))2 log(n)
)

bit operations,
gaining a log(n) factor and improving the constants from [11]. Moreover, we are able to
detect the worst cases during the course of the algorithm thus enabling us to switch to the
asymptotically fastest method. In general this last switch is not required and we show in
section 5 that when used with the very fast modular routines of [7, 9] and the LinBox library
[8], our algorithm can be an order of magnitude faster than other existing implementations.

2 Base Algorithms and Procedures

In this section we present the procedures in more detail and describe their probabilistic
behavior. We start by a brief description of the properties of the Chinese Remaindering loop
(CRA) with early termination (ET) (see [5]), then proceed with the LargestInvariantFactor
algorithm to compute sn (see [1, 11, 17]). We end the section with a summary of ideas of
Abbott et al. [1], Eberly et al. and Saunders et al. [17].

2.1 Output dependant Chinese Remaindering Loop (CRA)

CRA is a procedure based on the Chinese remainder theorem. Determinants are computed
modulo several primes pi. Then the determinant is reconstructed modulo p0 · · · pn−1 in
the symmetric range via the Chinese reconstruction. The integer value of the determinant
is thus computed as soon as the product of the pi exceeds 2|det(A)|. We know that the
product is big enough if it exceeds some upper bound on this value or, probabilistically,
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if the reconstructed value remains identical for several successive additions of modular
determinants. The principle of early termination (ET) is thus to stop the reconstruction
before reaching the upper bound, as soon as the determinant remains the same for several
steps [5].
Algorithm 2.1 is an outline of a procedure to compute the determinant using CRA loops
with early termination, correctly with probability 1 − ǫ. We start with a lemma.

Lemma 2.1. Suppose that primes pi greater than l > 4 are randomly sampled form a set
P , and let rn be the value of the determinant modulo p0 · · · pn computed in the symmetric
range. Then

(i) rn = det(A), if n > N =

{

⌈logl(|det(A)|)⌉ if det(A) 6= 0

0 whenever det(A) = 0
;

(ii) if rn 6= det(A) then there are at most R =⌈logl(
| det(A)−rn|

p0···pn
)⌉ primes pn+1 such that

rn = det(A) mod p0 · · · pnpn+1;

(iii) if rn = rn+1 = · · · = rn+k then Prob(rn 6= det(A)) < ǫ if only k > ⌈log(1/ǫ)/ log( P ′

logl(H))⌉,
where P ′ = |P | − ⌈log(H)/ log(l)⌉ and H is an upper bound for the determinant (e.g.
H can be the Hadamard’s bound: |det(A)| 6 (

√
n‖A‖)n).

Proof. For (i), notice that −⌊p0···pn

2 ⌋ 6 rn < ⌈p0···pn

2 ⌉. Then rn = det(A) as soon as
⌊p0···pn

2 ⌋ > |det(A)|. With l being the lower bound for pi this reduces to n > ⌈logl |det(A)|⌉
in the case when det(A) 6= 0.
For (ii), we observe that det(A) = rn + Kp0 . . . pn and it suffices to estimate the number of
primes greater or equal l that divide K.

For (iii) we notice that k primes dividing K can be chosen with probability
(R

k

)

/
(|P | − n + 1

k

)

,

which can be bounded by ( R
P ′ )

k Since R 6 ⌈logl(
2H
2 )⌉ we get the result.

To compute the modular determinant in algorithm 2.1 we use the LU factorization and we
refer to it as LU iteration. Early termination is particularly useful in the case when the
computed determinant is much smaller than the a priori bound. The running time of this
procedure is output dependant.

2.2 Largest Invariant Factor

A method to compute sn for integer matrices was first stated by V. Pan [16] and later in
the form of the LargestInvariantFactor procedure (LIF) in [1, 11, 5, 17]. The idea is to
obtain a divisor of sn by computing a rational solution of the linear systems Ax = b. If b
is chosen at random from a sufficiently large set, then the computed divisor can be as close
as possible to sn with high probability. Indeed, with A = USV , we can equivalently solve
SV x = U−1b for y = V x, and then solve for x. As U and V are unimodular, the least
common multiple of the denominators of x and y, d(x) and d(y) satisfies d(x) = d(y)|sn.
Thus, solving Ax = b via p-adic lifting [4], enables us to get sn with high probability at the
cost of O(n3(log(n) + log(‖A‖))2) independently of the size of sn.

3



Algorithm 2.1 Early Terminated CRA

Require: An integer matrix A.
Require: 0 < ǫ < 1.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1 − ǫ.

1: H = (
√

n‖A‖)n; P ′ = |P | − ⌈log(H)/ log(l)⌉; i = 0; // Hadamard’s bound
2: repeat

3: Get a prime pi from the set P ; P = P − {pi}
4: Compute det(A) mod pi; //via LU factorization of A modulo pi.
5: Reconstruct ri, the determinant modulo p0 · · · pi; // by Chinese remaindering

6: k = max{t : ri−t = · · · = ri}; R = ⌈logl
H+|ri|

p0p1...pi−k
⌉

7: i++;
8: until

R(R−1)...(R−k+1)
(|P |−n)(|P |−n−1)...(|P |−n−k+1) < ǫ or

∏

pi > 2H + 1

The algorithm takes as input parameters β and r which are used to control the probability
of correctness. r is the number of successive solvings and β is the size of the set from which
the values of a random vector b are chosen. With each system solving, the output s̃n of the
algorithm is updated as the lcm of the current solution denominator d(x) and the result
obtained so far.
The following theorem characterizes the probabilistic behavior of the LIF procedure.

Theorem 2.2. Let A be a n × n matrix, H its Hadamard’s bound, r and β be defined as
above. Then the output s̃n of Algorithm LargestInvariantFactor of [1] is characterized by
the following properties.

i) Let r = 1, p be a prime, l > 1, then P(pl|sn(A)
s̃n

) 6
1
β ⌈

β
pl ⌉;

ii) if r = 2, β = ⌈(n + 1)H⌉ then E
(

log(sn(A)
s̃n

)
)

= O(1);

iii) if r = 2, β = 6 + ⌈2 log(log(H))⌉ then sn = s̃n with probability at least 1/3;

iv) if r = ⌈2 log(log(H))⌉, β > 2 then E
(

log(sn(A)
s̃n

)
)

= O(1);

v) if r = log(log(H)) + log(1
ǫ ), 2 | β and β > 2 then sn(A) = s̃n with probability at least

1 − ǫ;

Proof. The proofs of (i), (ii) and (iv) are in [1]. The proof of (iii) is in [11]. To prove (v) we
slightly modify the proof of (iv) in the following manner. From (i) we notice that for every
prime p dividing sn, the probability that it divides the missed part of sn(A) satisfies:

P(p | sn

s̃n
) 6 (

1

2
)r.
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As there are at most log(H) such primes, we get

P(sn = s̃n) > 1 − log(H)(1/2)r > 1 − log(H)2− log(log(H))−log( 1

ǫ
) = 1 − log(H)

1

log(H)
ǫ.

2.3 Abbott-Bronstein-Mulders, Saunders-Wan and Eberly-Giesbrecht-
Villard ideas

Now, the idea of [1] is to combine both the Chinese remainder and the LIF approach. Indeed,
one can first compute sn and then reconstruct only the remaining factors of the determinant
by reconstructing det(A)/sn. The complexity of this algorithm is O

(

n3 log(| det(A)/sn(A) |)
)

which is unfortunately O∼(n4) in the worst case. However, nothing is known about the al-
gorithm expected complexity.
Now Saunders and Wan [17, 20] proposed a way to compute not only sn but also sn−1

(which they call a bonus) in order to reduce the size of the remaining factors d/(snsn−1).
The complexity doesn’t change.
Then, Eberly, Giesbrecht and Villard have shown that the expected number of non trivial
invariant factors is small, namely less than ⌈3logλ(n)⌉ + 29 in general if the entries of
the matrix are chosen in a set of λ consecutive integers [11]. As they also give a way to
compute any si(A) which leads to an algorithm with expected complexity O(n3(log(n) +
log(‖A‖))2 log(n)) logλ(n)).
Our idea is to extend the method of Saunders and Wan to get the last O(logλ n) invariant
factors of A slightly faster than by [11]. Then, we are able to remove one of the log(n)
factors of the expected complexity. Moreover, we will show in the following sections that
this enables us to build an adaptive algorithm solving a minimal number of systems.
We should also mention, that it should be possible to change a log(n) factor in the expected
complexity of [11] to a log log(n) employing the bound for the expected number of invariant
factors twice. Indeed their extra log(n) factor comes from the algorithm where n non trivial
invariant factors are to be computed. But in the expected case, as they have only log(n) of
those, this extra factor could be consequently reduced.

3 Computing the product of O(log(n)) last invariant factors

3.1 On the number of invariant factors

The result in [11] says that a n×n matrix with entries chosen randomly and uniformly from
a set of size λ has the expected number of invariant factors bounded by ⌈3 log(n)⌉+ 29. In
search for a sharpening of this result we prove the following theorems.

Theorem 3.1. Let p be a prime. The expected number of non-trivial invariant factors
divisible by p is at most 6.
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Theorem 3.2. The expected number of nontrivial invariant factors is at most logλ(n) +
logλ(logλ(n) + 1) + 9.

Both proofs can be found in the appendix A.

3.2 Extended Bonus Idea

In his thesis [20], Z. Wan introduces an idea of computing the penultimate invariant factor
(i.e. sn−1) of A while computing sn using 2 system solvings. The additional cost is com-
paratively small, therefore sn−1 is referred to as a bonus. Here, we extend this idea to the
computation of the (n − k)th factor with (k + 1) solvings.
Let x(j) be the rational solution to the equation Ax(j) = b(j), where b(j) is a random vector.
Then x(j) coordinates have a common denominator s̃n and we let n(j) denote the vector of
numerators of x(j). Then x(j) = 1

s̃n
n(j) and gcd(n(j), s̃n) = 1.

Let B denote the n×(k+1) matrix [b(j)]j=1,...,k+1. Following Wan, we notice that sn(A)A−1

is an integer matrix, the Smith form of which is equal to

diag(
sn(A)

sn(A)
,

sn(A)

sn−1(A)
, . . . ,

sn(A)

s1(A)
).

Therefore, we may compute sn−k(A) when knowing sk+1

(

sn(A)A−1
)

. The trick is that
the computation of A−1 is not required: we can perturb A−1 by right multiplying it by B.
Then, sk+1(sn(A)A−1B) is a multiple of sk+1(sn(A)A−1). Instead of sn(A)A−1B we would
prefer to use s̃nA−1B which is already computed and equal to N , where N = [n(j)]j=1,...,k+1

is the matrix of numerators. The relation between A and N is as follows.

Lemma 3.3. Let s̃−1
n N , gcd(s̃n, N) = 1 be a solution to the equation AX = B, where B is

n× k and the entries of B are uniformly and randomly chosen from the set {0, 1, . . . β − 1}.
Then

s̃n

gcd(si+1(N), s̃n)
|sn−i(A), i = 1, 2 . . . , k.

Proof. The Smith forms of sn(A)A−1B and N are connected by the relation sn(A)
s̃n

si(N) =

si(sn(A)A−1B), i = 1, . . . , (k + 1). Therefore the quotient sn(A)
sk+1(sn(A)A−1B)

equals s̃n

sk+1(N) ,

and by taking s̃n

gcd(sk+1(N),s̃n) one obtain an (integer) factor of sn−k(A). Moreover, the

under-approximation is solely due to the choice of B.

Remark 3.4. Taking gcd(sk+1(N), s̃n) is necessary as s̃n

sk+1(N) may be a rational number.

Particularly, it happens when s1(N) = gcd(Nij) > 1, and in this case, since gcd(s̃n, N) = 1,
the impact of s1(N) on sn−k is neglected. Moreover, this allows us to consider p|s̃n in all
probability consideration throughout the paper.

In fact we are interested in computing the product πk = snsn−1 · · · sn−k(A) of the invariant
factors of A. Then, following the idea of Abbott [1], we would like to reduce the computation

of the determinant to the computation of det(A)
π̃k

, where π̃k is a factor of πk we have obtained.
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We can compute π̃k as s̃k+1
n / gcd(s1s2 · · · sk+1(N), s̃k+1

n ). The product of the (k + 1) first
invariant factors of a matrix is equal to the gcd of all its (k + 1) × (k + 1) minors. In our
approach, it suffices to compute ⌊n/(k+1)⌋ of those. In the following lemmas we show that
by repeating the choice of matrix B twice, we will omit only a finite number of bits in πk.
We start with a technical lemma, the proof of which is in Appendix B.

Lemma 3.5. For n×n matrix A with entries chosen randomly and uniformly from the set
{0, 1 . . . S − 1}, the probability that pl < S divides the determinant det(A) is at most 3

pl for

p 6= 2, 3, 5 and 4
pl for p = 2, 3, 5 and S > 81.

In the next lemma we discuss the impact of choosing only a few minors in s1 . . . sk+1(N)
calculation. Here, ordp(x) denotes the higher power of p dividing x.

Lemma 3.6. Let N and B be as defined in lemma 3.3. Suppose that B is a random
matrix with entries chosen uniformly form the set {0, 1, . . . S − 1}, S > max(H, 81) and
k = O(log(n)). Let N = [N1| . . . Nµ|N ′]T where Ni are (k + 1) × (k + 1) matrices, µ =
⌊n/(k + 1)⌋. Then

∞
∑

l=1

∑

pl|s̃n

Prob
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)

l log(p) ∈ O(1). (1)

Proof. The bound S on ‖B‖ is chosen in the way that following remark 3.4 we can only
consider p 6 S. Therefore from Lemma 3.5 we get that for l > 1

Prob(pl|det(Ni)) 6
α

pl
,

where α = 3 for p > 5 and α = 4 for p = 2, 3, 5.
Now the sum (1), which represents the size of the over-approximation due to partial gcd
computation can be bounded by

∞
∑

l=1

∑

pl|s̃n

Prob
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)

l log(p) 6

∞
∑

l=1

∑

pl|s̃n

Prob
(

pl| gcd
i=1...µ

(det(Ni))
)

log(p)

6 log 2(2 +

∞
∑

l=3

(
4

2l
)µ) + log 3(1 +

∞
∑

l=2

(
4

3l
)µ) + log 5(1 +

∞
∑

l=2

(
4

5l
)µ) +

∑

p>5

∞
∑

l=1

log(p)(
3

pl
)µ

6 3 + 4 + 6 + 1 = 14

With µ being about n
O(log(n)) , the expected size of overestimation due to partial gcd calcu-

lation is O(1).
To consider the impact of the choice of B on our method we start with a remark, which is
a small modification of [20, Lem. 5.17].

Remark 3.7. For every matrix M there exist a full rank k × n, k 6 n, matrix V , such that
ordp(

s1···sk(MB)
s1···sk(M) ) is less or equal ordp(det(V B)).
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Lemma 3.8. Let A be an n × n integer matrix, S > max(H, 81) and Bi, i = 1, 2 be n × k
matrices with the entries uniformly and randomly chosen from the set {0, 1, . . . S}. Then
for M = sn(A)A−1

log
(πk(A)

sk
n

gcd(s2 · · · sk+1(MB1), s2 · · · sk+1(MB2))
)

∈ O(1).

Proof. From Remark 3.7 and Lemma 3.5, we have Prob(Bi : ordp(
s1···sk(MBi)
s1···sk(M) ) 6 l) 6

α
pl ,

with α = 3 for p > 5 and α = 4 for p = 2, 3, 5. Now the expected size of the under-estimation
is less than or equal to

log(2)(1 +
∞
∑

l=2

(
4

2l
)2) + log(3)(1 +

∞
∑

l=2

(
4

3l
)2) + log(5)(1 +

∞
∑

l=2

(
4

5l
)2) +

∑

5<p6H

∞
∑

l=1

log(p)(
3

pl
)2

6 3 + 4 + 6 +

∫ ∞

6
log(x)

9

x2 − 1
dx,

which is O(1).
It is worth noting that the above mentioned schemes could lead to an algorithm to com-
pute several last (or first) invariant factors with possibly better probabilistic behavior and
expected complexity than that of [11].

4 Introspective Algorithm

Now we should incorporate algorithm 2.1 and the ideas presented in sections 2.2 and 3.2
in the form of an introspective algorithm. Indeed, we give a recipe for an auto-adaptive
program that implements several algorithms of diverse space and time complexities for
solving a particular problem. The best path is chosen at run time, from a self-evaluation of
the dynamic behavior (e.g. timings) while processing a given instance of the problem. This
kind of auto-adaptation is called introspective in [3].
In the following, CRA loop refers here to algorithm 2.1, slightly modified to compute
det(A)/K. If we re-run the CRA loop, we use modular determinant results already com-
puted to recover det(A)/K mod p.

Theorem 4.1. Algorithm 4.1 correctly computes the determinant with probability 1 − ǫ.

Proof. Termination is possible only by the early terminated CRA loop or by the determinant
algorithm used in the last step. The choice of k from theorem 2.1(iii) and the choice of the
determinant algorithm from [13, 19] ensures that 1 − ǫ probability is obtained.

4.1 Complexity

The following theorem gives the complexity of the algorithm.

8



Algorithm 4.1 Extended Bonus Determinant Algorithm
Require: An integer n × n matrix A.
Require: 0 < ǫ < 1, an error tolerance.
Require: A stream S of random integers uniformly chosen from the set {0, 1 . . . , max(⌈(n +

1)H⌉, 81)}, H - Hadamard’s bound for A.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1 − ǫ.

1: k = log(1/ǫ)/⌈log( P ′

log
l
(H) )⌉; see Lem. 2.1(iii)

2: for i = 1 to k do

3: run the CRA loop for det(A) ; //see Alg. 2.1
4: if early terminated then

5: Return determinant;
6: end if

7: end for

8: imax = logλ(n) + logλ(logλ(n) + 1) + 9); //see Theorem 3.2
9: for j = 1, 2 do

10: i = 0; π̃
−1 = 1; K = 1;

11: while i < imax do

12: Generate bi a random vector of dimension n from the stream S;
13: Compute s̃n by solving Axi = bi; //see Section 2.2
14: if i = 0 then

15: i = 1;π̃0 = s̃n;
16: else

17: N := s̃nX , where X = [xl]l=0,...i; //see Section 3.2;
18: π̃i = 0;
19: for l = 1, . . . ⌊n/i⌋ do

20: π̃i = gcd(π̃i, det(Nl)), where Nl is the lth minor of N ;
21: end for

22: i=i+1;
23: end if

24: K = lcm(π̃i−1, K); π̃i−1 = K;
25: Resume CRA looping on d = det(A)/K; for at most the time of one system solving;
26: if early terminated then

27: Return d · K;
28: end if

29: if π̃i−1 = π̃i−2 then

30: Resume CRA looping on d = det(A)/K; for at most the time of (imax−i) system solvings;
31: if early terminated then

32: Return d · K;
33: else

34: i = imax;
35: end if

36: end if

37: end while

38: end for

39: run an asymptotically better integer determinant algorithm;

9



Theorem 4.2. The expected complexity of Algorithm 4.1 is

O≈
(

nω log(1/ǫ) + n3(log n + log(‖A‖))2 log(n)
)

where O≈ hides some log(log(n)) factors. The pessimistic complexity depends on the algo-
rithm used in the last step.

Proof. To analyze the complexity of the algorithm we would consider the complexity of
each step. With k defined as in the algorithm, the complexity of initial CRA iteration is
O (nω log(1/ǫ)). The system solving in the LIF algorithm is performed 2imax times with
log(‖B‖) = O(n log(n)), which results with a complexity of O(imaxn3(log(n) + log(‖A‖)2).
Considering the time limit, this is also the time of all CRA loop iterations. To compute

π̃i by means of the CRA determinant algorithm, we need O
(

⌊n/i⌋i4(log(i) + n(log(n) +

log(‖A‖) + log(‖B‖))
)

bit operations, which for i = 2, . . . , imax with imax being O(log(n))

is O∼(n2) and thus negligible.
With the expected number of invariant factors bounded by imax (see Thm.3.2), it is expected
that the algorithm will return the result before the end of the while loop, provided that
the under-estimation of π̃imax is not too big. But by updating s̃n O(log(n)) times and
updating the product π̃imax twice, it is expected that the overall under-estimation will be
O(1) (see Theorem 2.2(ii) and Lemma 3.8), thus it is possible to recover it by several CRA
loop iterations.

5 Experiments and Further Adaptivity

The described algorithm is implemented in the LinBox exact linear algebra library [8]. In a
preliminary version imax is set to 2 or 1 and the switch in the last step is not implemented.
This is however enough to evaluate the performance of the algorithm and to introduce
further adaptive innovations.
Comparing the data from table 5 we notice that the algorithm with imax = 1 (which is in fact
a slightly modified version of Abbott’s algorithm [1]) runs better for small n. Those timings
have been evaluated on a set of matrices which have the same Smith form as diag{1, 2, .., n}
and the number of invariant factors of about n

2 . For every matrix, with each step, the
size of sn−i decreases whilst the cost of its computation increases. This accounts for better
performance of Abbott’s algorithm, which computes only sn, in the case of small n. For
bigger n calculating sn−1 starts to pay out. The same situation repeats at each step.
The switch between winners can be explained by the fact that in some situations, obtaining
sn−i by LU -factorization (which costs log(sn−i)

log(l) the time of LU) outperforms system solving.
Then, this also holds for all consecutive factors and the algorithm basing on CRA wins. The
condition can be checked a posteriori by approximating the time of LUs needed to compute
the actual factor. We can therefore construct a condition that would allow us to turn to
the CRA loop in the appropriate moment. This can be done by changing the condition in
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n imax = 1 imax = 2 n imax = 1 imax = 2

100 0.17 0.22 300 5.65 5.53
120 0.29 0.33 350 9.76 9.64
140 0.48 0.55 400 14.99 14.50
160 0.73 0.78 600 57.21 54.96
180 1.07 1.16 800 154.74 147.53
200 1.49 1.51 1000 328.93 309.61
250 2.92 3.00 2000 3711.26 3442.29

Table 1: Comparison of the performance of Algorithm 4.1 with imax set to 1 and 2 on
engineered matrices.

line 24 (π̃i−1 = π̃i−2) to

log(
π̃i−1

π̃i−2
) 6

time(solving)

time(LU)
log(l),

if the primes used in the CRA loop are greater than l. This would result with a perfor-
mance close to the best and yet flexible. If, to some extend, sn−i could be approximated a
priori, this condition could be checked before its calculation. This would require a partial
factorization of sn−i+1 and probability considerations as in the appendix A and [11].
For a generic case of random dense matrices our observation is that the bound for the
number of invariant factors is quite crude. Therefore the algorithm 4.1 is constructed in
the way that minimizes the number of system solving to at most twice the actual number
of invariant factors for a given matrix. Under the assumption that the approximations s̃n

and π̃i are sufficient, this leads to a quick solution.
Indeed for random matrices, the algorithm nearly always stopped with early termination
after one system solving. This together with fast underlying arithmetics of FFLAS [7]
accounted for the superiority of our algorithm as seen in figure 5 where comparison of
timings for different algorithms is presented.

6 Conclusions

In this paper we presented an algorithm computing the determinant of an integer matrix
which expected time complexity is O

(

n3(log(n) + log(||A||))2 log(n)
)

. Our algorithm uses
an introspective approach so that its actual running time is only O

(

n3(log(n) + log(||A||))2k
)

if the number k of invariant factors is smaller than a priori expected. Moreover, the adap-
tive approach allows us to switch to the algorithm with best worst case complexity if it
happens that the number of nontrivial invariant factors is unexpectedly large. This adap-
tivity, together with very fast modular routines, allows us to produce an algorithm, to our
knowledge, faster by at least an order of magnitude than other implementations.
Ways to further improve the running time are to reduce the number of iterations in the
solvings or to group them in order to get some block iterations as is done e.g. in [2]. A
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Figure 1: Comparison of our algorithm with other existing implementation. Tested on ran-
dom dense matrices of the order 400 to 10000, with entries {-8,-7,. . . ,7,8} Using fast modular
routines puts our algorithm several times ahead of the others. Scaling is logarithmic.

modification to be tested, is to try to reconstruct sn with only some entries of the solution
vector x = n/d. Parallelization can also be considered to further modify the algorithm.
Of course, all the LU iterations in one CRA step can be done in parallel. An equivalently
efficient way is to perform several p-adic liftings in parallel, but with less iterations [6].
There the issue is to perform an optimally distributed early termination.
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A Proofs of theorems 3.1 and 3.2

In order to prove theorems stated in section 3.1, we will start with the following lemma.

Lemma A.1. For λ > 11 the sum over primes p:
∑

8<p<λ

(
1

λ
⌈λ

p
⌉)j can be bounded by (1

2)j .

Proof. We will consider primes from the interval λ
2k+1 6 p < λ

2k , k = 0, 1, . . . max{⌈log(λ)⌉−
3, 2} separately. For the kth interval ⌈λ

p ⌉ equals 2k+1. In each interval there are at most

⌈λ
4 ⌉ odd numbers and at most λ

4 primes. The reasoning goes as follows: if in the interval
there are more than 3 odd numbers, at least one of them is divided by 3 and so does not
count. For this to happen it is enough that λ > 12. We may therefore calculate:

∑

8<p<λ

(
1

λ
⌈λ

p
⌉)j 6

⌈log(λ)⌉−3
∑

k=0

λ

2k+2
(
2k+1

λ
)j 6

1

2λj−1
(2⌈log(λ)⌉−2)j−1

6 (
1

2
)j .

Remark A.2. For λ = 2l we may consider primes p > 4.

Remark A.3. If we exclude {2,3,5,7,8,16}, we get the same bound for
∑

k∈N

∑

8<pk<λ

(
1

λ
⌈ λ

pk
⌉)j .

Proof.[Theorem 3.1] The idea of the proof is similar to that of [11]. Let A be a random
matrix with entries chosen uniformly and randomly from the set {0, 1, 2 . . . λ − 1}. Let
MDepi(p) denote an event that the submatrix Ai, including the first i columns of A mod
p has rank at most i − 2 over Zp.
We are now going to find P(MDepi(p) | ¬MDepi−1(p)). Since the event MDepi−1(p) did
not occur, Ai−1 has p-rank (i − 2) or (i − 1). For MDepi it must be (i − 2), thus, there
exists a set of (i− 2) rows Ri−2 which has the full rank. Consider any row vj that is left. If
vj is a combination of Ri−2 the last (ith) entry of vj is determined mod p. For λ > p this
means that the probability that vj is a combination of Ri−2 is at most λ−1. For p < λ this
probability is 1

λ⌈λ
p ⌉ which is always less than or equal to 2

p+1 . As there are n− i+2 vectors
outside Ri−2, the probability that none of them is linearly independent with Ri−2 over Zp

is at most ( 2
p+1)n−i+2 for p < λ and ( 1

λ )n−i+2 for p > λ.
Since P(MDepi(p) | ¬MDepi−1(p)) > P(MDepi(p)∧¬MDepi−1(p)), we have P(MDepi(p)) 6

P(
⋃i

j=1(MDepj(p) ∧ ¬MDepj−1(p))) which can be bounded by ( 2
p+1)n−i+2 p+1

p−1 for p < λ

and ( 1
λ)n−i+2 λ

λ−1 for p > λ.
Let the number of invariant factors divided by p be greater than j. The rank of A mod p is
then at most n−j over Zp. This in consequence means that for j > 1 the submatrix An−j+2
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has the rank at most n− j, so the event MDepn−j+2(p) is fulfilled. Therefore matrix A has
at least j invariant factors divided by p with probability at most

(
2

p + 1
)j

p + 1

p − 1
, p < λ

(
1

λ
)j

λ

λ − 1
, p > λ. (2)

Now the expected number of invariant factor divided by p is not greater than

3 + 3

j=n
∑

j=3

(
2

3
)j = 3 + 9(

2

3
)3 6 6, p = 2,

1 +

j=n
∑

j=1

(
2

p + 1
)j

p + 1

p − 1
= 1 +

2(p + 1)

(p − 1)2
6 3, 2 < p < λ,

1 +
λ

(λ − 1)2
< 2, p > λ > 2. (3)

Proof.[Theorem 3.2] In addition
to MDepi(p) introduced earlier, let Depi denote an event that the first i columns of A are
linearly independent and MDepi, an event that either of MDepi(p) occurred. Recall that
P(Dep1 ∨ MDep1(p)) 6 λ−n, and P(Depi | ¬(Depi−1 ∨ MDepi−1(p))) 6 λ−n+i−1.
To bound P(MDepi | ¬(Depi−1 ∨ MDepi−1(p))) we sum the results for all primes. For
p < λ, i 6 n − 1 the sum can be bounded by

(
2

3
)n−i+2 +

∑

λ>p>8

(
1

λ
⌈λ

p
⌉)n−i+2

6 (
2

3
)n−i+2 + (

1

2
)n−i+2,

thanks to the lemma A.1.
For primes p > λ we should estimate the number of primes dividing the (i − 1)th minor.
By the Hadamard’s bound (notice that Depi−1 does not hold), the minors are bounded in

absolute value by ((i− 1)λ2)
i−1

2 . Therefore the number of primes p > λ dividing the minor
is at most i−1

2 (logλ(i − 1) + 2)). Summarizing,

P((MDepi ∧ Depi) |¬(Depi−1 ∨ MDepi−1(p)))

6 (
1

λ
)n−i+1 + (

2

3
)n−i+2 + (

1

2
)n−i+2 +

i − 1

2
(logλ(i − 1) + 2) (

1

λ
)n−i+2

for 2 6 i 6 n − 1.
By the same argument as in the previous proof

P(MDepn−j+2) 6 λ−n + (
1

λ
)j−1 λ

λ − 1
+ 3(

2

3
)j + 2(

1

2
)j +

n − j + 1

2
(logλ(n − i + 1) + 2) (

1

λ
)j

λ

λ − 1
.

(4)
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Similarly, the probability that the number of invariant factors at least j is greater than
P(MDepn−j+2).
To calculate the expected number of invariant factors we first consider the case

n − j + 1

2

(

logλ(n − j + 1) + 2
)

(
1

λ
)j

λ

λ − 1
< 1.

It suffices that n(logλ(n) + 1) 6 λj, and therefore logλ(n) + logλ(logλ(n) + 1) 6 j. Conse-
quently, the expected number of invariant factors is

⌈logλ(n)+logλ(logλ(n)+1)⌉
∑

j=1

1 +

n
∑

j=⌈logλ(n)+logλ(logλ(n)+1)⌉+1

(

λ−n + (
1

λ
)j−1 λ

λ − 1
+ 3(

2

3
)j+

+ 2(
1

2
)j +

n − j + 1

2
(logλ(n − j + 1) + 2))(

1

λ
)j

λ

λ − 1

)

= ⌈logλ(n) + logλ(logλ(n) + 1)⌉+

+ 1 +
λ + 1

(λ − 1)2
+ 4 + 1 6 logλ(n) + logλ(logλ(n) + 1) + 9.

B Modular determinant

Lemma B.1. For n × n matrix A with entries chosen randomly and uniformly from the
set {0, 1 . . . S − 1}, the probability that pl < S divides the determinant det(A) is at most 3

pl

for p 6= 2, 3, 5 and 4
pl for p = 2, 3, 5 and S > 81.

Proof. To check whether ordp(det(A)) > l we will consider a process of diagonalization for
A mod pl as described in Algorithm LRE of [5]. It consists of diagonalization and reduction
steps. At ith diagonalization step, if an invertible entry is found, it is placed in the (i, i)
pivot position and the ith row and column are zeroed. If no invertible entry is found, we
proceed with a reduction step i.e. we consider the remaining (n − i + 1, n − i + 1) minor
divided by p. The problem now reduces to determining whether ordp of an (n−i+1, n−i+1)
matrix is greater than l − n + i − 1.
In the probabilistic consideration we need to determine the distribution of entries mod pi

after each reduction step. First, for A with entries chosen uniformly and randomly from
the set {0, 1 . . . S}, the probability that an entry is determined mod pi, i 6 l, is less than
or equal to βi(0) = 1

S ⌈ S
pi ⌉. After k reductions and m diagonalization steps we consider

i 6 l − 2k (each reduction is performed on a matrix of order at least 2 and reduces the
determinant by at least p2) and a conditional probability of choosing the entries of a matrix

Am
k determined mod pi with a probability at most βi(k) = 1

Nk
⌈Nk

pi ⌉, where Nk =
⌈

⌈ ⌈ S
p ⌉

...

⌉

p

⌉

(the division is repeated k times). Since k is less than or equal to ⌈l/2⌉− 1 and l 6 logp(S),
we have Nk > S

pk >
√

S and βi 6 2
pi throughout the diagonalization process.
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We will estimate the probability inductively. The estimations are performed for p > 5.
First, for l = 1, we recall the result of [20, p.62] that

P (p | det(A)) 6

n
∑

i=1

β1 6
3

p
.

Then for n = 2, l = 2,

P (p2 | det(A)) 6 (1 − P (p | aij∀i,j))β2 + P (p | aij∀i,j) 6 β2 + (β1)
22

6
3

p2
.

Again for n = 2, 1 < l < n this becomes

P (pl | det(A)) 6 (1 − P (p | aij∀i,j))βl + P (p | aij∀i,j)P (pl−2 | det(A1)).

Notice, that we sum over all possible diagonalization/reduction steps combinations. βi

bounds the probability of choosing the last diagonal entry determined mod pi. A1 is equal
to A/p. By induction for p > 5, P (pl | det(A)) can be bounded by 2

pl + (2
p)4 3

pl−2 6
3
pl .

Now we will consider n > 2. Again we can sum over all possible diagonalization/reduction
steps combinations and the resulting bound for the probability is

P (pl | det(A)) 6

l
∑

i=n

(1 − P (p | aij∀i,j6n)) . . . (1 − P (p | an−i+1
ij ∀i,j6i+1))β

i2
1

+

2
∑

i=l−1

(1 − P (p | aij∀i,j6n)) . . . (1 − P (p | an−i+1
ij ∀i,j6i+1))β

i2
1 P (pl−i | det(Ai

1))

+ (1 − P (p | aij∀i,j6n)) . . . (1 − P (p | an−1
ij ∀i,j62))βl

for l 6 n and similarly for l > n

P (pl, A) 6

2
∑

i=n

(1 − P (p | aij∀i,j6n)) . . . (1 − P (p | an−i+1
ij ∀i,j6i+1))β

i2

1 P (pl−i | det(Ai
1))

+ (1 − P (p | an−i+1
ij ∀i,j6n)) . . . (1 − P (p | an−1

ij ∀i,j62))βl.

Again, we can use the induction to get

P (pl | det(A)) 6
(

l
∑

i=2

(
2

p
)i

2 3

pl−i

)

+
2

pl
6

∞
∑

i=0

(
3 · 24

pl+2
(
25

p4
)i) +

2

pl
6

3 · 24p4

pl+2(p4 − 25)
+

2

pl
6

3

pl

for p > 5. For p = 2, 3, 5 by similar calculations we can prove that, provided that Nk > 9,
P (pl, A) 6

4
pl . The condition on Nk is satisfied as soon as

√
S > 9 i.e. S > 81.
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