
HAL Id: hal-00014044
https://hal.science/hal-00014044v1

Preprint submitted on 17 Nov 2005 (v1), last revised 13 Sep 2007 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An introspective algorithm for the integer determinant
Jean-Guillaume Dumas, Anna Urbańska

To cite this version:
Jean-Guillaume Dumas, Anna Urbańska. An introspective algorithm for the integer determinant.
2005. �hal-00014044v1�

https://hal.science/hal-00014044v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

14
04

4,
 v

er
si

on
 1

 -
 1

7
N

ov
 2

00
5

An introspective algorithm for the integer determinant

Jean-Guillaume Dumas∗ Anna Urbanska∗

Abstract

We present an algorithm computing the determinant of an integer matrix A. The
algorithm is introspective in the sense that it uses several distinct algorithms than run
in a concurrent manner. During the course of the algorithm partial results coming from
distinct methods can be combined. Then, depending on the current running time of each
method, the algorithm can emphasize a particular variant. With the use of very fast
modular routines for linear algebra, our implementation is an order of magnitude faster
than other existing implementations. Moreover, we prove that the expected complexity
of our algorithm is only O

(

n3(log(n) + log(||A||))2 log(n)
)

bit operations, where ||A|| is
the largest entry in absolute value of the matrix.

1 Introduction

One has many alternatives to compute the determinant of an integer matrix. Over a field,
the computation of the determinant is tight to that of matrix multiplication via block
recursive matrix factorizations [11]. On the one hand, over the integers, a näive approach
would induce a coefficient growth that would render the algorithm not even polynomial. On
the other hand, over finite fields, one can nowadays reach the speed of numerical routines [6].
The classical approach is thus to reduce the computation modulo some primes and to recover
the integer determinant from the modular computations. For this, at least to variants are
possible: Chinese remaindering and p-adic lifting. The first variant requires either a good
bound on the size of the determinant or an early termination probabilistic argument [7,
§4.2]. It thus achieves an output dependant bit complexity of O (nω log(|det(A)|)) where ω
is the exponent of matrix multiplication (3 for the classical algorithm, and 2.375477 for the
Coppersmith-Winograd method). Of course, with the coefficient growth, the determinant
size can be as large as O(n log(n)) (Hadamard’s bound) thus giving a large worst case
complexity.
Now the second variant uses system solving and p-adic lifting [3] to get an approximation of
this determinant with a O

(

n3(log(n) + log(‖A‖))2
)

bit complexity [14], , where ‖A‖ is the
largest entry in absolute value of the matrix. Indeed, every integer matrix is unimodularly
equivalent to a diagonal matrix S = diag{s1, . . . , sn} with si|si+1. This means that the
there exist integer matrices U, V with detU,det V = ±1, such that A = USV . si are called

∗Université de Grenoble, laboratoire de modélisation et calcul, LMC-IMAG BP 53 X, 51 avenue des

mathématiques, 38041 Grenoble, France. {Jean-Guillaume.Dumas, Anna.Urbanska}@imag.fr

1

invariant factors of A. Then, solving a system with a random right hand side will reveal sn

as the common denominator of the solution vector entries with high probability.
The idea of [1] is thus to combine both approaches, approximate the determinant by p-adic
lifting and recover only the remaining part (d/sn) via Chinese remaindering. They where
thus able to prove an expected complexity of O(nω+1) bit operations.
Then G. Villard remarked that at most O(

√
n) invariant factors can be distinct and that,

in general only the O(log(n)) last ones are non trivial [10]. This remark, together with a
preconditioned p-adic solving computing the i-th invariant factor enable them to produce a
O∼(n2+ω/2) worst case algorithm, where O∼ hides some logarithmic factors, and an algo-
rithm with an expected O(n3(log(n)+ log(‖A‖))2 log2(n)) complexity. Note that the actual
best worst case complexity algorithm is O∼(n2.697263 log(‖A‖)), which is O∼(n3.2 log(‖A‖))
without fast matrix multiplication, by [13]. Unfortunately, these last two worst case com-
plexity algorithms, though asymptotically better, are not the fastest for the generic case or
for the actual matrix sizes.
In this paper, we propose a new way to extend the idea of [15, 16] to get the last consecutive
invariant factors with high probability in section 3.2. Then we combine this with the scheme
of [1] in an introspective way as explained in section 4. This enables us to prove in section 4.1
an expected complexity of O

(

n3(log(n) + log(‖A‖))2 log(n)
)

bit operations, gaining a log(n)
factor and improving the constants from [10]. Moreover, we are able to detect the worst
cases during the course of the algorithm thus enabling us to switch to the asymptotically
fastest method. In general this last switch is not required and we show in section 5 that
used with the very fast modular routines of [5, 6] and the LinBox library [4], our algorithm
can be an order of magnitude faster than other existing implementations.

2 Base Algorithms and Procedures

In this section we present the procedures in more detail and describe their probabilistic
behavior. We start by a brief description of the properties of Chinese Remaindering loop
(CRA) with early termination (ET) (see [8]), then proceed with LargestInvariantFactor
algorithm to compute sn (see [1, 10, 15]). [1]). We end the section with a sharpening of the
result of [10] on the expected number of invariant factors.

2.1 Output dependant Chinese Remaindering Loop (CRA)

CRA is a procedure based on the Chinese remainder theorem. Determinants are computed
modulo several primes pi. Then the determinant is reconstructed modulo p1 · · · pi via the
Chinese reconstruction. The integer value of the determinant is thus computed as soon as
the product of the pi exceeds it. We know that the product is big enough if it exceeds some
upper bound on the integer determinant or, probabilistically, if the reconstructed value
remains identical for several successive additions of modular determinants. The principle of
early termination (ET) is thus to stop the reconstruction before reaching the upper bound,
as soon as the determinant remains the same for several steps [8].

2

The following algorithm is an outline of a procedure to compute the determinant using
CRA loop with early termination, correctly with probability 1 − ǫ. If primes greater than
l are randomly sampled from a set P ; if H is an upper bound for the determinant (e.g.
Hadamard’s bound: |det(A)| ≤

√

n||A||n) and if rn is the reconstructed result after n steps
and if det(A) 6= rn then, at most logl

H−rn

p0p1...pn−1
distinct primes pn+1 would yield rn+1 = rn

[8]. Thus, if ri remains the same for k steps, either det(A) = rn or we have constantly
chosen bad primes. This happens only in that proportion:

(

logl
H−rn

p0p1...pn−1

|P |

)k

. (1)

Therefore, the probabilistic early terminated Chinese remainder determinant is as follows:

Algorithm 2.1 Early Terminated CRA

Require: An integer matrix A.
Require: 0 < ǫ < 1.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1 − ǫ.

1: H =
√

n||A||n; // Hadamard’s bound
2: repeat

3: Get a prime pi from the set P;
4: Compute result qi mod pi; //via LU factorization of A modulo pi.
5: Reconstruct ri, the determinant modulo p1 · · · pi; // by Chinese remaindering

6: k = log(
logl

H−ri
p0p1...pi

|P |)/ log(ǫ);

7: until ri−k = · · · = ri or
∏

pi > H

To compute the modular determinant in step 2.1 we use LU factorization algorithm and
we refer to it as LU iteration. Early termination is particularly useful in the case when the
computed value is much smaller than the a priori bound. Therefore the running time of
this procedure is output dependant.

2.2 Largest Invariant Factor

A method to compute sn for integer matrices was first stated by V. Pan [14] and later
in the form of the LargestInvariantFactor procedure (LIF) in [1, 10, 8, 15]. The idea is
to obtain a divisor of sn by computing a rational solution of the linear systems Ax = b.
If b is chosen at random for a sufficiently large set, then the computed divisor can be as
close as possible to sn with high probability. Indeed, with A = USV , we can equivalently
solve SV x = U−1b for y = V x, and then solve for x. As U and V are unimodular, the
least common multiple of the denominators of x and y, d(x) and d(y) satisfies d(x)|d(y)|sn.
Thus, solving Ax = b via p-adic lifting [3], enables us to get sn with high probability at cost
of O(n3(log(n) + log(‖A‖))2) independent of the size of sn.

3

The following algorithm takes as input parameters B and r which are used to control the
probability of correctness. r is the number of successive solvings and B the size of the
random set from which values of the random vector b are chosen.

Algorithm 2.2 LIF

Require: An integer n × n matrix A.
Require: A stream Sβ of random integers uniformly chosen from the set {0, 1 . . . , β − 1}.
Require: A number of iterations r ≤ 1.
Ensure: s̃n, a factor of sn(A).

s̃n equals sn(A) with probability depending on r and β given by Theorem 2.1

1: s̃n = 1;
2: for i = 1 to r do

3: Generate bi a random vector of dimension n for the stream Sβ;
4: Solve Axi = bi over the rationals using Dixon lifting;
5: d := lcm(denominators of entries of xi);
6: s̃n = lcm(s̃n, d);
7: end for

8: Return: s̃n.

The following theorem characterizes the probabilistic behavior of the LIF procedure.

Theorem 2.1. Let A be a n × n matrix, H its Hadamard’s bound. The output s̃n of
Algorithm 2.2 is characterized by the following properties.

i) Let r = 1, p be a prime, l > 1, then P(pl|sn(A)
s̃n

) 6
1
β ⌈

β
pl ⌉;

ii) if r = 2, β = ⌈(n + 1)H⌉ then E
(

log(sn(A)
s̃n

)
)

= O(1);

iii) if r = 2, β = ⌈(n + 1)H⌉ then sn = s̃n with probability at least 2/3;

iv) if r = ⌈2 log(log(H))⌉, β > 2 then E
(

log(sn(A)
s̃n

)
)

= O(1);

v) if r = log(log(H)) + log(1
ǫ), 2 | β and β > 3 then sn(A) = s̃n with probability at least

1 − ǫ;

Proof. The proofs of (i), (ii) and (iv) are in to [1]. The proof of (iii) is in [10]. To prove (v)
we slightly modify the proof of (iv) in the following manner. From (i) we notice that for
every prime p dividing sn, the probability that it divides the missed part of sn(A) satisfies:

P(p | sn

s̃n
) 6 (

1

2
)r.

As there are at most log(H) such primes, we get

P(sn = s̃n) 6 1 − log(H)(1/2)r 6 1 − log(H)2− log(log(H))−log(1

ǫ
) = 1 − log(H)

1

log(H)
ǫ.

4

2.3 Abbott-Bronstein-Mulders, Saunders-Wan and Eberly-Giesbrecht-
Villard ideas

Now, the idea of [1] is that one can combine both the Chinese remainder and the LIF ap-
proach. Indeed, one could compute first sn and then reconstruct only the remaining factors
of the determinant d/sn. The complexity of this algorithm is O

(

n3 log(| det(A)/sn(A) |)
)

which is unfortunately O∼(n4) in the worst case. However, nothing is known about the
algorithm expected complexity.
Now Saunders and Wan [15, 16] proposed a way to compute not only sn but also sn−1

(which they call a bonus) in order to reduce the size of the remaining factors d/(snsn−1).
The complexity doesn’t change.
Then, Eberly, Giesbrecht and Villard have shown that the expected number of non triv-
ial invariant factors is small, namely less than 3logλ(n) + 32 in general if the entries of
the matrix are chosen in a set of λ consecutive integers [10]. As they also give a way
to compute any si(A) this gives an algorithm with expected complexity O(n3(log(n) +
log(‖A‖))2 log(n)) logλ(n).
Our idea is to extend the method of Saunders and Wan to get the last O(logλ) invariant
factors of A slightly faster than by [10]. Then, we are able to remove one of the log(n)
factors of the expected complexity. Moreover, we will show in the following sections that
this enables to build an adaptive algorithm solving a minimal number of systems.
We should also mention, that it should be possible to change a log(n) factor in the expected
complexity of [10] to a log log(n) employing the bound for the expected number of invariant
factors twice. Indeed their extra log(n) factor comes from the algorithm where n non trivial
invariant factors are to be computed. But in the expected case, as they have only log(n) of
those, this extra factor could be consequently reduced.

3 Computing the log(n) last invariant factors

3.1 On the number of invariant factors

The expected performance of our algorithm depends strongly on the number of non trivial
invariant factors of A. If there is only one invariant factor, as it seems to be the case for
many matrices, then the algorithm runs in approximately the time of solving systems. The
sign of the determinant can then quickly be determined by a few CRA loop iterations. The
performance of early termination being especially outstanding as det(A)/K is in general
several times smaller than H/K.
The result in [10] says that a n × n matrix with entries chosen randomly and uniformly
from a set of size λ has the expected number of invariant factors bounded by 3 log(n) + 32.
In search for more exact result we prove the following theorems.

Theorem 3.1. Let p be a prime. The expected number of non-trivial invariant factors
divisible by p is at most 6.

Theorem 3.2. The expected number of nontrivial invariant factors is at most logλ(n) +
logλ(logλ(n) + 2) + 9.

5

Both proofs can be found in the appendix. Notice, that in the average case our improvement
allows us to consider only primes less than λ in the case where λ > n.

3.2 Extended Bonus Idea

With our estimation of the expected number of invariant factors, we may assume that we
do not have to compute more than logλ(n) + logλ(logλ(n) + 2) + 9 of those. If it turns
out that the CRA loop does not stop at this point, we can switch to another algorithm to
achieve a better worst case complexity.
In his thesis [16], Z. Wan introduces an idea of computing the penultimate invariant fac-
tor (i.e. sn−1) of A while computing sn using 2 system solvings. The additional cost is
comparatively small, therefore sn−1 is refereed as bonus. Here, we extend this idea to the
computation of the (n − k)th factor with about (k + 1) solvings.
Suppose n(j), j = 1, 2 . . . (k + 1) is the vector of numerators of the rational solution x(j)

of the equation Ax(j) = b(j), where b(j) is a random vector. The x(j) have a common
denominator s̃n. Let B denote the n × (k + 1) matrix [b(j)]j=1,...,k+1. Following Wan, we
notice that sn(A)A−1 is an integer matrix, the Smith form of which is equal to

diag(
sn(A)

sn(A)
,

sn(A)

sn−1(A)
, . . . ,

sn(A)

s1(A)
).

Therefore, we may compute sn−k(A) when knowing sk+1

(

sn(A)A−1
)

. The trick is that
the computation of A−1 is not required: we can perturb A by right multiplying it by B.
Indeed, sn(A)A−1B = [x(j)]j=1,...,k+1 is already computed once k + 1 systems have been
solved and sk+1(sn(A)A−1B) is a multiple of sk+1(sn(A)A−1). Obtaining this multiple
from the solution vectors, is then only to perform several (k + 1) × (k + 1) determinants.
We detail this in the following theorem:

Theorem 3.3. Let M be a n×n integer matrix. Let Ri be a random integer n× i matrices,
n > i, with entries in {0, 1 . . . , β − 1}. Then the greatest common divisor of µ independent
i× i minors of MRi is equal to sn−i(M) with probability at most 1− 1

2µ−1 as soon as µ > 2.
Moreover, if µ > 2, the expected value of sn(MRi)/snM is 1.

Proof. We first need to prove that si(M)|si(MRi) for a random n × i matrix Ri. Consider
the Smith form of MRi modulo si(M). As the modular rank of MRi is less than i, si(MRi)
mod si(M) = 0 as required, see [16, 15]. This property holds also for a product LiM as
well as for the product of three matrices LiMRi. However, for MRi we may additionally
use the following argumentation.
Notice that the Smith form of the product matrix MRi is equivalent to the product of the
Smith forms of M and Ri. Therefore it is equal to that of M provided Ri has a trivial
Smith form. This is very likely to happen when Ri is highly rectangular. It suffices that
di(Ri) = 1, where di is the gcd of all i × i minors. As the matrix Ri is chosen randomly,
there are at least ⌊n

i ⌋ independent minors. Now for a given prime p, the probability that p
divides one of the i × i minor of Ri is 1

p , thus the probability that p divides µ independent

6

minors is 1
pµ . Therefore the probability that their gcd is non-trivial is the sum of these

probabilities over all possible primes. Now the i × i minors of Ri are bounded by
√

βi
i
, by

Hadamard. The overall probability is then

∑

prime p, p<
√

βi
i

(

1

p

)µ

< ζp(µ)

where ζp is the prime zeta function (the sum over all the primes). For instance, ζp(2) is
0.452247 and ζp(9) is 0.000993604. Trivially, 1

2µ < ζp(µ) and bounding the other terms by
∫∞
2

1
xµ dx gives ζp < 1

2µ + 1
(µ−1)2µ−1 < 1

2µ−1 for µ > 2. For µ = 2, 0.452247 < 0.5 and the

bound is also correct.
The expected size of sn(MRi)/sn(M) can be calculated as the sum over primes p

∑

p<
√

(βi)i

∞
∑

l=1

log(pl)

(

1

pl

)µ

6
∑

p<
√

(βi)i

∞
∑

l=1

(

1

pl

)µ−1

=
∑

p<
√

(βi)i

1

pµ−1 − 1

For µ > 2 this value is at most 2ζp(µ − 1), which is less than 1.

3.3 Last invariant factors

Using the analysis of the previous section we remark that the number k of non-trivial
invariant factors is small in general. The size of the entries in M = sn(A)A−1 can however
be as large as O(n(log(n) + log(‖A‖))). We therefore propose an algorithm minimizing the
effect of the size of the entries, and do not try to minimize the effect of k. Moreover, to get

a good probability of success, we will require that k 6
−1+

√
1+4n

2 . If k = O(log(n)), this is
easily guaranteed.
First, notice that si = di/di−1. We can therefore attempt to calculate di using some minors
of MRi. As before, the gcd of j minors, can differ from di with probability less than
ζp(j) 6 2−j+1. To obtain k factors of M we can compute them as a sequence so that di−1

is already computed at step i. The first step is to compute the gcd of all the entries of the
matrix. The algorithm that computes k smallest invariant factors of A with probability at

least 1 − ǫ as soon as for k 6
−1+

√
1+4n

2 is as follows.

Theorem 3.4. If k 6
−1+

√
1+4n

2 , algorithm 3.1 correctly computes s1(A), . . . sk(A) with
probability at least 1 − ǫ.

Proof. All k factors are correct if all di are correct. We recognize two cases in which di is
overestimated. First, an unlucky matrix Ri might have been chosen and second, the number
of minors in step 9 can be insufficient. As we repeat our choice N times, the probability of
this is at most 2P (Nµi) in step i. The overall probability of error for k factors is now

k
∑

i=2

2P (Nµi) <

k
∑

i=2

2−Nµi+2.

7

Algorithm 3.1 k-LastInvariantFactors

Require: An integer n × n matrix M = (aij)i,j=1..n.
Require: A stream Sβ of random integers uniformly chosen from the set {0, 1 . . . , β − 1}.
Require: A number k 6

−1+
√

1+4n
2 of factors to compute.

Require: 0 < ǫ < 1
Ensure: s̃1, . . . , s̃k, multiples of s1(M), . . . sk(M).

1: s̃1 = d1 = gcd(aij : i, j = 1 . . . n);

2: N = ⌈log(8/ǫ)⌉
⌊n/k⌋ ;

3: for i = 2 to k do

4: µi = ⌊n
i ⌋;

5: di = 0;
6: for t = 1 to N do

7: generate a random n × i matrix Ri;
8: calculate MRi;
9: choose µi distinct i × i submatrices of MRi and calculate minors mj, j = 1, . . . µi;

10: di = gcdj=1...µi
(di,mj);

11: end for

12: si = di

di−1
;

13: end for

For every m there are at most (n
m − n

m+1) i such that µi = ⌊n
i ⌋ = m. We may therefore

estimate

µ2
∑

m=µk

n

m(m + 1)
2−Nm+2 < 2−Nµk+3 n

µk(µk + 1)
= 2−Nµk+3 n

⌊n
k ⌋(⌊n

k ⌋ + 1)
6 2−Nµk+3 k2

n − k
.

We force k to be less than −1+
√

1+4n
2 so that k2

n−k 6 1. Then, N = ⌈log(8/ǫ)⌉
⌊n/k⌋ is chosen so

that 2−Nµk+3 6 ǫ.

Theorem 3.5. The complexity of computing first k factors of A, k 6
−1+

√
1+4n

2 by algo-
rithm 3.1 with probability at least 1−ǫ is O

(

log(16/ǫ)(n2k log(‖M‖) + nk4(log(k) + log(‖M‖)))
)

.

Proof.
The cost of all matrix multiplications is

∑k
i=2 N(n2i) log(‖M‖) which is less than Nk(k +

1)n2 log(‖M‖). For the choice of N and k we have Nk 6 ⌈log(8/ǫ)⌉ 6 log(16/ǫ). The cost
of matrix products is therefore O

(

log(16/ǫ)n2k(log ‖M‖)
)

. The overall cost of minors com-
putation can be bounded by the cost of calculating n k×k minors kN times. As k×k deter-
minant can be computed in O(k4(log(k)+log(‖M‖))) time (for simplicity we considered the
complexity of CRA determinant algorithm here) we get O

(

log(16/ǫ)nk4(log(k) + log(‖M‖))
)

and the overall complexity is as required.

8

4 Introspective Algorithm

Now we should incorporate algorithms 2.1, 2.2 and 3.1 in a form of an introspective al-
gorithm. CRA loop refers here to algorithm 2.1, slightly modified to compute det(A)/K.
If we re-run CRA loop, we use modular determinant results already computed to recover
det(A)/K mod p. Notice that the loop of algorithm 3.1 has been split so that solutions
obtained by system solving can be used at each step, instead of another random matrix Ri.

Theorem 4.1. Algorithm 4.1 correctly computes the determinant with probability 1 − ǫ.

Proof. Termination is possible only by early termination of the CRA loop or by the deter-
minant algorithm used in the last step. In both cases 1 − ǫ probability is ensured.

4.1 Complexity

The following theorem gives the complexity of the algorithm.

Theorem 4.2. The expected complexity of Algorithm 4.1 is

O∼ (nω log(1/ǫ) + n3(log n + log(‖A‖))2 log(n)
)

where O∼ hides some log(log(n)) factors. The pessimistic complexity is that of the algorithm
used in the last step.

Proof. To analyze the complexity of the algorithm we would consider the complexity of each
step. With k defined as above, the complexity of initial CRA iteration is O∼ (nω log(1/ǫ)).
The loop will iterate for at most (imax + 1)N iterations, giving the complexity of system
solving equal O

(

(imax + 1)Nn3(log(n) + log ‖A‖)2
)

. It is the same for the CRA loop used
later, because of the time limit. The choice of N ensures a probability 1 − δ (here we
set δ = n−1) of computing exactly the (imax + 1) invariant factors of sn(A)A−1. This
results with a complexity O

(

log(16n)ni4max(log(imax) + n log(n))
)

for this task. To resume
the CRA loop we only perform modular division and reconstruct the result using Chinese
remaindering. The cost of this step is thus negligible when compared with the others. For
the last step we propose the O∼(n3.2 log(‖A‖)) algorithm of Kaltofen [13] and refer to [12]
for a survey on complexity of determinant algorithms.
As the expected number of invariant factors is equal to imax, we may suspect that the
algorithm will not reach the last step and thus the worst case complexity. The choice of
N tries to ensure that the under-estimation is a small constant and thus can be recovered
by the CRA loop steps. However, we must still assume in this case, that all factors were
computed without over-estimation. Careful examination yields that with probability at least
1− δ the complexity of the algorithm is Nn3(log(n) + log ‖A‖)2∑imax

i=1 iP(#factors = i) +
n3.2P(#factors > imax) which can be evaluated as Nn3(log(n)+ log ‖A‖)2E(#factors)+
n3.2P(#factors > imax). With probability at most δ the algorithm still runs with O∼(n3.2)
complexity. Summarizing, we may notice, that the when E(#factors) < imax the algorithm
runs in the O∼ (log(16/δ)n3(log(n) + log ‖A‖)2

)

time with probability at least 1 − δ and

9

Algorithm 4.1 Extended Bonus Algorithm

Require: An integer n × n matrix A.
Require: 0 < ǫ < 1, an error tolerance.
Require: A stream Sβ of random integers uniformly chosen from the set {0, 1 . . . , β − 1}.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1 − ǫ.

1: k = log(logl(H)
|P |)/ log(ǫ); //H - Hadamard’s bound for A

2: for i = 1 to k do

3: run the CRA loop for det(A) ; //see Alg. 2.1
4: if early terminated then

5: Return determinant;
6: end if

7: end for

8: K = 1;j = 0;i = 0;

9: imax = min{2(logλ(n) + logλ(logλ(n) + 2) + 9), n
3 , −1+

√
1+4n

2 }; //the expected number
of nontrivial factors

10: N = ⌈log(8n)⌉
⌊n/imax⌋ ;

11: while i < imax do

12: Generate bj a random vector of dimension n from the stream Sβ; j=j+1;
13: Compute s̃n by solving Axj = bj; //see Alg. 2.2
14: if i = 0 then

15: i = 1
16: else if (i + 1)N 6 j then

17: compute s̃n−i = s̃n/s̃i+1(sn(A)A−1) using (i + 1)th step of Alg. 3.1 and matrices
[b1 . . . bN(i+1)]

18: i=i+1;
19: end if

20: K = s̃n · · · · · s̃n−i;
21: Resume CRA looping on d = det(A)/K; for at most the time of one system solving.
22: if early terminated then

23: Return d · K;
24: end if

25: if s̃n−i = 1 then

26: Resume CRA looping on d = det(A)/K; for at most the time of (imax − i) system
solvings;

27: if early terminated then

28: Return K;
29: else

30: i = imax;
31: end if

32: end if

33: end while

34: run an asymptotically better integer determinant algorithm;

10

n imax = 1 imax = 2 n imax = 1 imax = 2

100 0.17 0.22 300 5.65 5.53
120 0.29 0.33 350 9.76 9.64
140 0.48 0.55 400 14.99 14.50
160 0.73 0.78 600 57.21 54.96
180 1.07 1.16 800 154.74 147.53
200 1.49 1.51 1000 328.93 309.61
250 2.92 3.00 2000 3711.26 3442.29

Figure 1: Comparison of the performance of Algorithms 4.1 with imax set to 1 and 2 on
engineered matrices.

in O∼(n3.2) time with probability at most P(#factors > imax) + δ. Setting imax =
2E(#factors) forces P(#factors > imax) to be O(n−1) (see (4)) and the choice of δ = 1

n
suffices to say that the expected complexity is O∼ (log(16n)n3(log(n) + log ‖A‖)2

)

.

5 Experiments and Further Adaptivity

The described algorithm was implemented in the LinBox exact linear algebra library [4].
In a preliminary version imax was set to 2 or 1 and the switch in the last step was not
implemented. This was however enough to evaluate the performance of the algorithm and
to introduce further adaptive innovations.
Comparing the data from table 5 we notice that the algorithm with imax = 1 (which is in
fact a slightly modified version of Abbott’s algorithm [1]) runs better for small n. Those
timings have been evaluated on a set of specially engineered matrices which have the same
Smith form as diag{1, 2, .., n} and the number of invariant factors of about n

2 .
For this matrices, with each step the size of sn−i decreases whilst the cost of its computation
increases. This accounts for better performance of Abbott’s algorithm, which computes only
sn, in the case of small n. For bigger n calculating sn−1 started to pay out, but we did not
yet attempt to compute the next (though still nontrivial) factor.
The switch between winners can be explained by the fact that in some situations, obtaining
factor sn−i by LU -factorization (which costs log(sn−i)

l the time of LU) outperforms system
solving. Then, this also holds for all consecutive factors and the algorithm basing on CRA
wins. The condition can be checked a posteriori by approximating the time of LUs needed
to compute the actual factor. We can therefore construct a condition that would allow us
to turn to the CRA loop in the appropriate moment. This can be done by changing the
condition log(s̃n−i) = 1 to

log(s̃n−i) 6
time(solving)

time(LU)
log(l),

if the primes used in the CRA loop are greater that l. This would result with a performance
close to the best and yet flexible. If, to some extend, sn−i could be approximated a priori,

11

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000

T
im

e
(s

)

n

Determinant computation − timings comparison

NTL (Monte Carlo)
LU−CRT

[Storjohann−Giorgi−Olesh] (Certified)
Magma (Monte Carlo)

Hybrid algorithm

Figure 2: Comparison of our algorithm with other existing implementation. Tested on ran-
dom dense matrices of the order 400 to 10000, with entries {-8,-7,. . . ,7,8} Using fast modular
routines puts our algorithm several times ahead of the others. Scaling is logarithmic.

this condition could be verified before its calculation. Results like Eq. (2) can be helpful
here.
For a generic case of random dense matrices another observation was that the bound for the
number of invariant factors is then quite crude. Indeed for random matrices, the algorithm
nearly always stopped with early termination after one system solving. This together with
fast underlying arithmetics accounted for the superiority of our algorithm is as seen in figure
5 where comparison of timings for different algorithms is presented. A modification to be
tested, could be to try to reconstruct sn with only one entry of the solution vector x = v/d.

6 Conclusions

In this paper we present an algorithm computing the determinant of an integer matrix
which expected time complexity is O

(

n3(log(n) + log(||A||))2 log(n)
)

. I in fact be closer
to O

(

n3(log(n) + log(||A||))2k
)

if the number k of non-trivial invariant factors is smaller
than a priori expected. Our algorithm uses an introspective approach so that its actual
running time is only O

(

n3(log(n) + log(||A||))2k
)

if the number k of invariant factors is
smaller than a priori expected. Moreover, the adaptive approach allows us to switch to
the algorithm with best worst case complexity if it happens that the number of non-trivial
invariant factors is unexpectedly large. This adaptivity, together with very fast modular

12

routines, allows us to produce an algorithm, to our knowledge, faster by at least an order
of magnitude than other implementations.
Ways to improve the running time are to reduce the number of iterations in the solvings or
to group them in order to get some block iterations as is done e.g. in [2]
Parallelization can also be considered to further modify the algorithm. Of course, all the
LU iterations in one CRA step can be done in parallel. An equivalently efficient way is to
to perform several p-adic liftings in parallel, but with less iterations [9]. There the issue is
to perform an optimal distributed early termination.

References

[1] John Abbott, Manuel Bronstein, and Thom Mulders. Fast deterministic computation
of determinants of dense matrices. In Sam Dooley, editor, ISSAC 99: July 29–31, 1999,
Simon Fraser University, Vancouver, BC, Canada: proceedings of the 1999 Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 197–204, 1999.

[2] Zhuliang Chen and Arne Storjohann. A BLAS based C library for exact linear algebra
on integer matrices. In Manuel Kauers, editor, ISSAC ’05: July 24–27, 2005, Beijing,
China: Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation, pages 92–99, pub-ACM:adr, 2005. pub-ACM.

[3] John D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische
Mathematik, 40:137–141, 1982.

[4] Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi, Bradford
Hovinen, Erich Kaltofen, B. David Saunders, Will J. Turner, and Gilles Villard. Lin-
Box: A generic library for exact linear algebra. In Arjeh M. Cohen, Xiao-Shan Gao, and
Nobuki Takayama, editors, Proceedings of the 2002 International Congress of Mathe-
matical Software, Beijing, China, pages 40–50. World Scientific Pub, August 2002.

[5] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field linear alge-
bra subroutines. In Teo Mora, editor, Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, Lille, France, pages 63–74. ACM Press, New
York, July 2002.

[6] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Finite field
linear algebra package. In Jaime Gutierrez, editor, Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, Santander, Spain, pages 63–74.
ACM Press, New York, July 2004.

[7] Jean-Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient computation
of the characteristic polynomial. In Manuel Kauers, editor, Proceedings of the 2005 In-
ternational Symposium on Symbolic and Algebraic Computation, Beijing, China, pages
140–147. ACM Press, New York, July 2005.

13

[8] Jean-Guillaume Dumas, B. David Saunders, and Gilles Villard. On efficient sparse
integer matrix Smith normal form computations. Journal of Symbolic Computations,
32(1/2):71–99, July–August 2001.

[9] Jean-Guillaume Dumas, Will J. Turner, and Zhendong Wan. Exact solution to large
sparse integer linear systems, May 2002. East Coast Computer Algebra Day. Long
Island City, New York, USA.

[10] Wayne Eberly, Mark Giesbrecht, and Gilles Villard. Computing the determinant and
Smith form of an integer matrix. In Proceedings of The 41st Annual IEEE Symposium
on Foundations of Computer Science, Redondo Beach, California, November 2000.

[11] Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast LUP
matrix decomposition algorithm and applications. Journal of Algorithms, 3(1):45–56,
March 1982.

[12] Erich Kaltofen and Gilles Villard. Computing the sign or the value of the determinant
of an integer matrix, a complexity survey. Journal of Computational and Applied
Mathematics, 164:133–146, 2004.

[13] Erich Kaltofen and Gilles Villard. On the complexity of computing determinants.
Computational Complexity, 13(3-4):91–130, 2005.

[14] Victor Pan. Computing the determinant and the characteristic polynomial of a matrix
via solving linear systems of equations. j-INFO-PROC-LETT, 28(2):71–75, June 1988.

[15] David Saunders and Zhendong Wan. Smith Normal Form of dense integer matrices
fast algorithms into practice. In Jaime Gutierrez, editor, ISAAC 2004: July 4–7,
2004, University of Cantabria, Santander, Spain: proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, pages 274–281, 2004.

[16] Z. Wan. Computing the Smith Forms of Integer Matrices and Solving Related Problems.
PhD thesis, University of Delaware, USA., July 2005.

Appendix

In order to prove theorems stated in section 3.1, we will start with the following lemma.

Lemma. For λ > 11 the sum over primes p:
∑

8<p<λ

(
1

λ
⌈λ

p
⌉)j can be bounded by (1

2)j .

Proof. We will consider primes from the interval λ
2k+1 6 p < λ

2k , k = 0, 1, . . . max{⌈log(λ)⌉−
3, 2} separately. For the kth interval ⌈λ

p ⌉ equals 2k+1. In each interval there are at most

⌈λ
4 ⌉ odd numbers and at most λ

4 primes. The reasoning goes as follows: if in the interval

14

there are more than 3 odd numbers, at least one of them is divided by 3 and so does not
count. For this to happen it is enough that λ > 12. We may therefore calculate:

∑

8<p<λ

(
1

λ
⌈λ

p
⌉)j 6

⌈log(λ)⌉−3
∑

k=0

λ

2k+2
(
2k+1

λ
)j =

1

2λj−1
(2⌈log(λ)⌉−2)j−1

6 (
1

2
)j .

Remark. For λ = 2l we may consider primes p > 4.

Remark. If we exclude {2,3,5,7,8,16}, we get the same bound for
∑

8<pk<λ

(
1

λ
⌈λ

p
⌉)j .

Proof.[Theorem 3.1] The idea of the proof similar is to that in [10]. Let A be a random
matrix with entries in the set {0, 1, 2 . . . λ − 1}.
Let MDepi(p) denote an event that the submatrix Ai, including first i columns of A mod p
has rank at most i−2 over Zp. Notice, that the event MDepi(p) can occur only if p divides
one of the (i − 1) × (i − 1) minors of Ai−1.
We are now going to find P(MDepi(p) | ¬MDepi−1(p)). Since the event MDepi−1(p) did
not occur, Ai−1 has p-rank (i − 2) or (i − 1). For MDepi it must be (i − 2), thus, there
exist a set of (i − 2) rows Ri−2 which has full rank. Consider row vj that is left. If vj is a
combination of Ri−2 the last (ith) entry of vj is determined mod p. For λ > p this means
that the probability that vj is a combination of Ri−2 with probability λ−1. For p < λ this
probability is 1

λ⌈λ
p ⌉ which is always greater than 2

p+1 . As there are n− i+ 2 vectors outside
Ri−2, the probability that none of them is linearly independent with Ri−2 over Zp is at
most (2

p+1)n−i+2 for p < λ and (1
λ)n−i+2 for p > λ.

Since P(MDepi(p) | ¬MDepi−1(p)) > P(MDepi(p)∧¬MDepi−1(p)), we have P(MDepi(p)) 6

P(
⋃i

j=1(MDepj(p) ∧ ¬MDepj−1(p))) which can be bounded be (2
p+1)n−i+2 p+1

p−1 for p < λ

and (1
λ)n−i+2 λ

λ−1 for p > λ.
Let the number of invariant factors divided by p be greater than j. A mod p has then rank
at most n − j over Zp. This in consequence means that for j > 1 submatrix An−j+2 has
rank at most n − j, so the event MDepi(p) is fulfilled. Therefore matrix A has at least j
invariant factors divided by p with probability

(
2

p + 1
)j

p + 1

p − 1
, p < λ

(
1

λ
)j

λ

λ − 1
, p > λ. (2)

15

Now the expected number of invariant factor divided by p is

3 + 3

j=n
∑

j=3

(
2

3
)j = 3 + 9(

2

3
)3 6 6, p = 2,

1 +

j=n
∑

j=1

(
2

p + 1
)j

p + 1

p − 1
= 1 +

2(p + 1)

(p − 1)2
6 3, 2 < p < λ,

1 +
λ

(λ − 1)2
< 2, p > λ > 2. (3)

Proof.[Theorem 3.2] In addition to MDepi(p) introduced earlier, let Depi denote an event
that first i columns of A are linearly independent and MDepi, an event that either of
MDepi(p), p-prime, occurred. Recall that P(Dep1 ∨ MDep1(p)) 6 λ−n, and P(Depi |
¬(Depi−1 ∨ MDepi−1(p))) 6 λ−n+i−1.
To bound P(MDepi | ¬(Depi−1 ∨ MDepi−1(p))) we sum the results for all primes. For
p < λ, i 6 n − 1 the sum can be bounded by

(
2

3
)n−i+2 +

∑

λ>p>8

(
1

λ
⌈λ

p
⌉)n−i+2

6 (
2

3
)n−i+2 + (

1

2
)n−i+2,

thanks to the lemma.
or primes p > λ we should estimate the number of primes dividing the (i− 1)th minor. By
Hadamard’s bound (notice that Depi−1 does not hold), the minors are bounded in absolute
value by ((i−1)λ2)i−1. Therefore the number of primes p > λ dividing the minor is at most
i−1
2 (logλ(i − 1) + 2)). Summarizing,

P((MDepi ∧ Depi) |¬(Depi−1 ∨ MDepi−1(p)))

6 (
1

λ
)n−i+1 + (

2

3
)n−i+2 + (

1

2
)n−i+2 +

i − 1

2
(logλ(i − 1) + 2) (

1

λ
)n−i+2

for 2 6 i 6 n − 1.
By the same argument as in the previous proof

MDepi 6 λ−n + (
1

λ
)n−i+1 λ

λ − 1
+ 3(

2

3
)n−i+2 + 2(

1

2
)n−j+2 +

i − 1

2
(logλ(i − 1) + 2) (

1

λ
)n−i+2 λ

λ − 1
.

(4)

Similarly, the probability that the number of invariant factors at least j is greater than
P(MDepn−j+2).
To calculate the expected number of invariant factors we first consider the case

n − j + 1

2

(

logλ(n − j + 1) + 2
)

(
1

λ
)j

λ

λ − 1
< 1.

16

It suffices that n[logλ(n) + 2] 6 λj, and therefore logλ(n) + logλ(logλ(n) + 2) 6 j. Conse-
quently, the expected number of invariant factors is

⌈logλ(n)+logλ(logλ(n)+2)⌉
∑

j=1

1 +

n
∑

j=⌈logλ(n)+logλ(logλ(n)+2)⌉+1

(

λ−n + (
1

λ
)j−1 λ

λ − 1
+ 3(

2

3
)j+

+ 2(
1

2
)j +

n − j + 1

2
(logλ(n − j + 1) + 2))(

1

λ
)j

λ

λ − 1

)

= ⌈logλ(n) + logλ(logλ(n) + 2)⌉+

+ 1 +
λ + 1

(λ − 1)2
+ 4 + 1 6 logλ(n) + logλ(logλ(n) + 2) + 9.

17

