
SoftExplorer: estimation, characterization and

optimization of the power and energy

consumption at the algorithmic level

Eric Senn, Johann Laurent, Nathalie Julien, and Eric Martin

L.E.S.T.E.R., University of South-Brittany, BP92116
56321 Lorient cedex, France
eric.senn@univ-ubs.fr

Abstract. We present SoftExplorer, a tool to estimate and analyze the
power and energy consumption of an algorithm from the C program.
The consumption of every loop is analyzed, and the influence of the
data mapping is characterized. Several models of processor are available,
from the simple RISC ARM7 to the very complex VLIW DSP TI-C67.
Cache misses, pipeline stalls, and internal / external memory accesses
are taken into account. We show how to analyze and optimize the power
and energy consumption, and how to choose a processor and its operating
frequency, for a MPEG-1 decoder. We also explain how to find the best
data mapping for a DSP application.

1 Introduction

Traditional methods to estimate a processor’s power consumption work mainly
at the cycle-level or at the instruction-level. The tools Wattch and SimplePower
[1, 2] are based on cycle-level simulations. These simulations necessitate a low-
level model of the processor’s architecture; they are very time consuming for
large programs. The Instruction-Level Power Analysis (ILPA) [3] relies on cur-
rent measurements for each instruction and couple of successive instructions of
the processor. The time to obtain a model is prohibitive for very complex archi-
tectures [4]. These methods perform power estimation from the assembly pro-
gram with an accuracy from 4% for simple cases to 10% when both parallelism
and pipeline stalls are effectively considered. Recent studies have introduced a
functional approach [5, 6], but few works are considering VLIW processors and
the possibility for pipeline stalls [7]. As far as we know, only one unsuccessful
attempt of algorithmic estimation has already been made [8].

A lot of optimizations can be conducted at the algorithmic level with a very
strong impact on the system’s power consumption [9]. To evaluate the impact
of high-level transformations of the algorithm, we propose to estimate the ap-
plication’s consumption at the early stages in the design flow. We demonstrate
that an accurate estimation of an algorithm’s power consumption can be con-
ducted directly from the C program without execution. Our estimation method
relies on a power model of the targeted processor, elaborated during the model



definition step. This model definition is based on the Functional Level Power

Analysis of the processor’s architecture [10]. During this analysis, functional
blocks are identified, and the consumption of each block is characterized by
physical measurements. Once elaborated the model for the processor, a model of
the algorithm is needed. This model is obtained during the estimation process,
which consists in extracting the values of a few parameters from the code; these
values are eventually injected in the power model to compute the power con-
sumption. The estimation process is very fast since it relies on a static profiling
of the code (3s for a FIR1024 or a FFT1024, 8s for the MPEG-1 decoder, 10s
for the DWT512x512 [11]). Several targets can be evaluated as long as several
power models are available in the library.

To perform estimation from the assembly code, only the two former mod-
els are needed. The model for the processor represents the way the processor’s
consumption varies with its activity. The model for the algorithm links the algo-
rithm with the activity it induces in the processor. At the algorithmic level (that
we also call ”C-level”), a model for the compiler is also necessary: the prediction

model. Indeed, depending on the compiler behavior, or merely on the options
settled by the programmer during compilation, the assembly code will differ,
and so will the processor’s activity.

2 SoftExplorer

SoftExplorer can perform power and energy estimation both at the assembly
and at the C level. Basically, SoftExplorer automatically performs the estima-
tion process - it extracts parameters from the code - and computes the power
consumption and execution time for the targeted power model. Table 1 presents
the parameters for the power models included in SoftExplorer. Four power mod-
els have been developed so far, for the Texas Instruments’ C62, C55, C67, and
the ARM7.

Table 1. Power models’ parameters

Parameters C62 C67 C55 ARM7

α X X

β X X X

γ X X X

τ X X

ε X X X

PSR X X

W X X X

F X X X X

MM X X X X

DM X X

PM X



The parallelism rate α assesses the activity between the fetch stages and
the internal program memory controller of the processor. The processing rate
β represents the utilization rate of the processing units (ALU, MPY). γ is the
program cache miss rate. τ is the external data memory access rate. The param-
eter ε stands for the activity rate between the data memory controller and the
Direct Memory Access (DMA). PSR is the pipeline stall rate. These parameters
actually depend on the algorithm itself, they are called algorithmic parameters.

The processor’s consumption also depends on architectural parameters, which
are rather related to the configuration of the processor, or more generally of the
application. They are the clock frequency (F), the memory mode for instructions
(MM), the data mapping (DM), the DMA data width (W), and the power man-
agement parameter PM, which indicates the units in sleep mode for low-power
processors.

In SoftExplorer, once the target selected, the memory mode (mapped, cache,
freeze, bypass) and the processor’s frequency must be provided. At the C-level,
the prediction model is also required for the C62, C55, or C67. We have defined
four prediction models. The DATA (TIME optimal) model corresponds to the
case where the compiler is settled to optimize the code for performance. The
MIN (SIZE optimal) model corresponds to an optimization for size. The MAX
(FULL parallel) model gives a maximum bound for the power consumption, and
represents a situation where all the processing resources would be used restlessly.
The SEQ (SEQuential) model stands for a situation where operations would be
executed one after the other in the processor. That gives an absolute minimum
bound for the power consumption (the MIN model gives a more realistic lower
bound however). In the case of the two first prediction models, the data map-
ping is taken into account. Indeed, we have demonstrated that the number of
external accesses, and the number of memory conflicts, are directly linked to
the processor’s processing and parallelism rates (β and α), and to the pipeline
stall rate (PSR), which have a great impact on the final power consumption and
execution time [12]. α, β, and PSR are some of the power model’s parameters
which are automatically computed by the tool. For the ARM7, only the memory
mode and operating frequency, are needed.

Then, the estimation can begin once the prediction type is chosen; indeed,
SoftExplorer can perform three types of prediction:

Coarse prediction: There is no need for any further information from the user.
The C-code is parsed and the power consumption is computed with different
values for the instruction cache miss rate γ and the PSR from 0 to 100 %.
The result is a curve, or an area, displayed on the ”C curves results” or
the ”C area results” page. Indeed, if the memory mode is bypass or mapped,
then γ = 0, only the PSR varies, and a curve is computed. If the memory
mode is cache or freeze, both the PSR and γ vary, and an area is drawn.
We call these curves and areas consumption maps. The interest of the coarse
prediction is to allow an estimation of an algorithm’s power consumption
very early in the design process. Indeed, even if the data mapping is not
settled (the data mapping is not considered in this mode), the programmer



can have an idea of the power consumption, choose the processor, compare
different algorithms, and be guided in the optimizations to be conducted on
the code.

Fine prediction: In this mode, the data mapping file is used to determine the
data access conflicts (internal and external) for each loop in the code. If γ =
0, which is the case for a large number of DSP applications, these conflicts
permit to determine, for every loop, the precise number of pipeline stalls (i.e.
the PSR) and the execution time. This local knowledge of every parameter in
the power model of the target permits to compute, for each loop, the power
consumption, the execution time, and the energy consumption, as well as
the parallelism and processing rates. This fine analysis of the algorithm’s
consumption is very helpful to the designer. An accurate optimization of
each portion of the code can be conducted that way.

Exact prediction: The execution time, the cache miss rate and the pipeline
stall rate are no more predicted by SoftExplorer, but are instead provided
by the user. They can be obtained with the help of the targeted processor’s
development tools (e.g. TI’s CodeComposer for the C6x). C-level profilers
can also be used for an estimation of the execution time.

The precision of SoftExplorer was evaluated by comparing power estimations
with measures for several representative DSP applications. The precision varies
slightly from a processor to the other. For the C62, the maximal / average errors
are 4% / 2.5% at the assembly level, and 8% / 4.2% at the C-level [10]. Energy
estimation is less precise (average error is 11%, max error is 21%). This is due to
the difficulty in estimating the execution time at the C-level, for very dynamic
or control oriented algorithms. Indeed, in the case of dynamic loops, the number
of iterations is not known by advance. Whenever a dynamic loop is encountered,
the user must provide SoftExplorer with a value for the number of times the
loop is iterated. A dynamic profiling is necessary; specific tools are used for this
purpose. The inaccuracy of these tools is directly reported on SoftExplorer’s
results. Another approach for the user could be to provide the maximum limit
for the number of iterations to get a maximum for the execution time and energy.
Secondly, SoftExplorer’s parser discards every control structure in the code. This
is not a problem for data intensive applications - indeed power estimations are
always very good - but this increases the error for the execution time when the
algorithm includes a lot of control. Again, a dynamic profiling could be used,
but with the same drawbacks than before.

3 Applications

3.1 Optimizing the algorithm

We show, on an example, the results that are obtained with the three prediction
types of SoftExplorer, and how optimizations can be conducted on the algo-
rithm. The application is the MPEG1 decoder from MediaBench. Estimation is
performed first in coarse mode for the C62. If the memory mode is mapped, a



curve that shows the evolution of the power consumption P with the PSR is
plotted. The maximal value for P is 4400mW when PSR=0%, and its minimal
value is 2200mW for PSR=100%. Figure 1 shows the evolution of the power
consumption with both the PSR and γ (memory mode is cache). This time,
the max/min values for P are 5592/2353mW. It can be observed that for the
same PSR, the power consumption is always lower in mapped mode. Indeed,
the max/min power consumption in freeze and bypass mode are respectively
5690/2442 and 5882/5073mW.

Fig. 1. C area: the power is a function of PSR and γ

A fine prediction takes into account the data mapping. In mapped or bypass
mode, the global power and energy consumptions are presented on the ”results”
page, with the execution time, and the global values of parameters α and β. The
power repartition in every functional part of the processor is also given (Figure
2). The DMA unit consumes no power for it is not used in this application. It
is remarkable that a great part (47.4%) of the power consumption is due to the
clock. The ”loops” page displays the power consumption, execution time, and
α and β values, for each loop (Figure 3). These results are also presented in
the form of a chronogram on the ”graphics” page (Figure 4) with the power
consumption per functional part.

As stated before, the designer gets a direct analysis of the power and en-
ergy consumption of every part of its algorithm, together with their intrinsic
parallelism and processing rates. In this example, there are three small loops
(loops 1, 4 & 7) that consume a lot of power, and two long loops (loops 2 & 5)
that consume a lot of energy. In the small loops, the parallelism rate is 1 and
the processing rate only 0.125. In order to lower the algorithm’s maximal power
consumption, the programmer can investigate these loops and decrease the par-
allelism rate by rewriting the code. In the two long loops, the parallelism and
processing rates are 0.5 and 0.375. Again, the designer can modify the code to
increase this rates and to decrease the loops’ execution time, especially if some



efforts are made to reduce the number of memory conflicts. The algorithm’s
energy consumption can be reduced this way.

In cache or freeze mode, the variations of the power consumption, execution
time, and energy consumption with γ are given on the ”C curve” page.

Fig. 2. The ”Results” page also gives the power repartition

Fig. 3. The ”Loops” page presents the results for each loop

An exact prediction is possible when the exact values for γ, PSR and Texe are
known. In our example, the TI’s development tool gives, after compilation, γ = 0,
PSR=0.2 and Texe=40µs. The power and energy estimations are displayed on
the ”results” page. The ”loops” and ”graphics” pages display local values for α,
β, and the power consumption, assuming that pipeline stalls and cache misses
are equally scattered in the algorithm.

3.2 Influence of the data mapping

We demonstrate on a simple example the influence of the data mapping on the
power consumption and execution time. The algorithm that we use as a test
bench manipulates at the same time 3 images of size 100x100 (a,b,c) and 2
vectors of size 10 (e,f), in 3 successively and differently imbricated loop nests.



Fig. 4. A graphical display of the consumption per loop

Since the images and vectors are manipulated at the same time, their placement
in memory has a strong influence on the number of access conflicts, and thus
on the number of pipeline stalls. We show here that it is very quick and easy to
try different placements, and to reach an optimal data mapping with the help
of SoftExplorer. The results are presented on table 2.

Table 2. Power and energy estimation with different mappings

Mapping α β Texe Current Power Energy Conflicts Tconflicts
(ms) (mA) (mW) (mJ)

1 0.02 0.01 6.9 877 2194 15.1 27601 441616
2 0.2 0.1 0.69 1165 2912 2.01 27601 27601
3 0.2 0.1 0.69 1165 2912 2.01 0 0
4 0.2 0.1 0.69 1165 2912 2.01 0 0

In the first mapping, all the data structures are placed in the external mem-
ory. As a result, there are as much external accesses than accesses to the memory,
and for every access the pipeline is stalled (during 16 cycles for the C6x). The
relation between parameters α and β and the power consumption is obvious.
When the pipeline is stalled, the number of instructions that the processor exe-
cutes in parallel (α) and the processing rate (γ) decrease. As a result, the power
consumption of the processor is reduced, but the execution time is lengthened
and the energy consumption increases.

In the second mapping, all the structures are placed in the same bank in the
internal memory (B0). There will be as much conflicts as before, but this time,
the conflicts are internal. The C6x’s pipeline is stalled during one cycle in case
of an internal conflict. As a result, the time necessary to resolve all the conflicts,
expressed in number of cycles, equals the number of conflicts itself.

The interest of the last mapping (4) is to give a minimum bound in term
of number of conflicts since every structure in the algorithm is in a different



bank. This solution will also give the higher power consumption and the smaller
execution time. Indeed, since the pipeline is never stalled, the processor is used
at its maximal capacity. The third mapping, achievable with a C6x, with (a,c,f)
in bank B0 and (b,e) in bank B1, is as good as mapping 4 since it does not yield
any conflict.

3.3 Finding the right processor / frequency couple

Even if it is easy to obtain the power consumption and the execution time of an
algorithm with SoftExplorer, to actually find the right processor and its operat-
ing frequency is not straightforward. Indeed, the global energy consumed by the
application depends on the energy consumed when the algorithm is executed,
but also on the energy consumed when the processor is idle (equation 1).

Eglobal = Pexe × Texe + Pidle × (Tconstraint − Texe) (1)

The timing constraint Tconstraint is the maximum bound for the execution
time. Over this limit, the application’s data rate is not respected. Basically, if
the frequency is high, the execution time is small and the active power (Pexe)
increases. The idle time also increases with the frequency. On the other hand, as
long as the execution time is lower than the timing constraint, it seems possible
to slow down the processor to decrease Pexe. So, is it better to operate with a
high or a low frequency ? In fact, it actually depends on the application.

We pursue a little farther the analysis with our preceding example, the
MPEG-1 decoder. This algorithm treats 4 macro-blocs of a QCIF image in one
iteration. A QCIF image (88x72) contains 396 macro-blocs. Suppose a data-rate
of 10 images/s, the timing constraint is Tconstraint = 1.01ms. Then we use Sof-
tExplorer to compute, at different frequencies, the execution time, power, and
energy consumed by one iteration of the algorithm. Finally, we calculate with
equation 1 the global energy consumed by the application at these frequencies.
The results are presented on Figure 5 for the C55, C62 and the C67.

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

1,20E-04

1,40E-04

1,60E-04

1,80E-04

0 50 100 150 200

F(MHz)

E
g

lo
b

al
(J

)

C62

C67

C55

Fig. 5. Energy vs Frequency for the MPEG-1 decoder



The two curves for the C62 and C67 present a minimum that gives the
optimal operating frequency for this application: about 20MHz for the C62 and
40MHz for the C67. This minimum is 0.076mJ for the C62 and 0.021mJ for the
C67, hence, the best couple processor/frequency among those two would be the
C67 at 40MHz.

Whenever Pidle does not vary with the frequency, the resulting curve does
not present a minimum anymore [11]; this is the case for the C55. For this
processor, the frequency that gives the lower global energy consumption is the
higher possible (200MHz). However, since the energy consumption is almost the
same at 100MHz, this last frequency will be preferred for it implies a lower power
consumption: cooling devices will be lighter in this case. In fact, the global energy
consumption for the C55 at 100MHz is 0.015mJ. As a result, the couple C55 /
100MHz is definitely better than the two preceding.

We did not consider the wake-up time in equation 1. In fact, we measured that
this wake-up time is very small before the execution time of the algorithm, and
that the energy consumption involved is negligible. Moreover, to avoid waking-up
at each iteration, it is preferable to process a whole image with no interruption,
and then to idle the processor until the next image. This decreases again the
energy contribution of the waking-up. Of course, this can only be done if the
application can bare a latency of one image. In a situation where the wake-up
time Twu could not be neglected, it is still possible to evaluate the global energy.
Assuming that Twu is counted in processor’s cycles, and that the wake-up power
Pwu is proportional to the frequency F, the wake-up energy Ewu is obviously
constant. As a result, the curves that give the global energy in function of the
frequency, are shifted of the value of Ewu. The method to find the best processor
and frequency remains the same.

4 Conclusion

SoftExplorer is a tool that performs power and energy estimation both at the
assembly level (from the assembly code) and at the algorithmic level (from the
C-code). It is based on the Functional Level Power Analysis, which proves very
fast and accurate for the estimation, as well as for the modelling of processors.
Four power models are included. For DSP applications, and with elementary
information on both architecture and data placement, our C-level power estima-
tion method provides accurate results together with the maximum and minimum
bounds of the power consumption. SoftExplorer appears very helpful for ana-
lyzing the power and energy consumption of every part of the algorithm. Every
loop is characterized, its intrinsic parallelism and processing rates are exhibited,
memory access conflicts are determined. Hot spots are detected; the designer is
guided in the writing of the code, and in the mapping of data. We show how to
use SoftExplorer to choose a processor and its operating frequency in order to
minimize the application’s overall energy consumption.

Future works include the development of new power models for the C64, the
ARM9, the PowerPC and the OMAP. A generic memory model will be added to



include the external memory consumption in our power estimation. Estimation of
the execution time will be improved for control oriented applications, to increase
SoftExplorer’s accuracy for energy estimation at the C-level. Power and energy
estimation will be investigated at the system level.

References

1. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-
level power analysis and optimizations,” in Proc. International Symposium on
Computer Architecture ISCA’00, 2000, pp. 83–94.

2. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “The design and use of Sim-
plePower: A cycle accurate energy estimation tool,” in Proc. Design Automation
Conf. DAC’00, 2000, pp. 340–345.

3. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first
step towards software power minimization,” IEEE Trans. VLSI Systems, vol. 2,
pp. 437–445, 1994.

4. B. Klass, D. Thomas, H. Schmit, and D. Nagle, “Modeling inter-instruction energy
effects in a digital signal processor,” in Proc. of the Power Driven Microarchitecture
Workshop in ISCA’98, 1998.

5. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An accurate and fine grain
instruction-level energy model supporting software optimizations,” in Proc. Int.
Workshop on Power And Timing Modeling, Optimization and Simulation PAT-
MOS’01, 2001, pp. 3.2.1–3.2.10.

6. G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power estimation
methodology for microprocessors,” in Proc. Design Automation Conf. DAC’00,
2000, pp. 810–813.

7. L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and R. Zafalon, “A
power modeling and estimation framework for VLIW-based embedded systems,” in
Proc. Int. Workshop on Power And Timing Modeling, Optimization and Simulation
PATMOS’01, 2001, pp. 2.3.1–2.3.10.

8. C. H. Gebotys and R. J. Gebotys, “An empirical comparison of algorithmic, in-
struction, and architectural power prediction models for high performance embed-
ded DSP processors,” in Proc. ACM Int. Symp. on Low Power Electronics Design
ISLPED’98, 1998, pp. 121–123.

9. M. Valluri and L. John, “Is compiling for performance == compiling for power?” in
Proc. of the 5th Annual Workshop on Interaction between Compilers and Computer
Architectures INTERACT-5, 2001, mexico.

10. N. Julien, J. Laurent, E. Senn, and E. Martin, “Power consumption modeling of
the TI C6201 and characterization of its architectural complexity,” IEEE Micro,
Special Issue on Power- and Complexity-Aware Design, Sept./Oct. 2003.

11. J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional level power analysis: An
efficient approach for modeling the power consumption of complex processors,” in
Proc. Design Automation and Test in Europe DATE’04, Paris, France, Mar. 2004.

12. E. Senn, N. Julien, J. Laurent, and E. Martin, “Power estimation of a c algorithm
on a VLIW processor,” in Proceedings of WCED’02, Workshop on Complexity-
Effective Design (in conjunction with the 29th annual International Symposium on
Computer Architecture, ISCA’02), Anchorage, Alaska, USA, May 2002.


