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Functional Level Power Analysis: An Efficient Approach for Modeling the
Power Consumption of Complex Processors

Abstract

 A high-level consumption estimation methodology and its
associated tool, SoftExplorer, are presented. The estimation
methodology uses a functional modeling of the processor
combined with a parametric model to allow the designer to
estimate the power consumption when the embedded software is
executed on the target. SoftExplorer uses as input the assembly
code generated by the compiler; its efficiency is compared to
SimplePower’s approach. Results for different processors (TI
C62, C67, C55 and ARM7) and for several DSP applications
provide an average error less than 5%. The accuracy and the
rapidness of the estimation allow using SoftExplorer for
efficiently guiding the designer in choosing the more appropriate
processor for his application.

1. Introduction

The Systems-On-Chip must respect critical constraints
in time, area and consumption; therefore the designer need
to validate his choices early in the flow, and has to
characterize the system improvements through accurate
estimates. As the software part is growing in the
applications, its impact on the consumption is also
becoming more important. Although many researches have
developed methodologies to estimate the software
consumption, few of these are associated with an estimation
tool. Some tools use a fine-grain representation of the
processor to obtain a cycle-accurate estimation:
SimplePower [1] and Wattch [2] need a RTL representation
of the architecture to allow the power characterization. This
low-level modeling often implies that the time required to
characterize a processor and to estimate an application
becomes too important to give an efficient feedback in
system design. Another method, the Instruction Level
Power Analysis (ILPA) consists in estimating the cost of
each instruction of the assembly code [3]; the estimation
time is strongly reduced but elaborating the processor
model can be very time consuming for complex processors
[4]. JouleTrack is the only known tool based on this
approach [5]. To characterize VLIW processors, an ILPA
extension, based on a fine knowledge of the processor
architecture, decomposes the instruction into functionalities
[6]; the pipeline stalls are hardly modeled and no tool is
currently available. Furthermore, the necessary time is still

important since 108 days are necessary to model a VLIW
processor (Lx). We propose here to increase the abstraction
level, by combining a functional level model of the
processor requiring only a coarse-grain knowledge on its
architecture and a parametrical model of the code; the aim
is to obtain a good tradeoff between the estimation accuracy
and the model complexity.

Section 2 introduces the processor modeling
methodology illustrated by examples for different
processors. Then, in section 3, the estimation methodology
is proposed with several results for classical digital signal
applications. Section 4 presents a brief comparison between
SoftExplorer’s and SimplePower’s efficiency. Finally,
section 5 illustrates the interest of this high-level approach
for the Co-Design before concluding.

2.  Power Model of the Processor

2.1 Functional Level Power Analysis

To estimate the power/energy consumption of an
application executed on a processor, we first need to realize
the power characterization of the target. The Functional
Level Power Analysis (FLPA) methodology can be started
from only a simple block diagram of the architecture. As
sketched on Fig. 1, the first step consists in dividing the
processor architecture into different functional blocks and
sub-blocks, to cluster the components that are concurrently
activated when a code is running. Then, the relevant
consumption parameters are selected as the significant links
between these blocks. There are two types of parameter:
algorithmic parameter values depend on the executed
algorithm (typically the cache miss rate) and architectural
parameter values depend on the processor configuration
settled by the designer (typically the clock frequency).
Table 1 presents the global parameter set of our generic
power model, which is the common base for each specific
processor set.

The second step is the characterization of the
processor power consumption when the parameters vary.
These variations are obtained by using some elementary
assembly programs (called scenario) elaborated to stimulate
each block or sub-block separately. Characterization can be
performed either by measurements or by simulation; for our



part, the supply current is measured on evaluation boards.
Finally, a curve fitting of the graphical representation
allows determining the consumption laws by regression.
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 Figure 1. Processor Modeling Methodology

Table 1. Generic power model parameters

SOFTWARE PARAMETERS

Name Description

α Parallelism rate

β Processing unit rate

γ Cache miss rate

τ External memory access rateA
lg

or
it

hm
ic

ε DMA access rate

W Data width transferred by the DMA

F Clock frequency in MHz

MM Memory mode

DM Data placement in memory

A
rc

hi
te

ct
ur

al

PM Power management (units in sleep mode)

2.2 FLPA Examples

The FLPA has been applied to different processors in
order to demonstrate that our methodology allows
characterizing VLIW processors (TI C62 and C67), low
power processors (TI C55), and general processors
(ARM7TDMI) as well.

2.2.1 TI C6x power model
The TI C62 and C67 processors are complex Digital

Signal Processors, containing a deep pipeline and allowing
to execute up to 8 instructions in parallel. The internal
program memory can be used in four different memory
modes (Mapped, Cache, Freeze and Bypass). A DMA
(Direct Memory Access) and/or an EMIF (External
Memory InterFace) realize the external memory accesses.
The difference between these two processors is that the C62
is a fixed-point architecture and the C67 is a floating point
one. As these processors have a similar architecture, the
cutting out in functional blocks (in Fig. 2) and the selected
parameter set (Table 2) are shared; however, the
consumption laws will differ. Indeed, the processor used
onto our development boards have neither the same
technological process (0.25µm for the C62 and 0.18µm for
the C67) nor the same supply voltage (2.5V for the C62 and
1.8V for the C67). Therefore these two processors will not
have the same dynamic and static power consumption.
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Figure 2. TI C6x Functional Level Power Analysis

The algorithmic parameters are then defined for the
C6x:
• α represents the parallelism rate i.e. the number of

instructions fetched at each clock cycle. When 8
instructions are fetched simultaneously then α = 1; if
only one instruction is fetched then α = 1/8.

• β represents the processing unit rate. When 8 parallel
instructions are executed then β = 1. As the No
Operation instruction does not involve any processing
unit, if 2 NOP are used then β = 6/8 = 0.75.

• γ represents the cache miss rate.
• ε represents the external data rate accessed by the

DMA.
• τ represents the external data access rate. For the TI

C6x processors, each external access leads to pipeline
stalls; therefore, we can include this parameter into a
new parameter, the Pipeline Stall Rate (PSR) together



with the internal memory bank conflicts, obtained from
the architectural parameter DM (cf. Table 2).
As illustration, Table 3 (at the end of the paper)

presents the complete power model for the Texas
Instruments TMS320C6201 that has already been
extensively reported [7].

2.2.2 TI C55 power model
The TI C55 is a low power processor with a fixed-

point architecture that can only execute two parallel
instructions; however, it only fetches one instruction at each
clock cycle, and pipeline stalls never occur. Another
characteristic of this processor is the possibility to
automatically idle some parts of its architecture if unused.
Its internal program memory can be used in the same 4
modes as the TI C6x and it also contains a DMA and an
EMIF. As the C55 architecture is less complex than the C6x
architecture, its power model will have less parameters (cf.
Table 2).

2.2.3 ARM7TDMI power model
The ARM7TDMI is the simplest processor that we

have modeled yet. It has a scalar architecture and its
internal program memory can be used in 3 modes (Mapped,
Cache and Bypass). Previous works on the StrongArm have
established that the power consumption essentially depends
on the clock frequency and the supply voltage [5]. Our own
consumption measurements on the ARM7TDMI have fully
validated this trend: the power consumption variations
corresponding to various programs are under 8% of the
global consumption. No algorithmic parameter is then
required to model the ARM7, as represented in Table 2.

Table 2. Specific parameter set for various processors

SOFTWARE
PARAMETERS

C62 C67 C55 ARM7

α X X

β X X X
γ X X X
τ  in PSR in PSR
ε X X XA

lg
or

it
hm

ic

PSR X X
W X X X
F X X X X

MM X X X X
DM in  PSR in  PSR

A
rc

hi
te

ct
ur

al

PM X

The complete modeling time was about 30 days for the
TI C6x and 15 days for the ARM7. With an ILPA
approach, Bona and al. have characterized a VLIW
processor (Lx) in 108 days [6].

3. Power/Energy Estimation Methodology

As the architectural parameters are settled by the
designer, once the processor model is known, only the
algorithmic parameters have to be calculated for each
software execution in order to compute the estimated power
consumption. Our automatic tool, SoftExplorer, has been
developed  to estimate the power/energy consumption of an
application in few seconds. Through a graphic interface, the
user must provide some architectural parameters: the clock
frequency F, the memory mode MM and eventually the data
width W if the DMA is used. He also has to quantify some
algorithmic parameters like the pipeline stall rate and the
cache miss rate; such data are usually available through a
dynamic profiling of the application in the processor
environment. From the assembly code, SoftExplorer
computes the other algorithmic parameter values, the
parallelism rate α and the processing unit rate β, as follows:
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NPU
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NFP −×=−×= βα (1)

NFP and NEP respectively stand for the number of
Fetch and Execute Packets. NPU is the number of
processing units and NPUmax is the maximum number of
processing units, which can be used in parallel. In the
example for the TI C6x proposed on Fig. 3, the 8
instructions are fetched together then NFP=1. An Execute
Packet clusters the parallel instructions so NEP=3 and as
the load and store instructions also involve a processing
unit, NPU=7. So, if PSR = 0, α and β are respectively equal
to 0.33 and 0.29.
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Figure 3. Algorithmic parameter computation for the
C6x

To validate the estimation accuracy, several signal and
image processing applications have been analysed: a Finite
Impulse Response filter (FIR), a Discrete Wavelet
Transform (DWT), an Enhanced Full Rate Vocoder for
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GSM (EFR), and a MPEG-1 decoder (MPEG). The last two
benchmarks are extracted from MediaBench. Table 4
presents the SoftExplorer power estimation results in Watt
and the associated error between the physical measures and
the estimates.

The average error between the estimates and the
measurements, for all targets, is around 2.5%. The error for
the ARM processor is slightly more important, due to a very
simple power model. However, such results achieve the
accuracy/complexity tradeoff required for high level design.

Furthermore, SoftExplorer computes the consumption
for each loop and/or function of the program and provides a
graphical representation in order to spot the power and/or
energy critical parts of the application. For more details,
this tool will be in demonstration at the DATE’04
University Booth.

Table 4. SoftExplorer power estimation results

PROCESSORS

C55 C62 C67 ARM7

P (W) 0.46 2.36 0.59 0.22
FIR

Error -1.5% -2.8% +1.4% +4%

P (W) 0.39 3.83 0.9 0.22
DWT

Error +2.3% +2% +6% +7%

P (W) 0.43 2.62 0.95 0.22
EFR

Error +2.1% -0.6% -1% +3%

P (W) 0.4 5.59 0.93 0.22
MPEG-1

Error -1.6% -4% 2.4% +8%

Maximum Error 2.3% -4% 6% +8%

4. SoftExplorer/SimplePower Comparison

We will compare the efficiency of our method with the
SimplePower’s approach on the SPEC-95 benchmarks
(provided with SimplePower) and on other signal-
processing applications.

4.1 SimplePower

SimplePower is an automatic tool developed at the
Pennsylvania State University [1]. This tool computes the
equivalent capacitance corresponding to the total
capacitance switched during the program execution. The
architecture characterization methodology is the following:
� First, for each class of functional unit (bit independent

and bit dependent), the switched capacitance is
computed as a function of previous and present input
vectors.

� Then, one capacitance table is created for each unit.
� The last step consists in the dynamic profiling: for each

clock cycle, the capacitance switched due to the
executed instructions is computed. The total switched

capacitance is computed as the capacitance sum for
each cycle.
To model a processor with this methodology, a RTL

representation of the architecture is compulsory; such an
information is often unavailable with commercial
processors. The architecture currently characterized is a
modified MIPS IV (integer part only). However, the clock
tree and the control unit are not included in the model,
although the clock tree consumption is known as an
important part of the total consumption in processors. Due
to the RTL abstraction level, modeling another target would
be very time consuming

SimplePower results always underestimate the
consumption relatively to HSPICE simulations with a
maximum error about 15% [1].

4.2 Comparison Results

SimplePower has been executed on a Ultra Sparc III+
(900MHz, 1Go of RAM) and SoftExplorer on a PC (Athlon
1GHz, 256Mo of RAM); a first computer benchmarking has
been achieved to confirm that the workstation is always
faster than the PC for every type of application.

Afterwards, power estimation has been performed on
SPEC-95 benchmarks and typical signal and image
processing applications (DSP) with both SimplePower and
SoftExplorer. As the modeled processors are different (a
modified MIPS-IV for SimplePower and TI C62, C67, C55
and ARM7 for SoftExplorer), it is not relevant to compare
the estimates. Nevertheless, another indicator of the tool
efficiency is the estimation time, corresponding to the total
time necessary to compile, to profile and to estimate the
benchmark consumption; results are proposed in Table 5.

Table 5. SimplePower/SoftExplorer estimation time

SimplePower SoftExplorer

Bubble 35s 4s

Hanoi 20s 3s

Heap 9s 3s

Matmult 1s 2s

Perm 67s 4s

Quick 6s 3s

S
PE

C
-9

5

Test <1s 2s

FFT 1024 17s 3s

FIR 1024 4360s 3s

LMS 1024 24728s 4s

DWT 512x512 142267s 10s

D
S

P

MPEG-1 10s 8s

SoftExplorer is generally faster than SimplePower
especially for the classical signal-processing applications.



Indeed, SoftExplorer realizes a static trace of the
application whereas SimplePower realizes a dynamic trace,
increasing the estimation time when the execution time is
high. On the other hand, this dynamic trace allows
SimplePower to estimate all types of applications (control
oriented or data oriented and also data dependant
applications). Furthermore, it provides to the designer a
more detailed information, cycle by cycle, allowing fine-
grain code optimizations. Besides, as SoftExplorer uses a
static trace of the application, a dynamic profiling must also
be performed to determine the average execution time and
then the global energy consumption.

Therefore, SoftExplorer is a power estimation tool
intended to the system design assistance; it realizes the
suitable tradeoff between the estimation accuracy and time
in order to ensure a rapid and reliable feedback to the
designer. It also provides a graphical representation of the
power and energy consumption for each program loop and
function. So, the designer can rapidly focus his optimization
efforts onto the critical parts of the code according to the
application constraints.

5. Application to the Co-Design

To be efficient, the system designer has to take into
account the consumption constraints, in addition to the area
and the execution time, as soon as possible in the design
flow. Especially, he has to select the more appropriate
target for his application. Here, we will show how our
estimation tool can be helpful to realize the processor
selection.

Table 7. Performance results for DSP applications

Application Target Texe (ms) P (W) E (mJ)
C55 4.615 0.39 1.78
C62 2.32 3.83 8.88DWT
C67 2.32 0.9 2.09
C55 3.14 0.43 1.37
C62 4.05 2.62 10.63EFR
C67 4.05 0.95 3.85
C55 4.09 0.4 1.64
C62 0.0404 5.59 0.23MPEG-1
C67 0.0404 1.45 0.038

As we will concentrate on DSP applications, only three
different targets are proposed: the TI C62, the C67 and the
TI C55. Results in Table 7 confirm that the C55, a low
power processor, is always the less power consumer.
Concerning the execution time Texe, the C62 and the C67
are generally faster, because of the strong parallelism; one
exception is for the EFR application, where many pipeline
stalls are generated. As the degree of parallelism and the
clock frequency are the same for the C62 and the C67, we
can see that the execution time is therefore the same. On the
other hand, the power consumption for these two processors

differs because neither the technology nor the supply
voltage are identical.

Finally, the resulting energy E presents a particular
effect for the MPEG application. Indeed, although the C62
uses around 14 time more power than the C55, as its
execution time is 100 less, finally the energy consumed by
the C62 is 7 time lower than for the C55.

Actually, to compare the processor performances in
the case of a real-time application like the MPEG decoder,
the global energy must be considered, including idle
periods. From the data throughput rate, we deduct the time
constraint of the application Tconstraint, representing the
maximum execution time to avoid loss of information. Once
the code executed, the processor is now assumed to be in
idle mode up to the time constraint (Fig. 4).

TconstraintTexe

Pexe

Pidle

Time

Power

IDLE

ACTIVE

Figure 4. Real-time constrained application

Various clock frequencies have been applied; in each
case, the resulting global energy Eglobal is computed through
Equation 2, considering that Pexe is the power consumption
during the execution period and Piddle is the power
consumption during the idle period.

)2)(TT(PTPE exeintconstraidleexeexeglobal −×+×=

This equation can be rewritten as equivalent to:

)3()
F

N
T(F’K

F

N
)CKF(E intconstraglobal −×+×+=

In Equation 3, KF and K’F represent respectively the
execution and dynamic power terms; the static part is C. N
is the number of execution cycles and F the processor
frequency. The results for several MPEG applications with
different real-time constraints are given in Fig. 5: for a
QCIF image (88x72) at 5 and 10 images/s and for a CIF
image (352x288) at 25 and 30 images/s. The curve
variations are fully explained by developing Equation 3
with a high frequency part proportional to F and a low
frequency part proportional to 1/F.

Actually, the best clock frequency in term of energy is
highly dependent on the real-time constraint and no a priori
decision can be made. The energy variations always follow
the same trend but, with the QCIF image, the more energy



efficient clock frequency (30 MHz for the QCIF-5 and 60
MHz for the QCIF-10) is within the C62 functional range.
On the contrary, for the CIF image, the best clock frequency
is 600 MHz; it implies that, for this application, the C62
maximum clock frequency must be chosen.

Figure 5. Energy characteristics for the MPEG decoder

As the power consumption is not a sufficient parameter
for embedded applications, the energy consumption must
also be considered. In these conditions, selecting the best
target with the appropriate parameters is a very complex
task; to guide the designer, a reliable estimation is then
highly valuable.

6. Conclusion

A high-level estimation methodology and the
associated tool SoftExplorer have been presented. The
processor is modeled through a functional analysis and the

software model is parametric: algorithmic parameters,
depending on the code execution, are determined by the
estimation process. The average error of the SoftExplorer
results against the physical measurements is about 2.4%
(except for the ARM7 with 5%). The accuracy and the
rapidity of the tool make it convenient to give metrics in the
Co-Design step, to choose both the target and the suitable
algorithm and to return to the designer a reliable indication
about algorithm optimizations. Future works will add other
processor models to our library and further comparisons
will be performed with existing tools and methods.
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Table 3. Power Model of the TMS320C6201

Consumption laws ITOTAL = IMM + IDMA

Configuration Parameters : MM Memory Mode = {MAPPED, BYPASS, FREEZE, CACHE}; F Clock Frequency ; W Width of the
data transferred by the DMA.
Algorithmic parameters : α parallelism rate ; β processing unit rate ; γ Cache miss rate ; ε DMA access rate ; PSR Pipeline Stall Rate.

IMAPPED = 5. 21α (1-PSR) F + 4.19F + 42.40 α (1-PSR) +7.6 +0.64 β (1-PSR) F
IBYPASS = 9.87F + 39 + 0.64 β (1-PSR) F

IF γ > 0                              ICACHE = (8.55F + 184) α (1-PSR)[-0.1249Log(γ)  -0.002276 ] + 0.64 β (1-PSR) F
                                               IFREEZE = (9.07F + 118) α (1-PSR)[-0.14Log(γ)-0.0011] + 0.64(1-PSR)F
IF γ = 0                              ICACHE = 4.36(1-PSR) F + 4.09F +187.83(1-PSR) + 53.45 + 0.64 β (1-PSR)F

IFREEZE = 4.43(1-PSR)F + 4.72F + 203.1(1-PSR) –38.52 + 0.64 β (1-PSR)F
IF F ≤ Fmemory   IDMA = ( 0.077 W F + 2.12F + 2.05W + 94.72) ε  ELSE  IDMA = ( -0.083 W F + 4.9F + 24.93W – 476.16) ε
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