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On some 
ompletions of the spa
e ofHamiltonian mapsVin
ent HumilièreCentre de Mathématiques Laurent S
hwartzUMR 7640 du CNRSE
ole Polyte
hnique - 91128 Palaiseau, Fran
evin
ent.humiliere�math.polyte
hnique.frAbstra
tIn his paper [15℄, C. Viterbo de�ned a distan
e on the set of Hamil-tonian di�eomorphisms of R
2n endowed with the standard symple
ti
form ω0 = dp ∧ dq. We study the 
ompletions of this spa
e for thetopology indu
ed by Viterbo's distan
e and some others derived fromit, we study their di�erent in
lusions and give some of their properties.In parti
ular, we give a 
onvergen
e 
riterion for these distan
es.It allows us to prove that the 
ompletions 
ontain non-ordinary el-ements, as for example, dis
ontinuous Hamiltonians. We also provethat some dynami
al aspe
ts of Hamiltonian systems are preserved inthe 
ompletions.1 Introdu
tion.Given an open subset U in R

2n, we denote byHam(U) the set of all 1-periodi
time dependent Hamiltonian fun
tions R×R
2n → R whose support for �xedtime is 
ompa
t and 
ontained in U . We will write Ham for Ham(R2n).Given a Hamiltonian fun
tion H ∈ Ham, its symple
ti
 gradient (i.e theunique ve
tor �eld XH satisfying dH = ιXH
ω0) generates a Hamiltonian iso-topy {φtH}. The set of Hamiltonian di�eomorphisms generated by an element

H in Ham(U) will be denoted by H(U) = {φH = φ1
H |H ∈ Ham(U)}, andwe write H for H(R2n). Finally, we 
all L = {φ(0n) |φ ∈ H}, the set ofLagrangian submanifolds obtained from the zero se
tion 0n ⊂ T ∗

R
n = R

2n,by a Hamiltonian isotopy with 
ompa
t support.1



As usual, we denote Viterbo's distan
e on L or H by γ (see [15℄). Con-vergen
e with respe
t to γ is 
alled 
-
onvergen
e.Our main goal in this paper is to understand the 
ompletion of the spa
e
H(U) for the distan
e γ, give some 
onvergen
e 
riterion (se
tion 3) and
ompare it with the 
onvergen
e for Hofer's distan
e dH (see [5℄, 
hapter 5se
tion 1).The notion of C0 symple
ti
 topology has been studied by many authors,starting from the work of Eliashberg and Gromov on the C0 
losure of thegroup of symple
ti
 di�eomorphisms, to the later results of Viterbo ([15℄)and Hofer ([4℄).More re
ently Oh ([9℄) gave a deep study of several versions of C0 Hamil-tonians. However, our de�nition seems to di�er from his, sin
e in all his def-initions, he needs the Hamiltonians to be 
ontinous, while our study startsas we drop this assumption.In se
tion 3, we introdu
e a symple
ti
 invariant ξ∞ asso
iated to anysubset of R

2n, and prove thatTheorem 1.1. If the 
losure of U is 
ompa
t and if K ⊂ U is su
h that
ξ∞(K) = 0, then for every sequen
e (Hk) in Ham(U) whi
h is Cau
hy forthe metri
 of uniform 
onvergen
e on 
ompa
t subsets of R × (U −K), thesequen
e φHk

is Cau
hy for γ.As a result, any Hamiltonian 
ontinuous on R × (U −K), with 
ompa
tsupport in R × U has a �ow de�ned in the γ-
ompletion of H(U).Examples of sets K with ξ∞(K) = 0 are given by 
ompa
t submanifoldsof dimension d 6 n− 2.It is possible to extend many aspe
ts of Hamiltonian dynami
s to the
ompletions (se
tion 4). To any element in the 
ompletion of Ham, we
an asso
iate a �ow in the 
ompletion of H. We 
an de�ne its a
tion ona Lagrangian submanifold. We 
an also asso
iate to them a support andextend the notion of �rst integral.To some of them, it is also possible to asso
iate a solution to Hamilton-Ja
obi equation:
∂u

∂t
+H

(
t, x,

∂u

∂x

)
= 0.Indeed, a γ-Cau
hy sequen
e of Hamiltonians gives a C0-Cau
hy sequen
e ofsolutions (se
tion 5).Finally, let us mention that although we developed our theory on R

2n, we
an reasonably expe
t similar results (ex
ept those of se
tions 4.1.2 and 5)on any 
ompa
t symple
ti
 manifold satisfying
ω|π2(M) = 0 and c1|π2(M) = 0.2



Indeed, on these manifolds, S
hwarz de�ned in [11℄ a distan
e whi
h is en-tirely analogous to Viterbo's.Aknowledgments. I am grateful to my supervisor C. Viterbo for hisadvi
es. I also want to thank my friends M. A�re and N. Roy for spendinghours 
orre
ting my awful english.2 Symple
ti
 invariants.In this se
tion, we re
all the de�nition of Viterbo's distan
e, de�ned �rst forLagrangian submanifolds with the help of generating fun
tions, and then forHamiltonian di�eomorphisms (see [15℄). It will be 
onvenient to use someother distan
es de�ned from γ by taking supensions, namely γ̃, γu, γ̃u, γ̂,
γ̌ and γ2. Relations between these metri
s will be stated and proved inAppendix.2.1 Generating fun
tions quadrati
 at in�nity.Let L be a Lagrangian submanifold of the 
otangent bundle T ∗M of a smoothmanifold M . We say that L admits a generating fun
tion if there exists aninteger q > 0 and a smooth fun
tion S : M × R

q → R su
h that L 
an bewritten
L =

{
(x, p) ∈ T ∗M | ∃ξ ∈ R

q,
∂S

∂ξ
(x, ξ) = 0 and ∂S

∂x
(x, ξ) = p

}
.Su
h fun
tion S is 
alled a generating fun
tion quadrati
 at in�nity (or just�g.f.q.i�) if there exists a non degenerate quadrati
 form Q on R
q and a
ompa
t K ⊂M × R

q su
h that, ∀(x, ξ) /∈ K,S(x, ξ) = Q(ξ).For instan
e, any quadrati
 form on R
q viewed as a fun
tion on M ×R

q isa g.f.q.i of the zero se
tion 0M ⊂ T ∗M . J.C. Sikorav proved in [12℄ that theproperty of having a g.f.q.i is invariant by Hamiltonian isotopy with 
ompa
tsupport. For this reason we will be interested in the set L of Lagrangiansubmanifolds, images of the zero se
tion by an Hamiltonian isotopy with
ompa
t support.Furthermore, C. Viterbo and D. Théret proved that the g.f.q.i's of a givenLagrangian submanifold are essentially unique. Before stating this result, letus introdu
e the following de�nitions: For a given fun
tion S : M ×R
q → R,we 
all a stabilisation of S any fun
tion S ′ : M × R

q × R
q′ → R of the form

S ′(x, ξ, ξ′) = S(x, ξ) + q(ξ′), where q is a non-degenerate quadrati
 form on
R
q′ . In addition, two fun
tions S, S ′ : M×R

q → R are said equivalent if thereexists a di�eomorphism φ of M ×R
q and a real C su
h that S ′ = S ◦ φ+C.3



Theorem 2.1 ([15, 13℄). Suppose S, S ′ are two g.f.q.i's of the same La-grangian submanifold in L. Then, up to stabilisation, S and S ′ are equivalent.This result allows to asso
iate symple
ti
 invariants to any element of L.2.2 Invariants de�ned by minimax and a distan
e onthe group of Hamiltonian di�eomorphisms.The invariants de�ned in this se
tion have been introdu
ed by C. Viterbo in[15℄. We re
all their 
onstru
tion. We �rst de�ne invariants for Lagrangiansubmanifolds.Let L be an element of L and S : M × R
q → R be one of its g.f.q.i's. Letus denote Sλ = {x ∈ M × R

q |S(x) 6 λ}. Sin
e S is quadrati
 at in�nity,the homotopy types of the pairs (Sλ, Sµ) and (Sµ, S−λ) do not depend on λ,provided that λ is su�
iently large . Therefore, we will denote S∞ and S−∞,instead of Sλ and S−λ for λ large enough.Let us introdu
e E−
∞ the negative (trivial) bundle of the quadrati
 formwhi
h 
oin
ides with S at in�nity. We denote B(E−

∞), S(E−
∞) the ballbundle and the sphere bundle asso
iated to E−

∞. The Thom isomorphismis given by H∗(M) → H∗(B(E−
∞), S(E−

∞)), and we also have the isomor-phism H∗(B(E−
∞), S(E−

∞)) ≃ H∗(S∞, S−∞). We will denote by T their
omposition. For further informations on those isomorphisms, see [6℄ forexample. The in
lusion jλ : Sλ → S∞ indu
es a morphism in 
ohomology
j∗λ : H∗(S∞, S−∞) → H∗(Sλ, S−∞), for all real number λ. We are now readyfor the following.De�nition 2.2. Let (u, L) ∈ H∗(M) × L, with u 6= 0. Using a g.f.q.i S of
L, we de�ne a real number c(u, L) as follows:

c(u, L) = inf{λ | j∗λ ◦ T (u) ∈ H∗(Sλ, S−∞) is non zero}. (1)Observe that c(u, L) is well de�ned, and is independent of the 
hoi
e of
S's 
hoi
e. Indeed, if we repla
e S with an equivalent or stabilized generatingfun
tion, the value of c(u, L) does not 
hange and we 
on
lude using theorem2.1. Even if it doesn't depend on the generating fun
tion, we sometimes usethe notation c(u, S) instead of c(u, L).Sin
e the 
ohomology of the sets Sλ 
hanges when we 
ross the level
c(u, L), it has to be a 
riti
al value of S.Finally, observe that the de�nition 
an be extended to 
lasses with 
om-pa
t support u ∈ H∗

c (M).Then, we 
an use those invariants asso
iated to Lagrangian submanifoldto de�ne other invariants asso
iated to Hamiltonian di�eomorphisms.4



Consider an Hamiltonian di�eomorphism ψ ∈ H(R2n). Its graph Γψ is aLagrangian submanifold of R2n × R
2n (= (R2n × R

2n,−ω0 ⊕ ω0), where ω0is the standard symple
ti
 stru
ture on R
2n). It 
oin
ides with the diagonal

∆ = {(x, x) | x ∈ R
2n}, outside the produ
t B2n(r)×B2n(r), for r su�
ientlylarge. When we identify R2n × R

2n with T ∗∆ using the map,
(q, p, Q, P ) 7→

(
q +Q

2
,
p+ P

2
, P − p,Q− q

)
,we see that the image Γ̃ψ of Γψ is identi�ed with the zero se
tion of T ∗∆outside a 
ompa
t set.Then, we 
an asso
iate the previous invariant to Γ̃ψ. Let 1 be a generatorof H0(R2n) and µ a generator of Hn

c (R2n).De�nition 2.3 (Viterbo, [15℄). We de�ne,
c−(ψ) = −c(µ, Γ̃ψ),

c+(ψ) = −c(1, Γ̃ψ),
γ(ψ) = c+(ψ) − c−(ψ),

γ(φ, ψ) = γ(ψ−1φ).Let us des
ribe now some properties of the numbers γ, c+ and c−.Proposition 2.4 (Viterbo, [15℄). For all ψ in H, we have
c−(ψ) 6 0 6 c+(ψ).Moreover, c−(ψ) = c+(ψ) = 0 if and only if ψ = Id.If φ is another di�eomorphism in H, then

c+(φ ◦ ψ) 6 c+(φ) + c+(ψ),

c−(φ ◦ ψ) > c−(φ) + c−(ψ),

γ(φ ◦ ψ) 6 γ(φ) + γ(ψ).Those properties allow to prove that γ is a distan
e on H. We also havea very useful property of monotoni
ity of c+ and c−.Proposition 2.5. Let ψ1 and ψ2 be two Hamiltonians generated by H1 and
H2. Suppose that for all (t, x) ∈ R×R

2n, we have H1(t, x) 6 H2(t, x). Then,
c+(ψ1) 6 c+(ψ2) and c−(ψ1) 6 c−(ψ2).5



As a 
orollary, if H is a non-negative Hamiltonian, then c−(φH) = 0. If
H is in addition non zero, we dedu
e c+(φH) > 0.Finally, the following proposition states the 
ontinuity of γ with respe
tto C0-topology.Proposition 2.6. Let H1 and H2 be two 
ompa
tly supported hamiltonians,generating ψ1 and ψ2. Let ‖ · ‖ be the usual norm on C0(R2n × [0, 1],R). If
‖H1 −H2‖ 6 ε, then |γ(ψ1) − γ(ψ2)| 6 ε.2.3 Other distan
es derived from γ.Let us now introdu
e other distan
es, derived from γ. Those de�nitions aresometimes more 
onvenient than the original one.De�nition 2.7. For all Hamiltonian di�eomorphisms φ, ψ ∈ H, we de�ne

γ̃(φ, ψ) = sup{γ(ψ−1φ(L) − L) |L ∈ L},where γ(L) = c(µ, L) − c(1, L), ∀L∈L and L1−L2 = {(q, p1 − p2) | (q, p1) ∈
L1, (q, p2) ∈ L2}, for L1, L2 ∈ L.We get by this way another distan
e on H (see [15℄, [1℄). Then, we de�nedistan
es not anymore on H, but on Ham.De�nition 2.8. For any H,K ∈ Ham, we set

γu(H,K) = sup{γ(φtH, φtK) | t ∈ [0, 1]}and
γ̃u(H,K) = sup{γ̃(φtH , φtK) | t ∈ [0, 1]}.Here, the subs
ript �u� means �uniform�. Clearly, γu and γ̃u are distan
eson Ham.For the next two distan
es, the prin
iple is to add two dimensions byasso
iating to an Hamilitonian H two suspensions de�ned on R × R

2+2n:
Ĥ(s; t, τ, x) = τ +H(t, x),

Ȟ(s; t, τ, x) = tH(st, x).Here, the new time variable is s, while the former time variable t be
omesa spa
e variable (As a 
onsequen
e Ĥ is an autonomous Hamiltonian). Wewould like to de�ne our distan
es by γ̂(H,K) = γ(Ĥ, K̂) and γ̌(H,K) =
γ(Ȟ, Ǩ). But sin
e Ĥ and Ȟ are not 
ompa
tly supported we have to beslightly more subtle. 6



De�nition 2.9. Let ρ be a �xed real fun
tion de�ned on [0,+∞), supposedto be non-negative, smooth, de
reasing, with support in [0,1℄, �at at 0 andsu
h that ρ(0) = 1. For every natural integer α and every real number t, weset ρα(t) = 1 if −α 6 t 6 α, and ρα(t) = ρ(|t| − α) otherwise.We denote by Ĥα and Ȟα the Hamiltonian fun
tions de�ned on R×R
2+2n,by

Ĥα(s; t, τ, x) = ρα(τ)τ + ρα(t)H(t, x),and
Ȟα(s; t, τ, x) = ρα(t)tH(st, x).Then, for H,K ∈ Ham, we set
γ̂(H,K) = lim sup

α→+∞
γu(Ĥα, K̂α),and

γ̌(H,K) = lim sup
α→+∞

γ(φȞα
, φǨα

).Remark that γ̂(H,K) and γ̌(H,K) are �nite. Indeed, if we denote by Ba ball 
ontaining both supports of H and K, then Ĥα, K̂α, Ȟα and Ǩα havesupport in R
2 × B, for any integer α. Hen
e γ(φȞα

, φǨα
) 6 2c(R2 × B) 6

2c∞(B) (See se
tion 2.4 for notations). It shows that the limsup in thede�nition of γ̌ is �nite. The same proof shows that γ̂(H,K) is also �nite.The triangle inequality for γ̂ and γ̌ is a dire
t 
onsequen
e of the triangleinequality axiom for γ. The separation axiom is obtained from the separationaxiom for γ and proposition 2.10.For 
onvenien
e, we will not write the subs
ript α anymore. In the fol-lowing, we will denote Ĥ for Ĥα, and Ȟ for Ȟα.Remarks. By repeating these 
onstru
tions several times (i.e., by takingsuspensions of suspensions), we 
an 
onstru
t new distan
es. For example,we will use in se
tion 5 the distan
e γ2 = lim supα→+∞ γ̌(Ĥα, K̂α).Using the invarian
e of γ, it is easy to verify that the suspended distan
es
γ̂, γ̌ and γ2 are invariant under the a
tion of H. Namely, for H , K Hamilto-nians and ϕ Hamiltonian di�eomorphism, we have:

γ̂(H ◦ ϕ,K ◦ ϕ) = γ̂(H,K),

γ̌(H ◦ ϕ,K ◦ ϕ) = γ̌(H,K),

γ2(H ◦ ϕ,K ◦ ϕ) = γ2(H,K).The following proposition gives inequalities between the distan
es. It willbe proved in Appendix. It is based on the redu
tion inequality (PropositionA.1). 7



Proposition 2.10.
γ̃ 6 γ,

γ̃u 6 γu 6 min(γ̂, γ̌).2.4 Two symple
ti
 
apa
ities on R
2n.We start this se
tion by reminding the reader of the de�nition of a symple
ti

apa
ity.De�nition 2.11 (Ekeland-Hofer). A symple
ti
 
apa
ity on (R2n, ω0) is amap asso
iating to ea
h subset U ⊂ R

2n a number c(U) ∈ [0,+∞] satisfying1. U ⊂ V ⇒ c(U) 6 c(V ) (monotony),2. c(φ(U)) = c(U) for all Hamiltonian di�eomorphism φ ∈ H (symple
ti
invarian
e),3. c(λU) = λ2c(U) for all real λ > 0 (homogeneity),4. c(B2n(1)) = c(B2 × R
2(n−1)) = π, where B2n(1) is the unit ball of R

2n(normalisation).The invariants de�ned in the previous se
tion allow to de�ne two sym-ple
ti
 
apa
ities as follows ([15℄).De�nition 2.12. 1. For any 
ompa
t subset K ⊂ R
2n, we denote by γ(K)the number de�ned by

γ(K) = inf{γ(φ) |φ(K) ∩K = ∅}.If V is not 
ompa
t, we set
γ(V ) = sup{γ(K) |K ⊂ V }.2. For any open subset U ⊂ R

2n, we denote by c(U) the number de�nedby
c(U) = sup{c+(φH) | Supp(H) ⊂ U}.If V is not an open set, we set

c(V ) = inf{c(U) | V ⊂ U}.

8



The maps c and γ are symple
ti
 
apa
ities and moreover c 6 γ. Weremind the reader of the de�nition of the displa
ement energy
d(U) = inf{dH(φ, Id) |φ(U) ∩ U = ∅},where dH is Hofer's distan
e de�ned by

dH(φ, ψ) = inf{‖H −K‖ |H generates φ and K generates ψ},whith ‖H‖ =
∫ 1

0
(maxxH(t, x) − minxH(t, x))dt.We are going to de�ne a new symple
ti
 
apa
ity derived from γ, butbefore we need the following lemma.Lemma 2.13. We 
onsider a subset V ⊂ R

2n and R
2 × V ⊂ R

2+2n. Then,
c(R2 × V ) > c(V ).That lemma follows from the redu
tion inequality of Proposition A.1. Wepostpone its proof to Appendix.De�nition 2.14. For any open subset U ⊂ R

2n, we set
c∞(U) = lim

N→∞
c(U × R

2N ),and if V is not an open subset,
c∞(V ) = inf{c∞(U) | V ⊂ U}.We obtain a symple
ti
 
apa
ity that satis�es c∞(V ) = c∞(V × R

2) forall subset V , and c 6 c∞. Moreover, sin
e d(U) = d(U × R
2k) and c 6 d, wehave c∞ 6 d. To summarize the inequalities between 
apa
ities we have,Proposition 2.15. c 6 γ 6 d and c 6 c∞ 6 d.3 The 
onvergen
e 
riterion.This is the 
entral se
tion of our paper. We give the proof of theorem 1.1.3.1 A su�
ient 
ondition for 
-
onvergen
e to zero.We start this se
tion with some formulas 
on
erning Hamiltonian �ows. They
an be obtained by dire
t 
omputation (see [5℄, page 144).9



Lemma 3.1. For all Hamiltonians H and K, with 
ompa
t support, we have:
φt
H

= (φtH)−1, where H(t, x) = −H(t, φt(x))

φtH♯K = φtH ◦ φtK , where (H♯K)(t, x) = H(t, x) +K(t, (φt)−1(x))

φt
H♯K

= (φtH)−1 ◦ φtK .Remark. (H♯K)(t, x) = (K −H)(t, φt(x)).The following proposition shows that if a sequen
e of Hamiltonians (Hn)
onverges to zero uniformly on every 
ompa
t set 
ontained in the 
omple-ment of a set whose 
apa
ity is zero, then (φHn
) 
onverges to Id for γ.Proposition 3.2. Let H be a Hamiltonian on R

2n with 
ompa
t support. If
U is an open subset of R

2n, su
h that c(U) 6 ε and |H(t, x)| 6 ε for all
t ∈ [0, 1] and all x ∈ R

2n − U , then γ(φH) 6 4ε.Proof. Let K1, K2 be Hamiltonians with 
ompa
t support, su
h that
0 6 Ki 6 1, i = 1, 2, K1 equals 1 on the support of H and K2 equals 1 onthe support ofK1. Denote ψ1,ε the di�eomorphism generated byH−εK1, and
ψ2,ε the di�eomorphism generated by εK2. Then we have H 6 εK2 + (H −
εK1). As (ψ2,ε)

−1 
oin
ides with Id on the support of H − εK1, the lemma3.1 shows that K2 + H − εK1 is the Hamiltonian that generates ψ2,ε ◦ ψ1,ε.The propositions 2.5, 2.4 and 2.6 then give
c+(φ) 6 c+(ψ2,ε ◦ ψ1,ε) 6 c+(ψ2,ε) + c+(ψ1,ε) 6 ε+ c+(ψ1,ε).Denote by ψ̃1,ε the di�eomorphism generated by a non-negative Hamiltonian,with support in U , and greater than H − εK1. Then by Proposition 2.5,

c+(ψ1,ε) 6 c+(ψ̃1,ε). Finally, sin
e Supp(ψ̃1,ε) ⊂ U , we get c+(ψ̃1,ε) 6 c(U) 6

ε. Using the inequality H > −εK2 + (H + εK1), we obtain the same type ofinequality for c−. �For example, if K is a 
ompa
t submanifold of dimension lower or equalthan n− 1, then d(K) = 0 (and hen
e c(K) = 0).3.2 What about non-zero limits?Unfortunately, the previous result 
annot be straightforwardly generalised toobtain a general 
onvergen
e 
riterions when the limit is not zero. Indeed,we 
an �nd two Hamiltonians that are C0-
lose out of a null-
apa
ity set,but not γ-
lose.Example. It is well known that the 
apa
ities c and γ of the unit sphere
S = {x ∈ R

2n | ‖x‖ = 1} are π. It is also true for c∞. Then, for all ε > 0,10



there exists a HamiltonianH with support in a small neighbourhood U of S,and su
h that c+(φH) > π − ε. Be
ause of proposition 2.5, H 
an be 
hosennon-negative. We set U+ a neighbourhood of {x ∈ S | x1 > 0} and U− aneighbourhood of {x ∈ S | x1 < 0}, su
h that U = U+ ∪ U−. If U , U+ and
U− are 
hoosen small enough, we have d(U±) < ε and by proposition 2.15
c∞(U±) < ε. Using some partition of unity asso
iated to the de
omposition
U = U+ ∪ U−, we get two fun
tions H±, with support in U± and su
h that
H = H+ +H−.Now, we see that H+ 
oin
ides with H outside U−, whose 
apa
ity veri�es
c∞(U±) < ε, but on the other hand,

‖γ(φH) − γ(φH+)‖ > γ(φH , φH+) > π − ε− γ(φH−) > π − 2ε.It shows that the previous statement is false when the limit is not zero.Nevertheless, we 
an introdu
e a new invariant, in order to extend theresult of proposition 3.2.De�nition 3.3. For any subset U and any Hamiltonian H ∈ Ham, wede�ne
ξH(U) = c∞


 ⋃

t∈[0,1]

φtH(U)


 .We may then set

ξλ(U) = sup ξH(U), for 0 < λ 6 ∞,where the supremum is over all Hamiltonian fun
tions H with γu(H) 6 λ.Theorem 3.4. Let H1 and H2 be Hamiltonians on R
2n with 
ompa
t support.Let U be a subset of R

2n, satisfying one of the two following 
onditions:1. ξ∞(U) 6 ε.2. ∃λ > 0, ξλ(U) = 0If |H1(t, x) − H2(t, x)| 6 ε for all t ∈ [0, 1] and all x /∈ U , then we have
γ(φH1

, φH2
) 6 4ε.Proof. Consider the Hamiltonian H(t, x) = H1(t, φ

t
2(x)) − H2(t, φ

t
2(x)). Byassumption, |H(t, x)| 6 ε, for all (t, x) with x /∈ φ−t

2 (U) and hen
e for all tand all x /∈ ⋃
t∈[0,1] (φ

−1
2 )t(U). Ea
h 
ondition on U implies

c


 ⋃

t∈[0,1]

(φ−1
2 )t(U)


 6 c∞


 ⋃

t∈[0,1]

(φ−1
2 )t(U)


 6 ε.11



By proposition 3.2 and lemma 3.1, we get γ(φH1
, φH2

) = γ(φH) 6 4ε. �Remark. In the proof of theorem 3.4, we see that the important 
ondition isin fa
t ξH2(U) 6 ε, whi
h is of 
ourse implied by both 
onditions ξ∞(U) 6 εand ξλ(U) = 0.Corollary 3.5. The 
on
lusion of theorem 3.4 still holds if we repla
e γ with
γ̃, γ̃u, γu, γ̂ or γ̌.Proof. By proposition 2.10, we just have to prove this result for γ̂ and γ̌. Thenremark that under the hypothesis of theorem 3.4, we have |Ĥ1(s; t, τ, x) −
Ĥ2(s; t, τ, x)| 6 ε and |Ȟ1(s; t, τ, x) − Ȟ2(s; t, τ, x)| 6 ε for all integer α, all
s ∈ [0, 1], and all (t, τ, x) /∈ R

2 × U .Unfortunately, even if U satis�es one of the 
onditions of proposition 3.4,it is not in general the 
ase for R
2 × U . However, by the above remark, itis su�
ient to show that for all real number δ > 0 and all integer α largeenough, ξȞ2(R2 × U) 6 ε + δ and ξĤ2(R2 × U) 6 ε + δ. By letting δ tendto zero and taking limsup with respe
t to α, we obtain γ̂(H,K) 6 4ε and

γ̌(H,K) 6 4ε as required.Let us denote F for Ȟ2 or Ĥ2. The inequalities on ξF 
ome dire
tly fromthe expression of φȞ2
and φĤ2

(see 
omputations in Appendix A.2). Indeed,in both 
ases,
⋃

s∈[0,1]

(φ−1
F )s([−α, α]2 × U) ⊂ R

2 ×
⋃

s∈[0,1]

(ψ−1)s(U),where ψs is an Hamiltonian isotopy that appears in last 
oordinate when we
ompute φF . Therefore, sin
e ξF (R2 × U) = limα→+∞ ξF ([−α, α]2 × U), weget for any δ > 0 and any α large enough:
ξF (R2 × U) 6 δ + c∞


R

2×
⋃

s∈[0,1]

(ψ−1)s(U)




= δ + c∞


 ⋃

s∈[0,1]

(ψ−1)s(U)


6 δ + ε.That 
on
ludes the proof. �Corollary 3.6. Let (Hk) be a sequen
e of Hamiltonians in Ham, whosesupports are 
ontained in a �xed 
ompa
t set. Suppose there exist an Hamil-tonian H ∈ Ham and a 
ompa
t set K ∈ R

2n with ξ∞(K) = 0, su
h that
(Hk) 
onverges uniformly to H on every 
ompa
t set of R× (R2n−K). Then
(φHk

) 
onverges to φH for γ̃, γ, and (Hk) 
onverges to H for γ̃u, γu, γ̂, γ̌.12



Proof. For γ̃, γ, it is a dire
t 
onsequen
e of the remark that follows the-orem 3.4. We just have to verify that for all ε > 0, there exists a smallneighbourhood U of K su
h that ξH(U) 6 ε. This is true be
ause for everyneighbourhood V of ⋃
t∈[0,1] φH(K), we 
an 
hoose a neighbourhood U of Ksu
h that ⋃

t∈[0,1]

φH(U) ⊂ V.Sin
e c∞(
⋃
t∈[0,1] φH(K)) = 0 and ⋃

t∈[0,1] φH(K) is 
ompa
t, we 
an 
hoose
V su
h that c∞(V ) 6 ε, and obtain c∞(

⋃
t∈[0,1] φH(U)) 6 ε as required.For γ̂ and γ̌, we have to verify that for all ε > 0 and all δ > 0, there existsa small neighbourhood U of K su
h that for all α large enough ξφ(U) 6 ε+δ,where F is either Ĥ or Ȟ. The proof made above for φH shows that we 
an�nd U su
h that ξf(U) 6 ε, where f generates the isotopy ψs de�ned as inthe proof of 
orollary 3.5. Therefore we have for all δ and all α large enough,

ξF (R2 × U) 6 ξF ([−α, α]2 × U) + δ 6 ξf(U) + δ 6 ε+ δ.By proposition 2.10, 
orollary 3.6 is also true for γ̃u and γu. �Remark. Similar proofs give that theorem 3.4 and 
orollary 3.6 still holdfor γ2.3.3 Example of a non trivial ξ-small set.Proposition 3.7. Let U be a 
losed submanifold of R
2n whose dimension dveri�es d 6 n− 2. Then ξ∞(U) = 0.Proof. Let H ∈ Ham. The problem is that ⋃

t∈[0,1] φ
t
H(U) is not in generala manifold. To avoid that problem, we are going to add two dimensions andmake a suspension in this way. We denote by Φ the Hamiltonian di�eomor-phism on R

2+2n = {(t, τ, x)} generated by the Hamiltonian
[0, 1] × R

2+2n → R, (s; t, τ, x) 7→ tH(ts, x).We also set V = Φ([0, 1] × [−1, 1] × U). The 
omputation of Φ gives
Φ(t, τ, x) = (t, τ −H(t, x), φt(x)).We see that ⋃

t∈[0,1] φ
t
H(U) 
an be obtained from V by symple
ti
 redu
tion bythe 
oisotropi
 manifold {τ = 0}. So we are going to look for a Hamiltoniandi�eomorphism φK that displa
es V and preserves {τ = 0} at the same time.If the Hamiltonian does not depend on t, the se
ond 
ondition is veri�ed.Sin
e V is 
ompa
t, it is su�
ient for K to verify
∀v ∈ V, RXK(v) ∩ TvV = {0},13



whi
h is equivalent to
∀v ∈ V, ker dK(v) ⊕ TvV

⊥ = R
2+2nand to

∀v ∈ V, TvV
⊥ 6⊂ ker dK(v).That makes us 
onsider the 1-jet bundle J1(R×R

1+2n,R) and its submanifold
W = {(s, q; σ, p; z) | (s, q) ∈ V, z ∈ R, T(s,q)V

⊥ ⊂ ker(σ, p)}.The dimension of W is exa
tly 2n + 1. Indeed, the ve
tor spa
e {(σ, p) ∈
R

2n+2∗ | T(s,q)V
⊥ ⊂ ker(σ, p)} has dimension 2n + 2 − dim(T(s,q)V

⊥) = n.By Thom transversality theorem (see [3℄ for example), there exists a fun
-tion L whose 1-jet veri�es j1L ⋔ W . But j1L 
an be seen as a fun
tion
R × R

1+2n → J1(R × R
1+2n,R), and by lemma 4.6 page 53 in [3℄, we havefor a generi
 
hoi
e of s ∈ R, j1L(s, ·) ⋔ W . We �x s as previously and wedenote K : R

2+2n → R, K(t, ·) = L(s, ·)Then, noti
e that for every s, q, p, z, the set of all σ su
h that (s, q; σ, p; z) ∈
W is either ∅ or R. It 
an be shown by dire
t 
omputation of TV ⊥, whose �rst
omponent appears to be always {0}. As a 
onsequen
e, we get j1K ⋔ W(j1K di�ers from j1L(s, ·) just by its σ-
omponent whi
h is {0} instead of
∂L
∂s

(s, ·) for j1L(s, ·)).Now, sin
e (2n+2)+(2n+1) = dim(j1K(R2+2n))+dim(W ) < dim(J1(R×
R

1+2n,R)) = 4n+ 5, we get j1K(R2+2n)∩W = ∅. It follows that K satis�esthe two 
onditions: it preserves {τ = 0} and it satis�es
∀v ∈ V, RXK(v) ∩ TvV = {0}.As V is 
ompa
t, for ε small enough, sin
e φεK = φεK , we have φεK(V )∩V =

∅. In addition εK 
an be made as C0-small as we want.We are now ready for the redu
tion by {τ = 0}. Sin
e it preserves {τ = 0},
εK indu
es a Hamiltonian on the redu
tion R

2n. This Hamiltonian is C0-small and generates a di�eomorphism ψ whose Hofer's distan
e to identity
dH(ψ, id) is small, and that satis�es

ψ


 ⋃

t∈[0,1]

φtH(U)


 ∩

⋃

t∈[0,1]

φtH(U) = ∅.This Hamiltonian is not 
ompa
tly supported, but any Hamiltonian with
ompa
t support whi
h 
oin
ides with it on a su�
iently large ball, wouldhave the same properties. That proves d(⋃
t∈[0,1] φ

t
H(U)

)
= 0, and sin
e

c∞ 6 d, we get ξH(U) = 0. � 14



4 CompletionsIn this se
tion we start the study of the 
ompletions of Ham and H for thedi�erent distan
es.4.1 Extension of Hamiltonian dynami
sIn this se
tion, we introdu
e the 
ompletions and give the �rst properties oftheir elements: the existen
e of a �ow that a
ts on Lagrangian submanifold,the notion of �rst integral and the existen
e of a support. The full se
tion 5will be devoted to another property related to Hamilton-Ja
obi equation.4.1.1 Notations, in
lusions and de�nitionLet us denote respe
tively H, Hu, H̃, H̃u, Ĥ, Ȟ and H2 the 
ompletions of
(H, γ), (Ham, γu), (H, γ̃), (Ham, γ̃u), (Ham, γ̂), (Ham, γ̌) and (Ham, γ2).The inequalities proved in Proposition 2.10 indu
e in
lusions between the
ompletions whi
h may be summarized by the following diagram. Here, HHdenotes the 
ompletion of H for Hofer's distan
e dH (whi
h satis�es dH 6 γ)and Cc the set of 
ontinuous Hamiltonians with 
ompa
t support. The arrows
Hu → H and H̃u → H̃ are indu
ed by the map H 7→ φ1

H .
Cc

� � //
� _

��

Ȟ � p

  A
AA

AA
AA

AA

H2
� � //

Ĥ
� � // Hu

� � //

��

H̃u

��

HH
� � // H

� � //
H̃The map (H, t) 7→ φtH, Ham × R → H indu
es maps Hu × R → H and

H̃u × R → H̃. Therefore, any element h in Hu, H̃u, Ĥ, Ȟ or H2 
an beasso
iated a path in either H, or H̃. This path of 
ourse has the semi-groupproperty (the group laws on H and H̃ are those naturally indu
ed by thegroup law on H).De�nition 4.1. Su
h a path will be 
alled the generalized Hamiltonian �owgenerated by h.4.1.2 A
tion on Lagrangian submanifoldsRe
all that the set L of Lagrangian submanifolds isotopi
 to the zero se
tionby 
ompa
tly supported Hamiltonian isotopy, 
an be endowed with Viterbo's15



distan
e, also denoted γ (see de�nition 2.7). Let us denote L the 
ompletionof L with respe
t to this distan
e.Proposition 4.2. The groups H and H̃ naturally a
t on the set L. Thisa
tion extends the a
tion of H on L.Proof. It is a simple 
onsequen
e of the inequality γ̃ 6 γ (Proposition 2.10proved in Appendix).Let L ∈ L represented by a sequen
e (Lk) and φ in H (proof is the samefor H̃), represented by a sequen
e (φk). We are going to show that (φk(Lk))de�nes an element of L that we will denote φ(L).This follows easily from the fa
t that for φ, ψ ∈ H and L,M ∈ L,
γ(φ(L) − ψ(M)) 6 γ(φ(L) − ψ(L)) + γ(ψ(L) − ψ(K))

6 γ(ψ−1φ(L) − L) + γ(L−K)

6 γ̃(φ, ψ) + γ(L−K). �Remark. A 
onsequen
e of Proposition 4.2 is that we 
an de�ne what is aLagrangian submanifold invariant under a generalized �ow.That leads us to another question whi
h is: Can we de�ne what is aninvariant hypersurfa
e of a generalized �ow?A (partial) answer to this question is that we 
an de�ne what is a �rstintegral of a generalized Hamiltonian �ow.4.1.3 Notion of �rst integralThis property has been �rst mentioned in [1℄, in the de�nition (3.3) of theso-
alled c-
ommuting Hamiltonians. Let us restate it with our notations.An element in one of the 
ompletions Hu, H̃u, Ĥ, Ȟ and H2 will besaid autonomous if it 
an be represented by a Cau
hy sequen
e of of time-independent Hamiltonian fun
tions.De�nition 4.3. Let H,K be two elements in one of the above 
ompletions,generating two respe
tive generalized �ows φtH and φtK . Then we will say that
H and K 
ommute, or that K is a �rst integral of H if φsKφtHφ−s

K φ−t
H = Id.In other words, K is a �rst integral of H if there exists two Cau
hy se-quen
es (Hn) and (Kn) representing H and K, su
h that for all s and t,

φsKn
φtHn

φ−s
Kn
φ−t
Hn


-
onverges to Id.It is proved in [1℄ that this de�nition extends the usual de�nition of 
om-muting Hamiltonian fun
tions. 16



4.1.4 Existen
e of a supportIn this se
tion, we state a lemma whi
h makes it possible to de�ne a supportfor the elements of the di�erent 
ompletions.Lemma 4.4. a. Let (φn) be a sequen
e in H 
onverging to a Hamiltoniandi�eomorphism φ, with respe
t to γ or γ̃. Assume that there exists aset U su
h that supp(φn) ⊂ U . Then supp(φ) ⊂ U .b. Let (Hn) be a sequen
e in Ham 
onverging to a smooth Hamiltonianfun
tion H, with respe
t to γu, γ̃u, γ̂, γ̌, et
. Assume that there existsa set U su
h that supp(Hn) ⊂ U . Then supp(H) ⊂ U .Proof. a. Thanks to Proposition 2.10, we just have to prove theassertion in the 
ase of γ̃. Suppose supp(φ) 6⊂ U . Then there exists an x in
R

2n − U su
h that φ(x) 6= x. Let ψ be a Hamiltonian di�eomorphism whosesupport is in
luded in R
2n−U and whi
h does not 
ontain φ(x). Suppose inaddition that ψ(x) 6= x. Then, sin
e the supports of φn and ψ are disjoint,we have ψ ◦φ−1

n ◦ψ−1 ◦φn = Id, for all integer n. Taking limit, we get on onehand ψ◦φ−1 ◦ψ−1 ◦φ = Id. But on the other hand, we have by 
onstru
tion,
ψ ◦ φ−1 ◦ ψ−1 ◦ φ(x) = ψ(x) 6= x, whi
h is 
ontradi
tory.b. We use the �rst part of the lemma to 
on
lude that for all time t,supp(φt) ⊂ U . This implies that supp(H) ⊂ U . �Remark. A similar argument shows that the property of letting globallyinvariant any sphere 
entered at 0, is invariant by taking γ or γ̃ limits. Sim-ilarly, a γu, γ̃u, γ̂ or γ̌ limit of radial Hamiltonians is radial.De�nition 4.5. Let η be an element of H, Hu, H̃, H̃u, Ĥ, Ȟ or H2. Then wede�ne support(η) as

⋂
{U |U open set, su
h that there exists (ηn) representing η su
h that

∀n, supp(ηn) ⊂ U},where �supp� denotes the usual notions of support for smooth Hamiltoniansand for Hamiltonian di�eomorphisms.This new notion of support 
oin
ides with the usual one for smooth Hamil-tonians and Hamiltonian di�eomorphisms. Indeed, let η be either an Hamil-tonian di�eomorphism viewed as an element of H or H̃, or a smooth Hamil-tonian seen as an element of Hu, H̃u, Ĥ, Ȟ or H2. Let (ηn) be a sequen
erepresenting η, and U an open set with supp(ηn) ⊂ U for all n. Then lemma4.4 gives supp(η) ⊂ U . Hen
e supp(η) ⊂ support(η). Conversely, for any17



neighbourhood U of supp(η) the 
onstant sequen
e (η) 
onverges to η andhas support in U . Therefore support(η) ⊂ ⋂
V U , where the interse
tion isover the set V of all open neighbourhoods of supp(η). Then, it is easy to seethat ⋂

V U =
⋂

V U = supp(η).4.2 Des
ription of some elements of the 
ompletionsIn this se
tion, we show that a large set of elements of the di�erent 
omple-tions 
an be asso
iated to dis
ontinuous Hamiltonians. An immediate 
on-sequen
e of this is the non-
ompleteness of all our distan
es. It also makespossible to understand those elements in a more geometri
al way.De�nition 4.6. We denote by F the set of all fun
tions H : R
2n → R∪{+∞}su
h that:(i) K = H−1({+∞}) satis�es c∞(K) = 0,(ii) H vanishes at in�nity: ∀ε > 0, ∃r, (|x| > r ⇒ |H(x)| < ε),(iii) H is 
ontinuous.We also set F∞ = {H ∈ F |H is smooth on R

2n −H−1({+∞})}.Proposition 4.7. Suppose H is an element of F and K = H−1({+∞}).Then there exists a sequen
e of smooth autonomous Hamiltonians (Hk) ∈
Ham with the following properties:a. (Hk) 
onverges to H uniformly on every 
ompa
t subset of R

2n −K.b. (Hk) is Cau
hy for γu, γ̃u, γ̂ and γ̌.Moreover, if H ∈ F∞, then any sequen
e (Hk) that 
onverges to H uniformlyon the 
ompa
t subsets of R
2n −K, does not 
onverge in Ham, for none ofthe distan
es γu, γ̃u, γ̂ and γ̌.Remark. In the 
ase of non-autonomous Hamiltonians, we would have asimilar result, but with a stronger assumption on the set K of dis
ontinuities.Namely, the 
on
lusions of Proposition 4.7 hold for a time-dependent fun
tion

H on R×R
2n, smooth on R×(R2n−K), where K is a 
ompa
t set satisfying

ξ∞(K) = 0.This result is a simple appli
ation of theorem 3.4. Therefore, we 
hooseto give the details not in that 
ase, but in a more restri
tive, but also moreinteresting 
ase. Indeed, for the elements of F∞, the set of dis
ontinuityis somehow "stable" under the Hamiltonian �ow. This property allows to18




onsider fun
tions with a larger dis
ontinuity set (c∞(K) = 0 instead of
ξ∞(K) = 0).Proof. Fix k > 0. Properties (ii) and (iii) in De�nition 4.6 imply that Kis 
ompa
t. Sin
e c∞(K) = 0, there exists an open neighbourhood U of Ksu
h that c∞(U) 6 1

k
. Then, if we denote H>A = {x |H(x) > A}, we havefor A large enough, K ⊂ H>A ⊂ U . Indeed, if it was not true, then for allinteger for all integer l > 0, there would exists a point al in H>l, but not in

U . Then, the sequen
e (al) would take values in H>1 ∩ (R2n − U) whi
h is
ompa
t, and hen
e it would have a subsequen
e that would 
onverge to anelement of K ∩ (R2n − U), whi
h 
ontradi
ts our assomption. Let us �x areal number Ak su
h that H>Ak ⊂ U .Now, let Hk be a smooth fun
tion with 
ompa
t support su
h that |Hk −
H| < 1

k
on R

2n−H>Ak+ 2

k , and su
h that |Hk−Ak− 2
k
| < 1

k
on H>Ak+ 2

k . Thesequen
e (Hk) 
learly 
onverges to H uniformly on every 
ompa
t subset of
R

2n −K. Let us see why it is Cau
hy.By Proposition 2.10, we just have to prove it for γ̂ and γ̌. We write Fk foreither Ȟk or Ĥk. We also denote, as in the proof of Corollary 3.5, ψk for thethird 
oordinate of φFk
. Sin
e Hk is an autonomous Hamiltonian, its �ow φtHkpreserves its level sets. Hen
e, the isotopy ψsk preserves the level sets of Hk(see the 
omputations in Appendix A.2). Therefore, sin
e by 
onstru
tion

H>Ak+ 2

k ⊂ H
>Ak+ 1

k

k , we have
⋃

t∈[0,1]

ψtk(H
>Ak+ 2

k ) ⊂ H
>Ak+ 1

k

k .Let δ > 0 and suppose α is su�
iently large. Then, as in the proof ofCorollary 3.5,
ξFk(R2 ×H>Ak+ 2

k ) 6 δ + c∞


R

2×
⋃

s∈[0,1]

(ψ−1
k )s(H>Ak+ 2

k )




6 δ + c∞


 ⋃

s∈[0,1]

(ψ−1
k )s(H>Ak+ 2

k )




6 δ + c∞(H
>Ak+ 1

k

k ).Sin
e H>Ak+ 1

k

k ⊂ H>Ak ⊂ U and c∞(U) 6 1
k
, we obtain ξFk(H>Ak+ 2

k ) 6 1
k
+δ.Now, pi
k an integer l > k. If l and k are large enough, then we have

|Ĥk−Ĥl| 6 1
k
and |Ȟk−Ȟl| 6 1

k
on R

2+2n−(R2×H>Ak+ 2

k ). Therefore, by the19



remark that follows Theorem 3.4, we get γ̂(Hl, Hk) 6 4
k
and γ̌(Hl, Hk) 6 4

k
,after taking limsup with respe
t to α. It proves that (Hk) is a Cau
hysequen
e for γ̃u, γu, γ̂, and γ̌.Suppose now that H is smooth on R

2n−K. Then we 
an 
hoose Hk su
hthat it 
oin
ides with H on Bk −H>Ak+ 2

k , where Bk is the ball of radius k,
entered at 0. Suppose that (Hk) 
onverges to a Hamiltonian L ∈ Ham for
γ̃u, γu, γ̂, and γ̌. Then for any integer k, Hk♯Hl 
onverges to Hk♯L while ltends to in�nity for γ̃u (see Lemma 3.1 for notations). A

ording to Lemma4.4, sin
e HK♯Hl has support in the 
omplementary of Bk −H>Ak+ 2

k , Hk♯Lhas support in its 
losure and hen
e L 
oin
ides with H on Bk − H>Ak+ 2

k .Sin
e it is true for any k, L has to 
oin
ide with H on R
2n −K. Therefore

L 
annot belong to Ham, whi
h 
ontradi
ts our assumptions.Finally, if (Lk) is another sequen
e of Hamiltonians that 
onverges to Huniformly on the 
ompa
t subsets of R
2n−K, then, similarly as in the aboveproof that (Hk) is Cau
hy, we obtain that γ̂(Lk, Hk) and γ̌(Lk, Hk) 
onvergeto 0, where Hk is the parti
ular sequen
e de�ned in the previous paragraph.Sin
e (Hk) does not 
onverge, (Lk) does not 
onverge either. �Corollary 4.8. The metri
 spa
es (H, γ), (Ham, γu), (H, γ̃), (Ham, γ̃u),

(Ham, γ̂) and (Ham, γ̌) are not 
omplete.Proof. For (Ham, γu), (Ham, γ̂), (Ham, γ̃u), and (Ham, γ̌), it is exa
tlywhat we proved in Proposition 4.7. We are now going to prove it in the 
aseof γ and γ̃. Sin
e the proof is exa
tly the same in both 
ases, we will onlydo it for γ.We 
onsider a de
reasing fun
tion h : [0,+∞) → [0,+∞), with sup-port in [−1, 1], and equal to 1 on [−3/4, 3/4]. Then we de�ne Hk(x) =∑k

i=1 h(2
i|x|2), for x ∈ R

2n. Suppose that (φHk
) 
onverges to φ ∈ H for γ.We are going to prove that φ 
annot be smooth at 0. Lemma 4.4 impliesthat φ 
oin
ides with φHk

out of B2−k . So, we 
an 
ompute the expli
it formof φ. In polar 
oordinates, we obtain:
φ(r, θ) = (θ − r2f ′(r2), r),for r > 0 where f(s) =

∑
i>0 h(2

is) (for any s, all the terms in this sum are0 ex
ept maybe one). If we denote by (q, p) the 
oordinates in R
2n, and by

φ1 the proje
tion of φ on R
n × {0}, we have for q ∈ 2−i[1/2, 1],

∂φ1

∂q
(q, 0) = cos(q22ih′(2iq2))−2(q422ih′′(2iq2)+q32ih′(2iq2)) sin(q22ih′(2iq2)).(2)Suppose that h is 
hosen so that there exists q1 and q′1 in [1/2, 1] su
h that

∂φ1

∂q
(q1, 0) 6= ∂φ1

∂q
(q′1, 0) (we denote by A their di�eren
e), and de�ne qi =20



√
2−iq1 and q′i =

√
2−iq′1. Then, (qi) and (q′i) vanish, but from (2) we seethat ∂φ1

∂q
(qi, 0) − ∂φ1

∂q
(q′i, 0) 
onverges to A. Therefore φ 
annot be smooth at

0. �Remark. In the previous example, the sequen
e of di�eomorphisms (φHk
)was 
onverging almost everywhere to a homeomorphism (whi
h was not adi�eomorphism). Therefore, one 
ould think that the 
lass of (φHk

) in the
ompletion H 
an be represented by a homeomorphism. However, with thehelp of Proposition 4.7, we 
an show that it is not true in general, at least indimension 2n > 4.Indeed, 
onsider H : R
2 × R

2n → R,
(x1, x2) 7→

1

|‖x1‖2 − 1| + ‖x2‖2
χ(‖(x1, x2)‖),where χ is smooth with 
ompa
t support and equals 1 on the ball of radius

2 
entered at zero. Clearly, H ∈ F∞ (be
ause K = H−1({+∞}) = S
1 × {0}satis�es c∞(K) = 0 as required). Consider the sequen
e (Hk) 
onstru
ted inthe proof of Proposition 4.7. Sin
e (Hk) is Cau
hy for γu, (φHk

) is Cau
hy for
γ. Suppose it 
onverges to an element φ. Then, Lemma 4.4 implies that forany neighbourhood U of K and for k large enough, φ 
oin
ides with φHk

on
R

2+2n −U . Therefore, we 
an 
ompute the expli
it form of φ on R
2+2n −K.In polar 
oordinates (s1, θ1, s2, θ2) with s1 = ‖x1‖2 and s2 = ‖x2‖2, we getfor s1 < 1:

φ(s1, 0, 0, 0) =

(
s1,

s1

(1 − s1)2

)
.If we let s1 
onverge to 1, we see that φ is not 
ontinuous and thus is not ahomeomorphism.Corollary 4.9. The set F∞ 
an be embedded into ea
h 
ompletion Hu, H̃u,

Ĥ and Ȟ.Proof. Sin
e Ĥ ⊂ Hu ⊂ H̃u and Ȟ ⊂ Hu ⊂ H̃u, it is enough to prove itfor γ̂ and γ̌. We will make the proof for γ̂ and the proof for γ̌ is exa
tlythe same. Let J be the fun
tion that asso
iates to any H ∈ F∞ the elementof Ĥ represented by any sequen
e (Hk) that 
onverges uniformly to H onthe 
ompa
t sets of R
2n − H−1({+∞}). As we noti
ed at the end of theproof of Proposition 4.7, two su
h sequen
es are equivalent and hen
e J iswell-de�ned.Let us now prove that J is one-to-one. Let H,G ∈ F∞ and let (Hk), (Gk)be two sequen
es respe
tively asso
iated to them, pre
isely 
onstru
ted as inthe last but one paragraph of the previous proof. Suppose that G 6= H , we21



are going to show that γ(Hk, Gk) does not 
onverge to zero, that will implythat γ̂(Hk, Gk) does not 
onverge to zero.We 
an de�ne almost everywhere the �ows φtG, φtH and ψt = φ−t
G ◦φtH. Let

ψk = φ−1
Gk

◦ φHk
. Sin
e G 6= H , there exists a point x su
h that ψ(x) 6= x.Hen
e, there exists a small ball B around x su
h that ψ(B) ∩B = ∅. Let Kbe a 
ompa
t neighbourhood of ⋃

t ψ
t(B). For k large enough, Hk and Gk
oin
ide respe
tively with H and G on K, and thus ψk(B)∩B = ∅ too. Sin
e

γ(Hk, Gk) = γ(ψk) > γ(B) > 0, γ(Hk, Gk) 
annot 
onverge to zero. �Remark. As usual, the results of Proposition 4.7 and Corollary 4.8 and 4.9still hold for γ2.Now, if we denote by C0 the set of 
ontinuous Hamiltonians that vanishat in�nity, we 
an improve the diagram of se
tion 4.1.1:
F

��

&&
F∞ ∪ C0

� � //
lL

{{vv
vv

vv
vv

vv
Ȟ� _

��

H2
� � //

Ĥ
� � // Hu

� � //

��

H̃u

��

HH
� � // H

� � //
H̃5 Appli
ation to Hamilton-Ja
obi Equation.Let H be a smooth Hamiltonian fun
tion on R × R

2n. We 
onsider theevolution Hamilton-Ja
obi equation (HJ):
∂u

∂t
+H

(
t, x,

∂u

∂x

)
= 0,where u : R×R

n → R, (t, x) 7→ u(t, x) satis�es an initial 
ondition u(0, x) =
u0(x). First, we remind the reader of the 
onstru
tion of a variational solutionof (HJ) (see for example [14℄ or [10℄).5.1 Re
all on variational solutions of (HJ).Let us denote by Λ0 the graph of du0 and 
all it the initial submanifold. Infa
t, the following 
onstru
tion 
an be made for any Lagrangian submanifold
Λ0 ⊂ R

2n. We 
onsider Σ = Ĥ−1({0}) ⊂ R
2+2n. A geometri
 solution of22



(HJ) is a Lagrangian submanifold L that satis�es Λ0 6 L 6 Σ. For example,the graph of the di�erential of a smooth fun
tion u is a geometri
 solution ifand only if u itself is solution of (HJ).With the help of the �ow φt
Ĥ
, we 
an 
onstru
t a geometri
al solution

LH =
⋃
t∈I φ

t

Ĥ
(Λ0), where I is an open interval 
ontaining [0, 1] and su
hthat ρα = 1 on I. The Lagrangian submanifold LH obtained is an elementof L(R2+2n).For any element L ∈ L(R2k), we 
an asso
iate a fun
tion uL on R

2k bythe following method.Let S : R
k×R

q → R be a g.f.q.i of L. Denote by 1z the fundamental 
lassin H0(z). Then, we de�ne uL by
uL(z) = c(1z, S|z×Rq),with notations of se
tion 2. The fun
tion uL is everywhere C0, and it isproved in [10℄, that uL is Ck on a dense open set, for k > 1. Moreover,when it is de�ned, we have (x, duL(x)) ∈ L. Therefore, the fun
tion uLH

isa solution of (HJ) on any open set on whi
h it is smooth.We are now going to prove an interesting property of the elements of H2,whi
h is the fa
t that we 
an extend to them the 
onstru
tion of a variationalsolution of (HJ).5.2 Extension to the 
ompletionProposition 5.1. Let H and K be two Hamiltonian fun
tions, and uLH
, uLKthe solution obtained by the above method with the same initial submanifold

Λ0. Then,
‖uLH

− uLK
‖C0 6 γ2(H,K).That leads us to the following de�nition.De�nition 5.2. Let H ∈ H2. A 
ontinuous fun
tion u will be 
alled gener-alized variational solution of (HJ) for H, if there exists a Cau
hy sequen
e

(Hk) in Ham representing H and su
h that the sequen
e of solutions (uLHk
)

C0-
onverges to u.Therefore, proposition 5.1 implies the following statement:Theorem 5.3. For ea
h initial 
ondition u0, any element H in the 
omple-tion H2 admits a unique generalized variational solution uH . Moreover, theso 
onstru
ted map H2 → C0 is 
ontinuous.23



In parti
ular, any Hamiltonian fun
tion in F∞ (see de�nition 4.6) admitsa unique generalized variational solution.Proof. Let (Hk) ∈ Ham be a Cau
hy sequen
e for γ2 representing anelement H ∈ H2. Then, proposition 5.1 implies that (uLHk
) is a Cau
hysequen
e in C0 and hen
e 
onverges to a 
ontinuous fun
tion u. Moreover, if

(Hk) and (Fk) are two equivalent Cau
hy sequen
es for γ2, then proposition5.1 also implies that (uLHk
) and (uLFk

) are equivalent, and hen
e 
onvergeto the same limit. It gives the existen
e and the uni
ity.The 
ontinuity of the map H2 → C0 is also an immediate 
onsequen
e ofProposition 5.1. �To prove proposition 5.1, we �rst prove the following lemma:Lemma 5.4. For any L ∈ L, we have
‖uL‖C0 6 γ(L).Proof. Sin
e L 
oin
ides with the zero se
tion out of a 
ompa
t set, uLhas a 
ompa
t support. It follows that ‖uL‖C0 6 max(uL) − min(uL). Wewill prove that min(uL) > c(1, L). It will also imply that max(uL) 6 c(µ, L)by Poin
aré duality. Indeed, using the fa
t that c(µ, L) = −c(1, L) and thatfor all z, µz = 1z, we have uL = −uL.Let z ∈ R

k, and S : R
k×R

q → R be a g.f.q.i of L ⊂ R
2k. Then, S|{z}×Rq isa g.f.q.i. of the redu
tion of L by the 
oisotropi
 submanifold {z}×R

k ⊂ R
2k.Therefore, by lemma A.2, we get c(1z, S|{z}×Rq) > c(1, S), for all z and hen
e

min(uL) > c(1, L) as required. �Proof of proposition 5.1. The proposition 
omes from a sequen
e of in-equalities:
‖uLH

− uLK
‖C0 6 γ(LH , LK) 6 γ̃(φ ˇ̂

H
, φ ˇ̂

K
) 6 γ2(H,K).The third inequality 
omes from the �rst inequality in proposition 2.10. These
ond one is proved in [1℄. Finally, the �rst one 
omes from the lemma 5.4above and proposition 3.3 in [15℄, whi
h states that for all u, v ∈ H∗(Rn),

c(u∪v, L1 +L2) 6 c(u, L1)+ c(v, L2), where L1 +L2 = {(q, p1 +p2) | (q, p1) ∈
L1, (q, p2) ∈ L2}.Indeed, for u = v = 1(t,x), L1 = (LH − LK)|(t,x) and L2 = LK |(t,x), weget c(1(t,x), LH |(t,x)) − c(1(t,x), LK |(t,x)) 6 −c(1(t,x), (LH − LK)|(t,x)). Then,lemma 5.4 gives −c(1(t,x), (LH − LK)|(t,x)) 6 γ(LH − LK) = γ(LH , LK).By ex
hanging H and K and taking the supremum over (t, x), we obtain
‖uLH

− uLK
‖C0 6 γ(LH , LK) as required. �24



Remark and Question. Joukovskaia proved in [7℄ that for Hamiltonian fun
-tions that are 
onvex in p, variational solutions of (HJ) 
oin
ide with vis-
osity solutions (These are a notion of weak solution introdu
ed by Crandalland Lions in [2℄ that has shown its e�
ien
y in a lot of domains of appli-
ations in
luding optimal 
ontrol and di�erential games, front propagationproblems, �nan
e, image theory.... ). We are tempted to use it together withsome 
onvergen
e result on vis
osity solutions, to prove that our generalizedvariational solution is a vis
osity solution. This would give another inter-pretation of our notion of solution, and sin
e our solution is 
ontinuous, itwould also give a 
ontinuity result on vis
osity solutions.However, sin
e we developed our theory in the 
ontext of 
ompa
tly sup-ported Hamiltonians, we 
annot reason on Hamiltonian fun
tions 
onvex in
p. That leads us to our question : Can we de�ne a 
ompletion with similarproperties for a 
lass Hamiltonian fun
tions 
onvex in p?A Appendix: Proof of inequalitiesIn this appendix we prove proposition 2.10 and lemma 2.13. All those in-equalities are based on the redu
tion inequality stated in proposition A.1.A.1 Inequality between γ̃ and γ.We �rst prove the inequality γ > γ̃.Let ϕ be a Hamiltonian di�eomorphism, and L ∈ L. We wish to show that
γ(ϕ(L)−L) 6 γ(ϕ). If we denote by N the zero se
tion of R

2n = T ∗
R
n, thereexists a Hamiltonian isotopy ψt su
h that L = ψ1(N). Therefore, we justneed to prove γ(ϕ(N)) 6 γ(ϕ). Indeed, if we assume this inequality, then

γ(ϕ(L)−L) = γ(ϕ◦ψ1(N)−ψ1(N)) = γ(ψ−1◦ϕ◦ψ1(N)−N), using formula
(2.1) in [1℄. Then, by assumption we get γ(ϕ(L)−L) 6 γ(ψ−1◦ϕ◦ψ1) = γ(ϕ).Let us prove now that γ(ϕ(N)) 6 γ(ϕ). We denote by ∆p the diagonal in
R
p ×R

p, and by Φ the symple
ti
 identi�
ation R2n×R
2n → T ∗∆2n. Re
allthat Γ̃ϕ is by de�nition the image of the graph Γϕ of ϕ. Clearly, ϕ(N) isidenti�ed to the symple
ti
 redu
tion of N × Γϕ ⊂ R

6n by the 
oisotropi
linear subspa
e ∆2n×R
2n. It is therefore identi�ed to the redu
tion of N×Γ̃ϕby W = (IdR2n × Φ)(∆2n × R

2n). One 
an easily show that for all L ∈ L,
γ(N × L) = γ(L). In parti
ular, γ(ϕ) = γ(N × Γ̃ϕ), and the proof will bea
hieved if we prove the following proposition.Proposition A.1 (Redu
tion Inequality). For every Lagrangian sub-manifold L in R

2n and every linear 
oisotropi
 subspa
e W of R
2n, we have

γ(L) > γ(LW ), where LW denotes the image of L by redu
tion by W .25



We �rst prove the following lemma.Lemma A.2. Let L be a Lagrangian submanifold in a 
otangent bundle ofthe form T ∗M = T ∗B × R
2k. Consider the two 
oisotropi
 submanifolds

X = T ∗B×{x0}×R
n and Y = T ∗B×R

n×{0}. Denote by LX and LY theredu
tions of L by respe
tively X and Y . Then
c(1, LX) > c(1, L) = c(1, LY ),

c(µB, LX) 6 c(µM , L) = c(µB, LY ).Proof. We start the proof by showing that c(1, LX) > c(1, L). Letus �x λ ∈ R and 
onsider the in
lusion i : B ≃ {0} × B → M . Let Sbe a g.f.q.i. of L de�ned on a bundle π : E → M . Then the fun
tion
SX = S|π−1(B×{x0}) is a generating fun
tion for LX . Sin
e SX is a restri
tion of
S, we have an in
lusion of the sublevels SλX ⊂ Sλ, whi
h indu
es a morphism
iλ : H∗(Sλ, S−∞) → H∗(SλX , S

−∞
X ). The naturality of Thom isomorphismand the fa
t that all di�erent in
lusions 
ommute make the following diagram
ommutative.

H∗(B)
T−−−→ H∗(S∞

X , S
−∞
X )

j∗
X,λ−−−→ H∗(SλX , S

−∞
X )

i∗

x
xi∞

xiλ

H∗(M)
T−−−→ H∗(S∞, S−∞)

j∗
λ−−−→ H∗(Sλ, S−∞)Suppose now that j∗X,λ ◦ T (1) 6= 0. Then iλ ◦ j∗λ ◦ T (1) = j∗X,λ ◦ T ◦ i∗(1) =

j∗X,λ ◦ T (1) 6= 0 hen
e j∗λ ◦ T (1) 6= 0. That proves c(1, LX) > c(1, L).In the 
ase of LY , we also have an expli
it generating fun
tion, 
onstru
tedas follows. Sin
e R
k is 
ontra
tible we 
an suppose that the �bers of π donot depend on the se
ond 
oordinate of M . Denote by i : B ≃ B×{0} → Ethe in
lusion and by τ : B × R

k → B the trivial bundle of rank k over
B. Consider the ve
tor bundle over B, ρ = τ ⊕ i∗π whose total spa
e is
F = π−1(B × {0}) × R

n. Then, the fun
tion SY , de�ned for all v ∈ B and
(x, ξ) ∈ ρ−1(v) by SY (v; x, ξ) = S(v, x; ξ) is a g.f.q.i for LY . The map f : E →
F, (v, x; ξ) 7→ (v; x, ξ) is a di�eomorphism and satis�es SY ◦f = S. Therefore,we have SλY = f(Sλ), an isomorphism H∗(Sλ, S−∞) ≃ H∗(SλY , S

−∞
Y ) and a
ommutative diagram

H∗(B)
T−−−→ H∗(S∞

Y , S
−∞
Y )

j∗
Y,λ−−−→ H∗(SλY , S

−∞
Y )

i∗

x
x≃

x≃

H∗(M)
T−−−→ H∗(S∞, S−∞)

j∗
λ−−−→ H∗(Sλ, S−∞)26



The previous argument gives c(1, LY ) > c(1, L). The reverse inequality is ob-tained from the same diagram with the in
lusion i repla
ed by the proje
tion
p : M → B (whi
h reverses verti
al arrows).Finally, c(µB, LN) 6 c(µM , L) = c(µB, LY ) is obtained from c(1, LX) >

c(1, L) = c(1, LY ) by Poin
aré duality, by noti
ing that LX = LX and LY =
LY . �Lemma A.3. Let W be a 
oisotropi
 linear subspa
e of R

2n. Denote by
N the zero se
tion of R

2n = T ∗
R
n. Then there exists a de
omposition inlinear isotropi
 subspa
es R

2n = N1 ⊕ V1 ⊕ N2 ⊕ V2 ⊕ N3 ⊕ V3, where N =
N1 ⊕N2 ⊕N3 and ea
h Ni⊕Vi, i = 1, 2, 3 is a symple
ti
 subspa
e, su
h that
W = N1 ⊕ V1 ⊕N2 ⊕ V3.Proof. Let us �rst re
all that ifW is 
oisotropi
 with symple
ti
 orthogo-nalW ω ⊂W , any subspa
e F su
h that F ⊕W ω = W is symple
ti
. Indeed,sin
e F ⊂W , F ∩ F ω = F ∩ F ω ∩W = F ∩ (F ⊕W ω)ω = F ∩W ω = {0}.If there exists a de
omposition as in the lemma, then W ω = N2 ⊕ V3.Therefore we set N2 = W ω ∩N . Then, we de�ne N1 as one 
omplementaryof N2 in W ∩ N , and F1 as one 
omplementary of W ω in W , 
ontaining
N1. By the above remark, F1 is symple
ti
, and we 
an 
hoose V1 as oneLagrangian 
omplementary of N1 in F1.Then, we de�ne V3 as a 
omplementary of N2 in W ω. Sin
e W ∩ N =
N1 ⊕N2, V3 ∩N = 0, and we 
an de�ne N3 as a 
omplementary of N1 ⊕N2in N . Then, F3 = N3 ⊕ V3 is symple
ti
 sin
e it is a 
omplementary of
(N1 ⊕N2 ⊕ F3)

ω in N1 ⊕N2 ⊕ F3.Finally, we de�ne F2 as a 
omplementary of F1 ⊕ F3 in R
2n. Then, F2 issymple
ti
 for a similar reason as F3, and we 
an de�ne V2 as a Lagrangian
omplementary of N2 in F2. The de
omposition R

2n = N1 ⊕ V1 ⊕N2 ⊕ V2 ⊕
N3 ⊕ V3 satis�es all the requirements of lemma A.3. �Proof of proposition A.1. Sin
e the linear symple
ti
 group a
ts transi-tively on the set of all pairs of 
omplementary Lagrangian subspa
es (seeproposition 7.4 in Chapter 1 of [8℄), and sin
e the spa
e of Lagrangian sub-spa
es whi
h are 
omplementary to the zero se
tion N is path 
onne
ted,there exists a symple
ti
 isotopy Ψt of R

2n su
h that Ψ0 = Id and that Ψ1lets all the elements of N invariant and maps V on V1 ⊕ V2 ⊕ V3. Sin
e R
2nis simply 
onne
ted, that isotopy is Hamiltonian.The redu
tion of L by W is identi�ed with the redu
tion of Ψ1(L) by

Ψ1(W ). Therefore, applying twi
e the lemma A.3, we get γ(LW ) 6 γ(Ψ1(L)).But, by proposition 2.6 in [15℄, we have γ(L) = γ(Ψ1(L)). That 
on
ludesthe proof of proposition A.1. � 27



Remark. Note that in the end of the previous proof, lemma A.3 also implies
c(1, LW ) > c(1, L). That will be useful in the proof of lemma 2.13.A.2 Inequalities involving the �suspended distan
es�.We now prove the inequality γu(H,K) 6 γ̂(H,K), for any H ,K Hamiltonianfun
tions. It is su�
ient to prove that for all Hamiltonian fun
tions H ,K, all
s in [0, 1], and all α large enough, γ(φ−s

K φsH) 6 γ(φ−s

K̂
φs
Ĥ

). We will prove thatthe graph of φ−s
K φsH 
an be obtained by redu
tion of the graph of φ−s

K̂
φs
Ĥ
, andthen use proposition A.1.We denote by Φ̂s the �ow at time s of the Hamiltonian Ĥ : (s; t, τ, x) 7→

ρα(τ)τ + ρα(t)H(t; x). By dire
t 
omputation, we get
Φ̂s(t, τ, x) = (t(s), τ(s), x(s)),with

t(s) = t+

∫ s

0

(ρ′α(τ(σ))τ(σ) + ρα(τ(σ))dσ

τ(s) = τ −
∫ s

0

(ρ′α(t(σ))H(t(σ), x(σ) + ρα(t(σ))
∂H

∂t
(t(σ), x(σ)))dσand x(s) solution of ẋ(s) = ρα(t(s))XH(t(s), x(s)). If we denote M =

max(‖ρα‖C1 , ‖H‖C1), we see that τ(s) ∈ [τ − |s|M2, τ + |s|M2]. Suppose
τ ∈ [−M2 − 2M,M2 + 2M ] and α is large enough, then ρα(τ(s)) = 1 and
t(s) = t+ s. Hen
e x(s) = (φH)t+st (x). We set
IH(s, t, x) = −

∫ s

0

(ρ′α(t(σ))H(t(σ), x(σ) + ρα(t(σ))
∂H

∂t
(t(σ), x(σ)))dσ

= H(t, x) −H(t+ s, φt+st (x)),and J(s, t, x) = IH(s, t, x) + IK(−s, t + s, (φH)t+st (x)). Then, we 
an writethe expression of the 
omposition:
φ−s

K̂
φs
Ĥ

(t, τ, x) = (t, τ + J(s, t, x), (φK)t−st (φH)t+st (x)).We 
an now 
ompute the interse
tion of the graph Γφ−s

K̂
φs

Ĥ

with the set
U = [−1, 1]×R× [−M2,M2]×R×R

2n×R
2n, and its image by the naturalidenti�
ation Ψ : R

4+4n → T ∗∆2+2n. We get
Γ̃φ−s

K̂
φs

Ĥ

∩ Ψ(U) = {(t, J(s, t, x), τ +
1

2
J(s, t, x), 0, z(x)) |28



(t, τ, x) ∈ [0, 1] × [−M2,M2] × R
2n, z(x) ∈ Γ̃(φK)t−s

t (φH)t+s
t

}.Consider the 
oisotropi
 submanifold W = {0} × R × {0} × R × R
4n.Sin
e τ + 1

2
J(s, t, x) = 0 implies τ ∈ [−M2 − 2M,M2 + 2M ], and sin
e

W ⊂ Ψ(U), we see that Γ̃φ−s
K
φs

H
is obtained from Γ̃φ−s

K̂
φs

Ĥ

by redu
tion by W .By proposition A.1, we get γ(Γ̃φ−s
K
φs

H
) 6 γ(Γ̃φ−s

K̂
φs

Ĥ

) and hen
e γ(φ−s
K φsH) 6

γ(φ−s

K̂
φs
Ĥ

). �We are now going to prove γu(H,K) 6 γ̌(H,K). The idea of the proofis the same as the previous one: we show that for any s ∈ [0, 1], Γ̃φ−s
K
φs

H
isobtained by redu
tion of Γ̃φǨ

−1φȞ
, for α large enough.Re
all that by de�nition, Ȟ(s; t, τ, x) = ρα(t)tH(st; x). As above, we
ompute the �ow : φs

Ȟ
(t, τ, x) = (t(s), τ(s), x(s)), and we obtain

t(s) = t

τ(s) = τ + IH(s, t, x)where IH(s, t, x) = ρα(t)sH(st, x(s)) − ρ′α(t)t
∫ s

0
H(σt, x(σ))dσ and x(s) issolution of ẋ(s) = ρα(t)tXH(st, x(s)). For t ∈ [−1, 1] and α > 1, it gives

x(s) = φts(x).Similarly as above, we set J(s, t, x) = IH(s, t, x)+ IK(−s, t+s, (φH)ts(x)),the set U = [−1, 1]×R×R
2 ×R

2n×R
2n and the identi�
ation Ψ : R

4+4n →
T ∗∆2+2n. The graph 
an be written this way:

Γ̃φ−s

Ǩ
φs

Ȟ

∩ Ψ(U) = {(t, J(s, t, x), τ +
1

2
J(s, t, x), 0, z(x)) |

(t, τ, x) ∈ [0, 1] × R × R
2n, z(x) ∈ Γ̃φ−st

K
φst

H
}.Now, we see that Γ̃φ−t

K
φt

H
is the redu
tion of Γ̃φǨ

−1φȞ
by the 
oisotropi
 man-ifold W = {t} × R × {0} × R × R

4n. Using lemma A.2 twi
e, we 
on
ludethat for all t ∈ [0, 1], γ(φ−t
K φ

t
H) 6 γ(φ−1

Ǩ
φȞ). �A.3 Proof of lemma 2.13.It is su�
ient to show that c(V ) 6 c(R2 × V ) for all open subset V ∈ R

2n.Let H be an Hamiltonian fun
tion with support in V . We just have to �ndan Hamiltonian fun
tion K with support in V ×R
2 satisfying the inequality

c+(H) 6 c+(K). If we set K = Ȟα for α large enough, K has supportin R
2 × V , and we saw in parti
ular in the previous proof that Γ̃φ1

H
is theredu
tion of Γ̃φȞ

. Therefore, by the remark that ends se
tion A.1, we have
c+(H) 6 c+(K) as required. � 29
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