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On some completions of the space of
Hamiltonian maps

Vincent Humiliére

Abstract

In his paper [12], C. Viterbo defined a distance on the set of Hamil-
tonian diffeomorphisms of R?” endowed with the standard symplectic
form wg = dp A dq. We study the completions of this space for the
topology induced by Viterbo’s distance and some others derived from
it, we study their different inclusions and give some of their properties.
In particular, we give a convergence criterion for these distances. This
allows us to prove that the completions contain non-ordinary elements,
as for example, discontinuous Hamiltonians.

1 Introduction.

Given an open subset U in R?", we denote by Ham(U) the set of all 1-periodic
time dependent Hamiltonian functions R x R?*” — R whose support for fixed
time is compact and contained in U. We will write Ham for Ham(R?").

Given a Hamiltonian function H € Ham, its symplectic gradient (i.e the
unique vector field Xy satisfying dH = ix,wo) generates a Hamiltonian
isotopy {¢%;}. The set of Hamiltonians diffeomorphisms generated by an ele-
ment H in Ham(U) will be denoted by H(U) = {¢xg = ¢}, | H € Ham(U)},
and we write H for H(R?"). Finally, we call £ = {¢(0,)|® € H}, the set of
Lagrangian submanifolds obtained from the zero section 0, C T*R" = R?",
by a Hamiltonian isotopy with compact support.

As usual, we denote Viterbo’s distance on £ or H by  (see [12]). Con-
vergence with respect to 7 is called c-convergence.

Our main goal in this paper is to understand the completion of the space
H(U) for the distance ~, give some convergence criterion (section 4) and
compare it with the convergence for Hofer’s distance dy (see [4], chapter 5
section 1).

The notion of C° symplectic topology has been studied by many authors,
starting from the work of Eliashberg and Gromov on the C° closure of the



group of symplectic diffeomorphisms, to the later results of Viterbo ([12]),
Hofer ([3])

More recently Y.G. Oh (|7|) gave a deep study of several versions of C°
Hamiltonians. However our definition seems to differ from his, since in all
his definitions, he needs the Hamiltonians to be continous, while our study
starts as we drop this assumption.

In section 4, we define a symplectic invariant &, and prove that

Theorem 1.1. If the closure of U is compact and if K C U is such that
£o(K) = 0, then for every sequence (Hy) in Ham(U) which is Cauchy for
the metric of uniform convergence on compact subsets of U — K, the sequence
om, 15 Cauchy for .

As a result, any Hamiltonian continuous on U — K, with compact support
in R x (U — K) has a flow defined in the v-completion of H(U).

Examples of sets K with . (K) = are given by compact submanifolds of
dimension d < n — 2.

The elements of the completion have some other properties. We can asso-
ciate (section 5) to them a support by defining supp(¢) as

m{U C R*" | there exists (¢,) representing ¢ such that Vn, supp(¢,) C U}.

To some of them, it is also possible to associate a solution to Hamilton-Jacobi

equation:
ou ou
—+H|t,z,— ) =0.
ot * ( . 8x)

Indeed, a y-Cauchy sequence of Hamiltonians gives a CY-Cauchy sequence of
solutions (section 6).

Aknowledgments. 1 am grateful to my supervisor C. Viterbo for his
advices. I also want to thank my friend M. Affre for spending hours correcting
my awful english.

2 Symplectic invariants.

In this section, we recall the definition of Viterbo’s distance, defined first for
Lagrangian submanifold with the help of generating functions, and then for
Hamiltonian diffeomorphisms (see |12|). It will be convenient to use some
other distances defined from v by taking supensions, namely ¥, vu, Yu, 7, ¥
and ;. Relations between these metrics will be stated and proved in section
3.



2.1 Generating functions quadratic at infinity.

Let L be a Lagrangian submanifold of the cotangent bundle 7" M of a smooth
manifold M. We say that L admits a generating function if there exists an
integer ¢ > 0 and a smooth function S : M x R? — R such that L can be
written

L= {(:)s,p) eT"M|3 € Rq,a—s(z,f) =0 and 8—5(:)5,5) :p}.

o0& ox
Such function S is called a generating function quadratic at infinity (or just
“g.f.q.1”) if there exists a non degenerate quadratic form ¢ on R? and a
compact K C M x RY such that, V(z,£) ¢ K, S(z,£) = Q(&).

For instance, any quadratic form on R? viewed as a function on M x RY
is a g.f.q.i of the zero section 0, C T*M. J.C. Sikorav proved in [9] that the
property of having a g.f.q.i is invariant by Hamiltonian isotopy with compact
support. For this reason we will be interested in the set £ of Lagrangian
submanifolds, images of the zero section by an Hamiltonian isotopy with
compact support.

Furthermore, C. Viterbo and D. Théret proved that the g.f.q.i’s of a given
Lagrangian submanifold are essentially unique. Before stating this result, let
us introduce the following definitions: For a given function S : M x R? — R,
we call a stabilisation of S any function S’ : M x R? x RY — R of the form
S'(x,£,8) = S(x,8) + q(¢'), where ¢ is a non-degenerate quadratic form on
R? . In addition, two functions S, " : M xR? — R are said equivalent if there
exists a diffeomorphism ¢ of M x R? and a real C' such that 8" = So¢+ C.

Theorem 2.1 ([12, 10]). Suppose S, S’ are two g.f.q.i’s of the same La-
grangian submanifold in L. Then, up to stabilisation, S and S’ are equivalent.

This result allows to associate symplectic invariants to any element of L.

2.2 Invariants defined by minimax and a distance on
the group of Hamiltonian diffeomorphisms.

The invariants defined in this section have been introduced by C. Viterbo in
[12]. We recall their construction. We first define invariants for Lagrangian
submanifolds.

Let L be an element of £ and S : M x R? — R be one of its g.f.q.i’s. Let
us denote S* = {z € M x R?|S(z) < A}. Since S is quadratic at infinity,
the homotopy types of the pairs (S*, S#) and (S*, S~*) do not depend on ),
provided that X is sufficiently large . Therefore, we will denote S* and S™°°,
instead of S* and S~ for \ large enough.



Let us introduce E the negative (trivial) bundle of the quadratic form
which coincides with S at infinity. We denote B(EL), S(E.) the ball
bundle and the sphere bundle associated to E__. The Thom isomorphism
is given by H*(M) — H*(B(EL),S(EZ)), and we also have the isomor-
phism H*(B(EL),S(EL)) ~ H*(S*,57>). We will denote by T their
composition. For further informations on those isomorphisms, see [5| for
example. The inclusion j, : S* — S* induces a morphism in cohomology
gyt H*(S%,87°) — H*(S*, S7°°), for all real number \. We are now ready

for the following.

Definition 2.2. Let (u, L) € H*(M) x L, with w # 0. Using a g.f.q.i S of
L, we define a real number c¢(u, L) as follows:

c(u, L) = inf{\|j5 o T(u) € H*(S*,S7°) is non zero}. (1)

Observe that c(u, L) is well defined, and is independent of the choice of
S’s choice. Indeed, if we replace S with an equivalent or stabilized generating
function, the value of ¢(u, L) does not change and we conclude using theorem
2.1. Even if it doesn’t depend on the generating function, we sometimes use
the notation c(u, S) instead of ¢(u, L).

Since the cohomology of the sets S* changes when we cross the level
c(u, L), it has to be a critical value of S.

Finally, observe that the definition can be extended to classes with com-
pact support v € H}(M).

Then, we can use those invariants associated to Lagrangian submanifold
to define other invariants associated to Hamiltonian diffeomorphisms.

Consider an Hamiltonian diffeomorphism ¢ € H. Its graph I'y is a La-
grangian submanifold of R2" x R** (= (R** x R*", —wy @ wy), where wy
is the standard symplectic structure on R??). It coincides with the diagonal
A = {(z,r) |z € R*"}, outside the product B*"(r) x B*"(r), for r sufficiently
large. When we identify R2" x R?" with T*A using the map,

+Q p+P
(q7p7Q7P)H (%,])T,P_p,Q_Q),

we see that the image f‘\; of I'y is identified with the zero section of T*A
outside a compact set. -

Then, we can associate the previous invariant to I'y. Let 1 be a generator
of H°(R*") and p a generator of H(R?").

Definition 2.3 (Viterbo, [12]). We define,
C—(¢) - _C(:ua F1/1)7
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cr(¥) = —c(1,T),
V(W) = ey (1) — e_ (),
() = v '9).

Let us describe now some properties of the numbers v, ¢, and c_.

Proposition 2.4 (Viterbo, [12]). For all ¥ in 'H, we have

c-(¥) <0< ey (¥).

Moreover, c_ (1) = c.(¢¥) = 0 if and only if v = 1d.
If ¢ is another diffeomorphism in H, then

ci(pot)) < cp(9) + cy (),
c(po) = c(9)+c(¥),
(@ o) < () + ().

Those properties allows to prove that v is a distance on H. We also have
a very useful property of monotonicity of ¢, and c_.

2
<

Proposition 2.5. Let 1y and 1y be two Hamiltonians generated by Hy and
Hsy. Suppose that for all (t,z) € R xR?*", we have H,(t,z) < Hy(t,z). Then,
(1) < i (¥2) and c-(¥1) < c-(t2).

As a corollary, we get that if H is a non-negative Hamiltonian, then
c_(¢y) =0. If H is in addition non zero, we deduce cy(¢g) > 0.

Finally, the following proposition states the continuity of v with respect
to C%-topology.

Proposition 2.6. Let H; and Hy be two compactly supported hamiltonians,
generating vy and 1. Let || - || be the usual norm on C°(R** x [0,1],R). If

[Hy — Haol| <&, then |y(1h1) —v(¢a)] < e.

2.3 Other distances derived from 7.

Let us now introduce other distances, derived from ~. Those definitions are
sometimes more convenient than the original one.

Definition 2.7. For all Hamiltonian diffeormorphisms ¢,v € H, we define

Yo, 9) = inf{y(¥™¢(L) — L) | L € L},

where y(L) = c(p, L) — c¢(1,L), VLe L and L1 —Ly={(q,p1 —p2)| (¢, 1) €
L1, (q,p2) € Lo}, for Ly, Ly € L.



We get by this way another distance on H (see [12], [1]). Then, we define
distances not anymore on H, but on Ham.

Definition 2.8. For any H, K € Ham, we set
Yu(H, K) = sup{y(¢p, ¢ ) |t € [0,1]}

and

Fu(H, K) = sup{§ (¢, ¢) |t € [0,1]}.

({3}

Here, the subscript “u” means “uniform”. Clearly, v, and 7, are distances
on Ham.

The two next distances are constructed with the help of suspensions. We
already explained the principle in the introduction, we now give the precise
definition.

Definition 2.9. Let p be a fized real function defined on [0, +00), supposed
to be non-negative, smooth, decreasing, with support in [0,1], flat at 0 and
such that p(0) = 1. For every natural integer o and every real number t, we
set po(t) =1 if —a <t < a, and pa(t) = p(|t| — «) otherwise.
We denote by H,, and H, the Hamiltonian functions defined on R x R2T27,
by
Hy(s:t,7,2) = po(T)T + pa(t) H(t, 2),
and
H,(s;t,7,x) = po(t)tH (st, x).
Then, for H K € Ham, we set
Y(H, K) = limsup v, (Ha, Ko),
a—+00

and
Y(H,K) = limsupy(og, , d5.)

a—+00

Remark that 4(H, K) and ¥(H, K) are finite. Indeed, if we denote by B
a ball containing both supports of H and K, then Ha, Ka, H, and K, have
support in R?* x B, for any integer a. Hence v(¢p , dg.) < 2¢(R* x B) <
2¢>°(B) (See section 2.4 for notations). It shows that the limsup in the
definition of ¥ is finite. The same proof shows that 4(H, K) is also finite.

The triangle inequality for 4 and 7 is a direct consequence of the triangle
inequality axiom for 4. The separation axiom is obtained from the separation
axiom for v and proposition 3.1.

By repeating these constructions several times (i.e. by taking suspensions
of suspensions), we can construct new distances. For example, we will use in
section 6 the distance 7o = limsup,_ , . 7(Hy, Ka).

For convenience, we will not write the subscript o anymore. In the fol-
lowing, we will denote H for ﬁa, and H for H,.



2.4 Two symplectic capacities on R?".

We start this section by reminding the reader of the definition of a symplectic
capacity.

Definition 2.10 (Ekeland-Hofer). A symplectic capacity on (R*",wy),
is a map associating to each subset U C R*, a number c¢(U) € [0,+o0],
satisfying

1. UCV=¢cU)<c(V) (monotony),

2. ¢(o(U)) = c(U) for all Hamiltonian diffeomorphism ¢ € H (symplectic
invariance),

3. ¢(A\U) = N2c(U) for all real X > 0 (homogeneity),
4. ¢(B*(1)) = ¢(B? x R*"=V) = 7, where B*>(1) is the unit ball of R®"

(normalisation,).

The invariants defined in the previous section allow to define two sym-
plectic capacities [12]. Moreover, we have an inequality between them.

Definition 2.11. 1. For any compact subset K C R*", we denote by ~(K)
the number defined by

Y(K) = inf{(¢) [¢(K) N K = 0}.

If V' is not compact, we set
(V) = sup{~(K) | K C V}.

2. For any open subset U C R?", we denote by c(U) the number defined
by
c(U) = sup{c4(¢n) [ Supp(H) C U}.

If V' is not an open set, we set
(V) =inf{c(U) |V C U}.

The maps ¢ and v are symplectic capacities and moreover, ¢ < v. We
remind the reader of the definition of the displacement energy

d(U) = inf{dp (¢, Id) | 9(U) N U = 0},

where dy is Hofer’s distance (we already recalled its definition in the intro-
duction).

We are going to define a new symplectic capacity derived from -, but
before we need the following lemma.



Lemma 2.12. We consider a subset V C R*" and R? x V C R?>T2". Then,
c(R?* x V) = ¢(V).
We will prove that lemma at the end of section 3.

Definition 2.13. For any open subset U C R?*", we set

(U) = lim ¢(U x R*Y),

N—oo

and if V' is not an open subset,
(V) =inf{c>*(U) |V C U}.

We obtain a symplectic capacity that satisfies ¢ (V) = ¢>(V x R?) for
all subset V, and ¢ < ¢®. Moreover, since d(U) = d(U x R?), we have also
c™ < d. To summarize the inequalities between capacities we have,

Proposition 2.14. ¢ <y < d and ¢ < ¢™® < d.

3 Inequalities between the new distances

The goal of tis section is to relate the different distances. We will prove:

Proposition 3.1.

The inequality 7, < 4 implies 4 < 73, and it is known (see [12|) that
v < dg. The results on the completions may be summarized by the following
diagram. Here, $y denotes the completion of H for Hofer’s distance, and
C. the set of continuous Hamiltonians with compact support. The arrows
9, — 9 and H, — 9 are induced by the map H — ol

Cr 5 \
$o°

H— 9.9,

NES e



3.1 Inequality between 7 and 7.

We wish to prove the first inequality of proposition 3.1, i.e. v > 7.

Let ¢ be a Hamiltonian diffeomorphism, and L € £. We wish to show that
Y(p(L)—L) < v(p). If we denote by N the zero section of R?" = T*R", there
exists a Hamiltonian isotopy ¢! such that L = ¢'(N). Therefore, we just
need to prove v(¢(N)) < v(p). Indeed, if we assume this inequality, then
V(L) = L) = (o' (N) =9 (N)) = (¥~ ooty (N) — N) by symplectic
invariance of 7. Then, by assumption we get v(o(L)— L) < y(¢p topoy!) =
V().

Let us prove now that v(¢(N)) < 7(¢). We denote by A, the diagonal in
RP x R?, and by ® the symplectic identification R2" x R?" — T*A,,. Recall
that 'y, is by definition the image of the graph I',, of ¢. Clearly, p(N) is
identified to the symplectic reduction of N x I', € R®" by the coisotropic
linear subspace Ay, x R?". It is therefore identified to the reduction of N x f;
by W = (Idgzn X ®)(As, x R*). One can easily show that for all L € L,

Y(N x L) = ~(L). In particular, v(p) = v(N x f;), and the proof will be
achieved if we prove the following proposition.

Proposition 3.2. For all Lagrangian submanifold L in R*" and all linear
coisotropic subspace W of R?", we have v(L) > ~v(Lw), where Ly denotes
the image of L by reduction by W.

We first prove the following lemma.

Lemma 3.3. Let L be a Lagrangian submanifold in a cotangent bundle of
the form T*M = T*B x R?*. Consider the two coisotropic submanifolds
X =T"Bx{xg} xR" andY =T*B xR" x {0}. Denote by Lx and Ly the
reductions of L by respectively X and Y. Then

c(l,Lx) = ¢(1,L) = ¢(1, Ly),

c(up, Lx) < c(par, L) = c(ps, Ly).

Proof. ~ We start the proof by showing that ¢(1, Lx) > ¢(1,L). Let
us fix A € R and consider the inclusion ¢ : B >~ {0} x B — M. Let S
be a g.f.q.i. of L defined on a bundle 7 : £ — M. Then the function
Sx = S|z-1(Bx{ao}) 18 a generating function for Lx. Since Sy is a restriction of
S, we have an inclusion of the sublevels S3 C S*, which induces a morphism
iy : H*(S* S7°) — H*(S%,S%>). The naturality of Thom isomorphism
and the fact that all different inclusions commute make the following diagram



commutative.

T JX,

H*(B) —— H*(S%,5%%) — H*(5%,5x™)

T I I

H*(M) —2— H*(§%,8-°) —2 g*(S, §~)
Suppose now that j% , o T'(1) # 0. Then iy o jy o T(1) = jy, 0T oi*(1) =
Jxa 0T (1) # 0 hence jy o T(1) # 0. That proves c(1, Lx) > ¢(1, L).

In the case of Ly, we also have an explicit generating function, constructed
as follows. Since RF is contractible we can suppose that the fibers of 7 do
not depend on the second coordinate of M. Denote by i : B~ Bx {0} — E
the inclusion and by 7 : B x R¥ — B the trivial bundle of rank k over
B. Consider the vector bundle over B, p = 7 & ¢*7m whose total space is
F = 77Y(B x {0}) x R". Then, the function Sy, defined for all v € B and
(2,€) € p~L(v) by Sy (v;z,&) = S(v,2;€) isag.f.qifor Ly. Themap f: E —
F, (v,2;€) — (v;x,€) is a diffcomorphism and satisfies Syof = S. Therefore,
we have S3 = f(S?*), an isomorphism H*(S*, S=>°) ~ H*(Sy, S;>) and a
commutative diagram

T Iy

H*(B) —— H*(S¥,8y%) —— H*(5%,5,%)

T I I

HA (M) —Ls 17 (5%, 8-) Dy (S, §-)
The previous argument gives ¢(1, Ly) > ¢(1, L). The reverse inequality is ob-
tained from the same diagram with the inclusion i replaced by the projection
p: M — B (which reverses vertical arrows).
Finally, ¢(up, Ln) < c(par, L) = c¢(pup, Ly) is obtained from ¢(1,Lx) >

c(1, L) = ¢(1, Ly) by Poincaré duality, by noticing that Lx = Ly and Ly =

Ly. 0O

Lemma 3.4. Let W be a coisotropic linear subspace of R**. Denote by
N the zero section of R*® = T*R"™. Then there exists a decomposition in
linear isotropic subspaces R*™ = Ny @ Vi @ Ny @ Vo @ Ny @ Vs, where N =
N1 ® No@® N3 and each N; &V;, 1 = 1,2,3 is a symplectic subspace, such that
W=N @V ® Ny D V.

Proof. Let us first recall that if W is coisotropic with symplectic orthogo-
nal W<« C W, any subspace F' such that FF¢W* = W is symplectic. Indeed,
since FCW, FNFY=FNF'NW=Fn(FeW)*=FnW*={0}.
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If there exists a decomposition as in the lemma, then W% = N, & Vs.
Therefore we set No = W« N N. Then, we define N; as one complementary
of Ny in W N N, and F} as one complementary of W% in W, containing
Ni. By the above remark, F) is symplectic, and we can choose V] as one
Lagrangian complementary of Ny in F}.

Then, we define V3 as a complementary of Ny in W¥. Since W NN =
N1 @® Ny, V3N N =0, and we can define N3 as a complementary of N; & Ny
in N. Then, F; = N3 & V3 is symplectic since it is a complementary of
(Nl D N2 D Fg)w in Nl D N2 D Fg.

Finally, we define F, as a complementary of F}; @ Fy in R?". Then, F; is
symplectic for a similar reason as F3, and we can define V5 as a Lagrangian
complementary of Ny in F,. The decomposition R?" = Ny @ V; & No @ Vo @
N3 @ V3 satisfies all the requirements of lemma 3.4. [

Proof of proposition 3.2. Since the linear symplectic group acts transi-
tively on the set of all pairs of complementary Lagrangian subspaces (see
proposition 7.4 in Chapter 1 of [6]), and since the space of Lagrangian sub-
spaces which are complementary to the zero section N is path connected,
there exists a symplectic isotopy ¥ of R?" such that ¥° = Id and that W'
lets all the elements of N invariant and maps V on V; @ Vi @ Vs. Since R?”
is simply connected, that isotopy is Hamiltonian.

The reduction of L by W is identified with the reduction of W!(L) by
UH(WW). Therefore, applying twice the lemma 3.4, we get v(Ly) < v(P(L)).
But, by proposition 2.6 in [12], we have (L) = v(¥!(L)). That concludes
the proof of proposition 3.2. [

Remark. Note that in the end of the previous proof, lemma 3.4 also implies
c(1, Ly) = ¢(1, L). That will be useful in the proof of lemma 2.12.

3.2 Inequalities involving the “suspended distances”.

We now prove the inequality v,(H, K) < 4(H, K), for any H,K Hamiltonian
functions. It is sufficient to prove that for all Hamiltonian functions H,K, all
s in [0, 1], and all « large enough, v(¢5°¢5;) < v(qﬁ;jgb;) We will prove that
the graph of ¢, "¢, can be obtained by reduction of the graph of gb;(ﬁfq, and
then use proposition 3.2.

We denote by ®° the flow at time s of the Hamiltonian H : (s;t,T,2) —
Pa(T)T + pa(t)H (t; x). By direct computation, we get

A

CI)S(t’ T, ZL’) = (t(s)> T(S)a ZL’(S)),

11



t(s) = t+/05(p’a(7(0))7(0)+pa(7(0))d0
OH

(s) = T—/Os(pﬁl(t(a))H(t(U)ax(U)+pa(t(0))g(t(0)afc(0)))d0

and z(s) solution of @(s) = pa(t(s))Xu(t(s),z(s)). If we denote M =
max(||pallct, || H|lc1), we see that 7(s) € [r — |s|M? 7 + |s|M?]. Suppose
T € [-M?* — 2M, M? + 2M] and « is large enough, then p,(7(s)) = 1 and
t(s) =t + s. Hence z(s) = (¢p)i*(x). We set

In(sta) = = [ L) H (). 2(0) + palt(0) G (1(0). (o))

= H(t,x) = H(t+s,¢,"(v)),
and J(s,t,x) = Iy(s,t,x) + Ig(—s,t + s, (dy)i™*(x)). Then, we can write
the expression of the composition:
Oyt x) = (8,7 + J(s,t,2), (0);* (dm); ™ (x)).
We can now compute the intersection of the graph I',—s,. with the set
K "H

U=[-1,1] x R x [-M? M?| x R x R?" x R* and its image by the natural
identification ¥ : R4 — T*A, 5. We get

~ 1
Fd)}f(sqﬁfq N ‘;[](U) = {(tu J(Svta l’),T + §J(57 t 37), 07 Z(l’)) |

(t,7,2) €[0,1] x [~ M2, M?] x R®, 2(x) € Ty s (g -
Consider the coisotropic submanifold W = {0} x R x {0} x R x R*".
Since 7 + %J(s,t,:v) = 0 implies 7 € [-M?* — 2M, M? + 2M], and since
W C ¥(U), we see that qu;(s% is obtained from F%S% by reduction by W.

By proposition 3.2, we get y(I'y—s4: ) < y(I'y=s,: ) and hence (¢ ¢3) <
K & %
Wé76s). O
We are now going to prove ~,(H, K) < 7(H, K). The idea of the proof
is the same as the previous one: we show that for any s € [0, 1], F¢;<s¢§{ is
obtained by reduction of /fd)kfl%, for a large enough.
Recall that by definition, H(s;t,7,2) = pa(t)tH(st;x). As above, we
compute the flow : ¢% (¢, 7,2) = (t(s), 7(s),z(s)), and we obtain
t(s) =t
T(s) = T+ 1Ig(s,t,x)

12



where Iy (s,t,x) = po(t)sH(st,z(s)) — pL(t)t [ H(ot,z(0))do and x(s) is
solution of Z(s) = pu(t)t Xy (st, (s)) For t € [— 1 1] and a > 1, it gives

(s) = ¢ (x).

Similarly as above, we set J(s,t,x) = Iy(s,t,x)+ Ix(—s,t+s, (o) (x)),
the set U = [—1,1] x R x R? x R?" x R?" and the identification ¥ : R**" —
T*As,o,. The graph can be written this way:

~ 1
P¢TS¢S, N \II(U) - {(t? J(S,t,!)ﬁ'),’T + —J(S,t,I),O,Z(Z')) |
K "H 2

(t,7,2) € [0,1] x R X R*", 2(z) € Ty sy }.

Now, we see that ffb;{t% is the reduction of ffbk”% by the coisotropic man-
ifold W = {t} x R x {0} x R x R*. Using lemma 3.3 twice, we conclude
that for all ¢ € [0, 1], ¥(¢x'¢ly) < V(¢g ¢g). O

Proof of lemma 2.12. 1t is sufficient to show that ¢(V) < ¢(R? x V) for all
open subset V € R?". Let H be an Hamiltonian function with support in
V. We just have to find an Hamiltonian function K with support in V' x R?
satisfying the inequality ¢ (H) < ci(K). If we set K = H, for o large
enough, K has support in R2 x V, ‘and we saw in particular in the previous
proof that F L is the reduction of F¢ Therefore, by the remark that ends
section 3.1, we have ci(H) < e (K) as required. [

4 The convergence criterion.

This is the central section of our paper. We give the proof of theorem 1.1.

4.1 A sufficient condition for c-convergence to zero.

We start this section with some formulas concerning Hamiltonian flows. They
can be obtained by direct computation (see |4|, page 144).

Lemma 4.1. For all Hamiltonians H and K, with compact support, we have:

gbtﬁ = (¢4) 7, where H(t,z) = —H(t, ¢'(z))
Phsic = ¢tH o ¢, where (HIK)(t,x) = H(t,x) + K(t, (¢") "' (v))
¢HtiK (¢H) QSI}(
Remark. (HiK)(t,z) = (K — H)(t, ¢'(x)).
The following proposition shows that if a sequence of Hamiltonians (H,,)

converges to zero uniformly on every compact set contained in the comple-
ment of a set whose capacity is zero, then (¢g,) c-converges to Id.
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Proposition 4.2. Let H be a Hamiltonian on R*" with compact support. If
U is an open subset of R*™, such that c(U) < € and |H(t,z)| < € for all
t €[0,1] and all x € R*™ — U, then v(dg) < 4e.

Proof. l.et K, K5 be Hamiltonians with compact support, such that
0< K; <1, 1=1,2, Ky equals 1 on the support of H and K5 equals 1 on
the support of K. Denote 1; . the diffecomorphism generated by H —c K, and
Yy . the diffeomorphism generated by eK5. Then we have H < eKy + (H —
eKy). As (¢g.)7" coincides with Id on the support of H — K, the lemma
4.1 shows that Ky + H — €K, is the Hamiltonian that generates 1y, o 9 ..
The propositions 2.5, 2.4 and 2.6 then give

ci (@) < ey (o oe) <ep(thoe) + ey (Pre) < e+ ey (Pre).

Denote by ;D; the diffeomorphism generated by a non-negative Hamiltonian,
with support in U, and greater than H — ¢K,. Then by Proposition 2.5,
¢+ (1) < e (¢n.). Finally, since Supp(dhr.) C U, we get ¢ (¢1.) < c(U) <
€.

Using the inequality H > —e K5 + (H +¢K7), we obtain the same type of
inequality for c_. [

For example, if K is a compact submanifold of dimension d < n — 1, then
v(K) =0 (and hence ¢(K) = 0).

4.2 What about non-zero limits?

Unfortunately, the previous result is false in general when the limit is not
zero, even if we replace the symplectic capacity ¢ by ¢>. What follows is a
counter example.
Example. 1t is well known that the capacities ¢ and 7 of the unit sphere
S = {x € R?||z|]| = 1} are m. It is also true for ¢>. Then, for all ¢ > 0,
there exists a Hamiltonian H with support in a small neighbourhood U of S,
and such that ¢, (¢g) > m — €. Because of proposition 2.5, H can be chosen
non-negative. We set Ut a neighbourhood of {z € S|x; > 0} and U~ a
neighbourhood of {x € S|z, < 0}, such that U = UTUU~. If U, U and
U~ are choosen small enough, we have d(U*) < e and by proposition 2.14
¢ (U*) < . Using some partition of unity associated to the decomposition
U=UtUJUU", we get two functions H*, with support in U* and such that
H=H"+H".

Now, we see that H™ coincides with H outside U™, whose capacity verifies
¢ (U*) < g, but on the other hand,

1V(¢u) = v(bu)ll = 1P, du+) 27— —(dn-) > 7 — 2.
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It shows that the previous statement is false when the limit is not zero.

Nevertheless, we can introduce a new invariant, in order to extend the
result of proposition 4.2.

Definition 4.3. For any subset U and any Hamiltonian H € Ham, we
define

gwy=c| | ouv)

te(0,1]

We may then set
E(U) =sup 9 (U), for 0 < ) < o0,
where the supremum is over all Hamiltonian functions H with ~,(H) < .

Theorem 4.4. Let H, and Hy be Hamiltonians on R?™ with compact support.
Let U be a subset of R*™, satisfying one of the two following conditions:

1. {£o(U) < e
2. IXN>0, L(U) =0

If |Hi(t,z) — Ho(t,x)| < € for allt € [0,1] and all x ¢ U, then we have
7(¢H17¢H2) < de.

Proof. Consider the Hamiltonian H(t,x) = Hy(t, ¢4(x)) — Ha(t, 4(x)). By
assumption, |H(t,z)| < ¢, for all (t,z) with ¢ ¢;"(U) and hence for all ¢
and all z ¢ U, (631 (U). Each condition on U implies

cl U o) <e=| U )] <e
te[0,1] t€[0,1]
By proposition 4.2 and lemma 4.1, we get v(op,, dn,) = v(oy) < 4e. O

Remark. In the proof of theorem 4.4, we see that the important condition is
in fact £H2(U) < &, which is of course implied by both conditions £, (U) < €
and gA(U) =0.

Corollary 4.5. The conclusion of theorem 4.4 still holds if we replace v with
Y5 Vus Yus Y OT Y-
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Proof. By proposition 3.1, we just have to prove this result for 4 and 4. Then
remark that under the hypothesis of theorem 4.4, we have \ﬁl(s;t, T,T) —
Hy(s;t,7,2)| < e and |Hy(s;t,7,2) — Hy(s;t,7,2)| < e for all integer «, all
s €[0,1], and all (¢,7,7) ¢ R? x U.

Unfortunately, even if U satisfies one of the conditions of proposition 4.4,
it is not in general the case for R? x U. However, by the above remark, it
is sufficient to show that for all real number § > 0 and all integer « large
enough, #2(R? x U) < e+ 6 and £2(R? x U) < ¢ + 0. By letting ¢ tend
to zero and taking limsup with respect to «, we obtain 4(H, K) < 4e¢ and
F(H, K) < 4¢ as required.

Let us denote F for Hy or ];]2. The inequalities on &7 come directly from
the expression of ¢, and ¢y (see computations of section 3). Indeed, in
both cases,

U @) ([FaaP xU) c R x (] (07)(U),

s€[0,1] 5€[0,1]

where v° is an Hamiltonian isotopy that appears in last coordinate when we
compute ¢p. Therefore, since £F(R? x U) = limg_ 100 EF([—a, a]? x U), we
get for any 0 > 0 and any « large enough:

PR xU) < o+ > [RPx | (w7 ()

s€[0,1]

= s+ | @)U <o+e

s€[0,1]
That concludes the proof. [J

Corollary 4.6. Let (Hy) be a sequence of Hamiltonians in Ham, whose
supports are contained in a fived compact set. Suppose there exist an Hamil-
tonian H € Ham and a compact set K € R*" with & (K) = 0, such that
(Hy) converges uniformly to H on every compact set of R x (R* — K). Then

(om,) converges to ¢g for 7, v, and (Hy) converges to H for Yy, Vu, ¥, -

Proof. For 7, 7, it is a direct consequence of the remark that follows the-
orem 4.4. We just have to verify that for all € > 0, there exists a small
neighbourhood U of K such that £#(U) < e. This is true because for every
neighbourhood V' of J,¢(g ;) ¢1(K), we can choose a neighbourhood U of K
such that

U ou(U) C V.

te[0,1]
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Since ¢ (U,cq) @u(K)) = 0 and U,y @u(K) is compact, we can choose
V' such that ¢(V) < e, and obtain ¢*(U,co, #r(U)) < € as required.

For 4 and %, we have to verify that for all ¢ > 0 and all 6 > 0, there exists
a small neighbourhood U of K such that for all a large enough £2(U) < e+,
where F is either H or H. The proof made above for ¢y shows that we can
find U such that £/(U) < ¢, where f generates the isotopy * defined as in
the proof of corollary 4.5. Therefore we have for all § and all « large enough,
FR2xU) < ([—a,aP x U)+ 8 <& U) +6 < e+

By proposition 3.1, corollary 4.6 is also true for v, and ~,. O

Remark.  Similar proofs give that theorem 4.4 and corollary 4.6 still hold
for v,.

4.3 Example of a non trivial £-small set.

Proposition 4.7. Let U be a closed submanifold of R*" whose dimension d
verifies d < n— 2. Then £ (U) = 0.

Proof. Let H € Ham. The problem is that (J,¢ (o ¢4 (U) is not in general
a manifold. To avoid that problem, we are going to add two dimensions and
make a suspension in this way. We denote by ® the Hamiltonian diffeomor-
phism on R?>™2" = {(¢, 7, 7)} generated by the Hamiltonian

[0,1] x R**?" = R, (s;t,7,2) — tH(ts,x).
We also set V' = ®([0, 1] x [—1,1] x U). The computation of ® gives
O(t,7,x) = (t,7 — H(t,x), ¢ (x)).

We see that Ute[o,u ¢ (U) can be obtained from V by symplectic reduction by
the coisotropic manifold {7 = 0}. So we are going to look for a Hamiltonian
diffeomorphism ¢k that displaces V' and preserves {7 = 0} at the same time.
If the Hamiltonian does not depend on ¢, the second condition is verified.
Since V' is compact, it is sufficient for K to verify

Yo e V, RXk(v)NT,V = {0},
which is equivalent to
Yo eV, kerdK (v) ® T,V+ = R*T"

and to
Yo e V, T,V ¢ ker dK (v).
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That makes us consider the 1-jet bundle J'(RxR!*™2" R) and its submanifold
W ={(s,q;0,p;2) | (s,q) € V,z € R, T(5 V" C ker(o,p)}.

The dimension of W is exactly 2n + 1. Indeed, the vector space {(o,p) €
R2H2" | Ty )V* C ker(o, p)} has dimension 2n + 2 — dim(T{; V*) = n.

By Thom transversality theorem (see |2| for example), there exists a func-
tion L whose 1-jet verifies 'L th W. But j'L can be seen as a function
R x R — JHR x R'*2" R), and by lemma 4.6 page 53 in [2], we have
for a generic choice of s € R, j1L(s,-) M W. We fix s as previously and we
denote K : R*™" — R, K(t,-) = L(s,-)

Then, notice that for every s, ¢, p, z, the set of all ¢ such that (s, q;0,p; z) €
W is either () or R. It can be shown by direct computation of TV, whose first
component appears to be always {0}. As a consequence, we get j'K M W
(1K differs from j'L(s,-) just by its o-component which is {0} instead of
9L (s, ) for j'L(s,")).

Now, since (2n+2)+(2n+1) = dim(j' K (R*?"))+dim(W) < dim(J'(R x
R R)) = 4n + 5, we get LK (R*™2")NW = (. It follows that K satisfies
the two conditions: it preserves {7 = 0} and it satisfies

Yo € V, RXx(0) N T,V = {0}.

As V is compact, for € small enough, since ¢ = @5, we have ¢ (V)NV =
(. In addition eK can be made as C%-small as we want.

We are now ready for the reduction by {7 = 0}. Since it preserves {7 = 0},
eK induces a Hamiltonian on the reduction R?®. This Hamiltonian is C°-
small and generates a diffeomorphism v whose Hofer’s distance to identity
dy(1,id) is small, and that satisfies

v U @) |0 eu@=0.
]

te[0,1] te[0,1

This Hamiltonian is not compactly supported, but any Hamiltonian with
compact support which coincides with it on a sufficiently large ball, would

have the same properties. That proves d <Ut€[0’1] gbﬁq(U)) = 0, and since
> <d, we get H(U)=0. O

5 Non-completeness.

In this section we prove the non-completeness of the topologies described
above. We give an example of a non-converging Cauchy sequence. Before
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constructing it, we state a lemma which makes it possible to define a support
for the elements of the different completions.

Lemma 5.1. a. Let (¢,) be a sequence in H converging to a Hamiltonian
diffeomorphism ¢, with respect to v or 7. Assume that there exists a
set U such that supp(¢,) C U. Then supp(p) C U.

b. Let (H,) be a sequence in Ham converging to a smooth Hamiltonian
function H, with respect to vy, Yu, 7, 7, etc. Assume that there exists
a set U such that supp(H,) C U. Then supp(H) C U.

Proof. a. Because of proposition 3.1, we just have to prove the assertion
in the case of 4. Suppose supp(¢) ¢ U. Then there exists an = in R** — U
such that ¢(z) # z. Let ¢ be a Hamiltonian diffeomorphism whose support
is included in R?*" — U, and does not contain ¢(x). Suppose in addition
that ¢(x) # z. Then, since the supports of ¢, and 1) are disjoint, we have
Yog¢ ol o@, =Id for all integer n. Taking limit, we get on one hand
poptoryto¢p = Id. But on the other hand, we have by construction,
pop oyt og(x) =1)(x) # x, which is contradictory.
b. We use the first part of the lemma to conclude that for all time ¢,
supp(¢!) C U. This implies that supp(H) C U. O

Remark. A similar argument shows that the property of letting globally
invariant any sphere centered at 0, is invariant by taking v or 4 limits. Sim-
ilarly, a v, Ju, 7 or 7 limit of radial Hamiltonians is radial.

Definition 5.2. Let n be an element of 9, 9y, Jr:), 5;Ju, Jr:), 9 or 9. Then we
define support(n) as

ﬂ{U| U open set, such that there exists (n,) representing n such that

vn, supp(n.) C U},

where “supp” denotes the usual notions of support for smooth Hamiltonians
and for Hamiltonian diffeomorphisms.

This new notion of support coincides with the usual one for smooth Hamil-
tonians and Hamiltonian diffeomorphisms. Let us prove it. Let n be either
an Hamiltonian diffeomorphism seen as an element of § or Jr:), or a smooth
Hamiltonian seen as an element of §,, j;Ju, §J, §or 9. Let (1) be a sequence
representing 7, and U be an open set with supp(n,) C U for all n. Then
lemma 5.1 gives supp(n) C U. Hence supp(n) C support(n). Conversely, for
any neighbourhood U of supp(n) the constant sequence () converges to 7
and has support in U. Hence support(n) C ﬂv U, where the intersection is
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over the set )V of all open neighbourhoods of supp(n). Then, it is easy to see
that (), U = [, U = supp(n).

We are now ready to prove the non-completeness property. Let us intro-
duce the following family of Hamiltonians.

Definition 5.3. We denote by § the set of all functions H : R** — R U
{+00}, such that:

(i) K = H ' ({+00}) satisfies ¢>(K) =0,

(ii) H wvanishes at infinity: Ye > 0,3r, (|z| > r = |H(z)| < ¢),
(iii) H is continuous.

We also set §° = {H € §| H is smooth on R*" — H~'({+o00})}.

Proposition 5.4. Suppose H is an element § and K = H™'({+o00}). Then
there exists a sequence of smooth autonomous Hamiltonians (Hy) € Ham
which

a. converges to H uniformly on every compact subset of R*" — K.
b. is Cauchy for vy, Yu, ¥ and 7.

Moreover, if H € F°, then any sequence (Hy) that converges to H uniformly
on the compact subsets of R*™ — K, does not converge in Ham, for none of
the distances 7y, Yu, 7 and 7.

Proof. Fix k > 0. Properties (ii) and (iii) in definition 5.3 imply that K
is compact. Since ¢ (K) = 0, there exists an open neighbourhood U of K
such that ¢*(U) < . Then, if we denote H>#* = {z| H(z) > A}, we have
for A large enough, K C H>4 C U. Indeed, if not, for all integer { > 0,
there would exists a point q; in H>!, but not in U. Then, the sequence (a;)
would take values in H2! N (R?*" — U) which is compact, and hence it would
have a subsequence that would converge to an element of K N (R*" — U),
which contradicts our assomption. Let us fix a real number A; such that
H>* C U,

Now, let Hy be a smooth function with compact support such that |Hy —
H| < 1 onR™ — H>*+% | and such that |H, — A, — 2| < 1 on H>#+% . The
sequence (Hy) clearly converges to H uniformly on every compact subset of
R?" — K. Let us see why it is Cauchy.

By proposition 3.1, we just have to prove it for 4 and 4. We denote Fj,
for either Hy or Hy.. We also denote, as in the proof of corollary 4.5, F}
for the third coordinate of ¢, . Since Hj, is an autonomous Hamiltonian, its
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flow gb'}{k preserves its levels. Hence, the isotopy 1}, preserves the levels of Hj,

. . . . 2
(see computations of section 3). Therefore, since by construction H>4+% C

>Ak+l
H, ¥, we have

1
U vttty <
te(0,1]

Let 6 > 0, and suppose « is sufficiently large. Then, as in the proof of
corollary 4.5,

< 0+ ™ (H,

Since H;AH% C H>* C U and ¢*(U) < 1, we get P (H>A+E) < = +0.

Now, pick an integer [ > k. If [ and k are large enough, then we have
|H,— H)| < = and |H,—H,| < = on R2+2n _ (R2 x H>4+%). Therefore, by the
remark that follows theorem 4.4, we get 4(H;, H) < & and ¥(H;, Hy) < %,
after taking limsup with respect to a. It proves that (Hj) is a Cauchy
sequence for 7,, Yu, 7, and 7.

Suppose now that H is smooth on R?® — K. Then we can choose H}, such
that it coincides with H on Bj, — H>A’v+%, where By, is the ball of radius k,
centered at 0. Suppose that (Hj) converges to an Hamiltonian L € Ham for
Aus Yu, ¥, and 4. Then for any integer k, HytH; converges to HfL while [
tends to infinity for 4, (see lemma 4.1 for notations). According to lemma
5.1, since Hi#H, has support in the complementary of B, — H>Ak+%, HitL
has support in its closure, and hence L coincides with H on B, — H>A+7
Since it is true for any k, L has to coincide with H on R?" — K. Hence L
cannot belong to Ham, which contradicts our assomptions.

Finally, if (Ly) is another sequence of Hamiltonians that converges to H
uniformly on the compact subsets of R?® — K, then, similarly to the above
proof that (Hy) is Cauchy, we obtain that 4(Ly, Hy) and §(Lg, Hy) converge
to 0, where Hj, is the particular sequence defined in the previous paragraph.
Since (Hy) does not converge, (L) does not converge either. [J

Corollary 5.5. The metric spaces (H,~), (Ham,v,), (H,7%), (Ham,*,),
(Ham, %) and (Ham,?) are not complete.
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Proof.  For (Ham,~,), (Ham,%), (Ham,?,), and (Ham, %), it is exactly
what we proved in proposition 5.4. We are now going to prove it in the case
of v and 7. Since the proof is exactly the same in both cases, we will only
make it for .

We consider a function h : [0,4+00) — [0,+00) decreasing, with sup-
port in [—1,1], and equal to 1 on [—3/4,3/4]. Then we define Hy(x) =
S h(2Yx]?), for € R*™. Suppose that (¢p,) converges to ¢ € H for 7.
We are going to prove that ¢ cannot be smooth at 0. Lemma 5.1 implies
that ¢ coincides with ¢g, out of By—«. So, we can compute the explicit form
of ¢. In polar coordinates, we get:

¢(T> 9) = (9 - Tzf/(’l“2), T)a

for r > 0 where f(s) = >, ,h(2's) (for any s, all the terms in this sum are
0 except maybe one). If we denote by (g, p) the coordinates in R?", and by
¢1 the projection of ¢ on R™ x {0}, we have for ¢ € 27[1/2, 1],

0L (5,0 = cos(q2 W (2'°)) ~2Aq 22 442 W (2'7)) s 2 W (X))
q

(2)
Suppose that h is chosen so that there exists ¢; and ¢; in [1/2, 1] such that
8451 - (01,0) # 5 991 +(q1,0) (we denote by A their difference), and define ¢; =

\/ ~igqy and ¢, = V27iq]. Then, (¢;) and (¢}) converge to 0, but from (2) we
see that %(qi, 0)— 8¢1 - (4;,0) converges to A. Therefore ¢ cannot be smooth
at 0. O

Remark. In the previous example, the sequence of diffeomorphisms (¢g, )
was converging almost everywhere to a homeomorphism (which was not a
diffecomorphism). Therefore, we can say that the class of (¢g, ) in the com-
pletion $ can be represented by a homeomorphism. However, with the help
of proposition 5.4, we can show that it is not in general true, at least in
dimension 2n > 4.

Indeed, consider H : R? x R?" — R,

1
[l f? = 1]+ ]

(x1,22) — E Xl Grs z2)]),

where Y is smooth with compact support and equals 1 on the ball of radius
2 centered at zero. Clearly, H € 3° (K = H '({+00}) = S x {0} satisfies
¢™®(K) = 0 as required). Consider the sequence (Hy) as constructed in the
proof of proposition 5.4. Since (Hj) is Cauchy for ~,, (¢g,) is Cauchy for
~v. Suppose it converges to an element ¢. Then, lemma 5.1 implies that for
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any neigbourhood U of K and for k large enough, ¢ coincides with ¢, on
R2*+2" — U. Therefore, we can compute the explicit form of ¢ on R?*¥?" — K
In polar coordinates (s, 01, s2,0) with s; = ||21||* and sy = ||22]|?, we get

for s; < 1:
¢(51>0a070) - (Sb (1 — 51)2) .

If we make s; converge to 1, we see that ¢ is not continuous and hence is not
a homeomorphism.

gorollary 5.6. The set T can be embedded into each completion $,, Jr:)u,
$H and 9.

Proof.  Since 5:9 c 9, C 5%“ and § C 9, C fju, we just have to prove it
for 4 and 4. We will make the proof for 4. The proof for ¥ is exactly the
same. Let J be the function that associates to any H € §*° the element of
9 represented by any sequence (Hy) that converges uniformly to H on the
compact sets of R*™ — H=*({+00}). As we noticed at the end of the proof
of proposition 5.4, two such sequences are equivalent and hence J is well
defined.

Let us now prove that J is one-to-one. Let H,G € §* and let (Hy), (Gy)
be two sequences respectively associated to them, precisely constructed as in
the last but one paragraph of the previous proof. Suppose that G # H, we
are going to show that (Hy, G) does not converge to zero, that will imply
that 4(Hy, Gy) does not converge to zero.

We can define almost everywhere the flows ¢%,, ¢, and ! = ¢ ' o @l Let
Py = gbéi o ¢p,. Since G # H, there exists a point = such that ¢(z) # x.
Hence, there exists a small ball B around x such that ¢(B) N B = (). Let
K be a compact neighbourhood of |J, ¢'(B). For k large enough, Hj, and
G}, coincide respectively with H and G on K, and hence ¢(B) N B = ()
too. Since v(Hy, Gg) = v(¥x) = v(B) > 0, v(Hy, Gf) cannot converge to
zero. [

Remark. As usual, the results of proposition 5.4 and corollary 5.5 and 5.6
still hold for ~s.

Now, if we denote Cj the set of continuous Hamiltonians that vanish at
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infinity, we can improve the diagram of section 3:

$°U CO%T
57)2( ,,6( y)u( 5;_)u
Hu" $HE 9

6 Application to Hamilton-Jacobi Equation.

Let H be a smooth Hamiltonian function on R x R?". We consider the
Hamilton-Jacobi equation (H.J):

ou ou
E‘i‘H <t,l’,%> —0,

where u : R x R" — R, (t,z) — u(t, z) satisfies an initial condition u(0, z) =
uo(z).

First, we remind the reader of the construction of a variational solution of
(HJ) (see for example [11] or [8]). We denote by Aq the graph of dug and call
it the initial submanifold. In fact, the following construction can be made for
any Lagrangian submanifold Ay C R2". We consider ¥ = H~1({0}) c R2+2",
A geometric solution of (HJ) is a Lagrangian submanifold L that satisfies
Ay < L < X, For example, the graph of the differential of a smooth function
u is a geometric solution if and only if w itself is solution of (H.J).

With the help of the flow gb’}[, we can construct a geometrical solution
Ly = U,e; 9 (Ao), where I is an open interval containing [0, 1] and such
that p, = 1 on [. The Lagrangian submanifold Ly obtained is an element
of L(R*™").

For any element L € L£L(R?*), we can associate a function u; on R?* by
the following method.

Let S: R¥ xR? — R be a g.f.q.i of L. Denote by 1, the fondamental class
in H%(z). Then, we define uy, by

ur(z) = ¢(1;, S|.xra),

with notations of section 2. The function u; is everywhere C°, and it is
proved in [8], that uy, is C* on a dense open set, for k > 1. Moreover, when
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it is defined, we have (x,dur(x)) € L. Therefore, the function ur, is a
solution of (HJ) on any open set on which it is smooth.

We are now going to prove an interesting property of the elements of s,
which is the fact that we can generalize to them the construction of a solution
of (HJ).

Proposition 6.1. Let H and K be two Hamiltonian functions, andur,,, ur,
the solution obtained by the above method with the same initial submanifold
Ao. Then,

HULH - uLKHCO < 72(H7 K)

Let (Hy) € Ham be a Cauchy sequence for v, representing an element
H € $5. Then, proposition 6.1 implies that (uLHk) is a Cauchy sequence
in C°(I) and hence converges to continuous function u. Moreover, if (H},)
and (F},) are two equivalent Cauchy sequences for ~,, then proposition 6.1
also implies that (uz, ) and (ur, ) are equivalent, and hence converge to the
same limit. That allows us to give the following definition.

Definition 6.2. Let H € 5. A continuous function u will be called gener-
alized variational solution of (HJ) for H, if there exists a Cauchy sequence
(Hy) in Ham representing H and such that the sequence of solutions (ur, )
C°-converges to u.

Therefore, proposition 6.1 implies the following statement:

Corollary 6.3. Any element of $H2 admits a generalized variational solution.
In particular, any Hamiltonian function in §° (see definition 5.3) admits a
generalized variational solution.

To prove proposition 6.1, we first prove the following lemma:

Lemma 6.4. For any L € L, we have

[urlleo < (L)

Proof. Since L coincides with the zero section out of a compact set, uy,
has a compact support. It follows that ||uz|co < max(uz) — min(uz). We
will prove that min(uz) > ¢(1, L). It will also imply that max(uy) < ¢(p, L)
by Poincaré duality. Indeed, using the fact that c(u, L) = —c(1, L) and that
for all z, p, = 1,, we have u;, = —uz.

Let z € R¥ and S : RFxR? — R be a g.f.q.i of L C R*. Then, S|{zyxra is
a g.f.q.i. of the reduction of L by the coisotropic submanifold {2} x R¥ c R?*.
Therefore, by lemma 3.3, we get c(1., S|{:1xre) = (1, 5), for all z and hence
min(ur) > ¢(1, L) as required. O
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Proof of proposition 6.1. The proposition comes from a sequence of in-
equalities:

luzy — urlloo < Y(Li L) < (b4 07) < 12(H, K).

The third inequality comes from the first inequality in proposition 3.1. The
second one is proved in [1|. Finally, the first one comes from the lemma 6.4
above and proposition 3.3 in |[12], which states that for all u,v € H*(R"),
c(uUv, L1+ Ls) < ¢(u, Ly) +c(v, Ly), where Ly + Ly = {(q,p1 +p2) | (¢, p1) €
L1, (q,p2) € Lo}

Indeed, foru =v = 1(t,:c); L1 = (LH — LK>|(t,x) and L2 = LK|(t,x); we
get (L), Lalia) — c(Lia)s Lilia)) < —c(Lia), (Lr — Lk)|@¢x)). Then,
lemma 6.4 gives —c(1(10), (Lu — Lk)|¢t2) < v(Lw — Lx) = 7v(Lu, Lk).
By exchanging H and K and taking the supremum over (¢,z), we obtain
|lur, —ur,llco < v(Lu, Lk) as required. [
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