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Impact produces high stress waves leading to the degradation of brittle
materials such as ceramics. Based on a probabilistic approach, single and
multiple fragmentation regimes are exhibited. The deterministic nature
of the numerical simulation is discussed with respect to stress rate and
volume. A damage model is proposed to account for dynamic loadings.
Characteristic parameters are proposed and used to choose the mesh size.
The mesh sensitivity is studied on a spalling configuration. Numerical
predictions are compared with experimental data obtained on Edge-On

Impact configurations.
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1 INTRODUCTION

Bilayered armor with ceramics as front plate and steels as back face has been
used for several years to improve the efficiency of light or medium armors [1].
The high hardness of ceramic materials favors projectile blunting and/or fail-
ure and spreads the kinetic energy on a large surface of the ductile back face.
The weight of the armor is then reduced in comparison to an armor made of
steel only. During the first micro-seconds of impact, high stress waves are pro-
duced and lead to a complete fragmentation of ceramics. Prior to penetration,
stress waves can produce degradation in both compressive and tensile modes
in different locations within the ceramic. Damage in compression is generated
near the impact surface. Damage in tension is observed in a wide zone in the
bulk of the ceramic and makes the complete perforation dependent on the
way the ceramic fractures. The description of damage (in terms of location
and kinetics, and in terms of anisotropic behavior due to cracking) is then one

of the main mechanisms to identify for numerical simulations of impacts.

In Section 2, a probabilistic approach of the tensile fragmentation is derived.
A first part briefly summarizes the information needed to describe single frag-
mentation. Multiple fragmentation is then analyzed as an extension of the
single fragmentation regime by considering crack interactions. A scaling strat-
egy is discussed when a constant stress rate is applied. Lastly, the transition
between single and multiple fragmentation is studied. In particular, this tran-
sition can help in choosing the stress rates for which a discrete problem may be
written on a continuum level. It can be noted that some computational mod-

eling directly uses discrete descriptions of fracture as shown in [2] for instance
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and models based upon Smoothed Particle Hydrodynamics [3,4] to simulate

the behavior of brittle materials under shock loading [5].

To account for microcracking under dynamic loading conditions, the early
models are based upon the analysis of cracked systems [6,7] on a continuum
level at which constitutive equations are written. The models developed by
Taylor et al. [8] and Rajendran [9] use the previous framework. This approach
usually leads to an isotropic description of damage [10]. Cracking is essentially
anisotropic and the model needs to account for it to be realistic in terms
of actual damage predictions [11]. The probabilistic approach developed in
Section 2 is used to derive the evolution law of the damage variables defined

on a continuum level in Section 3.

To represent the real light bilayered armor concept, one of the prevalent test
configuration is the entire ceramic/steel specimen. These perforation tests only
give partial information, e.g., global displacements or some local stresses. It is
also difficult to obtain direct observation of the damage zone evolution during
impact and only post-mortem observations can give some indication on the
crack density and orientation. An Edge-On Impact (EOI) configuration is a vi-
able alternative to analyze damage state and evolution by recording the crack
front pattern and velocity [12,13]. A quantitative information on the location
and evolution of damage can be obtained. It can be shown that the same
damage mechanism (i.e., damage in tension) is observed in EOI experiments
and in real impact configurations [11]. In Section 4 different visualization tech-
niques are presented to analyze EOI experiments and to compare them with

predictions of the damage model developed in Section 3.



2 PROBABILISTIC APPROACH

The aim of this section is to introduce all microscopic aspects of fracture to
describe both static and dynamic loadings. The basis of the approach is an
extended version of a Weibull model [14] applicable in both situations. It can
be noted that all the material parameters that will be used can be identified
by using static tests even in the dynamic range. It will be shown that the key
distinction to make is between single and multiple fragmentation rather than

static versus dynamic loadings.

2.1 Single Fragmentation

The failure of a ceramic in quasi-static tension is due to defects D; of random
location z defined by a failure stress o;(z). When an equivalent stress o(z),
e.g., maximum principal stress, is greater than o;(z), a crack emanating from
the defect leads to the failure of the whole structure. Therefore, the ultimate
strength of a ceramic specimen is not deterministic and a failure probability

Py must by defined and can be described by a Weibull law [14]

Pp =1 — exp[—Ai(0) Zes] (1)
no) = | o] @

where A\¢(0) is the defect density, m the Weibull modulus, Sy the scale param-
eter relative to a reference density Ay and Z.g the effective volume, surface or
length [15]. It can be noted that the previous formulation enters the frame-

work of a Poisson point process of intensity A;(0). The mean failure stress oy



and the standard deviation ogq are given by

S 1 S2 2
awzi(’ir(w—) , Oy = —2 F(l—i——) —ol  (3)
(ZegtXo) ™ m (ZegtAo) ™ m
where ' is the Euler function of the second kind. The following study will be

concerned with a sintered silicon carbide ceramic (SSiC) made by Céramiques

et Composites (France) whose properties are listed in Table 1.

2.2  Multiple Fragmentation

In the bulk of an impacted ceramic, damage in tension is observed when
the hoop stress induced by the radial motion is sufficiently large to generate
fracture in mode I initiating on micro-defects. An example of fragmentation
due to high tensile stress rates (up to 5.10° MPa x s™!) is presented in Fig. 1
where a ceramic tile is impacted on the edge. The ceramic target presents
one mirror polished face illuminated by a flashlight. A high-speed camera
records the reflected light [16]. Most of the initiated cracks do not exceed a
few millimeters in length (Figs. 1-a/b). This leads us to assume that the crack
tip cannot follow the crack front, i.e., the velocity of the former is less than the
velocity of the latter. The sharp border line of the damaged zone confirms a
very high tensile stress rate: a crack nucleates when the tensile stress reaches a
critical value and stops because other defects nucleate in front of it and relax
the hoop stresses (Fig. 1-c). The anisotropy due to cracking is also clearly

visible.

When a fracture is initiated, the stress state around the propagating crack is
a complex function of time, crack velocity and stress wave celerity. In order to

simplify the following development, the shape of the affected (or interaction)



zone (volume, surface or length) Z; is supposed to be constant, i.e., all the

interaction zones are self-similar and Z; can be written as

Zi(t—71)=S[kC(t—1)]" (4)

where kC' is the velocity of a propagating crack, S a shape parameter, C' =
(E/ p)l/ ? a stress wave velocity (E: Young’s modulus, p: mass density); there-
fore kC(t—7) is a representative length of the relaxation zone at time ¢ around
a broken flaw at time 7. The power n = 1,2,3 is the space dimension. The
shape parameter S is defined in order to have do/dt < 0 in Z;, i.e., no new
nucleation can occur in Z;. When the space dimension is n = 3, it is assumed,
as a first approximation, that the obscuration (or shielding) zones are spher-
ical and S = 4x/3. By studying the dynamic crack propagation, the value

k = 0.38 is usually assumed [17].

To understand why a crack nucleates, one has to model the interaction of a
nucleated defect and other defects that would nucleate. The space location
of the defects is represented in a simple abscissa of an x-y graph where the
y-axis represents time (or stress) to failure of a given defect. In this graph, a
shaded cone represents the expansion of the interaction zone with time due
to nucleation and propagation of a crack. A section Z (see Fig. 2-a) of a cone
can be a volume, a surface or a length, depending on the space dimension
n. The defects outside the shaded cones can nucleate and produce their own
increasing interaction zone (e.g., defects No. 1 and No. 2 of Fig. 2-a). Inside
the cones, the defects that should have broken do not nucleate (e.g., defects

No. 3 and No. 4 of Fig. 2-a) since they are shielded (or obscured).

Because different interaction volumes may overlap (a flaw can be shielded by

one or more cracks), its preferable to define the conditions of non-obscuration



for a given defect by examining the reverse problem. For a given flaw D, a non-
interaction zone can be defined so that, in this zone, a defect cannot obscure
D (Fig. 2-b) and the horizon of D in which a defect will always obscure D. The
total flaw density A; can therefore be split into two parts: A, (the broken flaws)
and Aopsc (the obscured flaws). Furthermore, we assume that the distribution
of total flaws in a zone Z is modeled by a Poisson point process of intensity
Ag[o(t)] in accordance with Section 2.1 (Eqn. (2)). New cracks will initiate
only if the defect exists in the considered zone and if no defects exist in its

horizon

o ()] = THo(®)] x [1 - R(0) (5)

where P, is the probability of obscuration (i.e., at least one defect is broken

in the horizon) expressed as [18-20]

Fo(t) = 1 —exp{=A[o(1)] 2()} (6)

where Z(t) denotes the mean obscuration zone which is calculated by averag-

ing at time ¢ the section of the obscured zones Z;(t — 7) for a nucleation at

time 7 and with a density At[;(t)] e lo(7)]

t

Z(ONo)] = [ Dfo(r)] 4(t — 7). (7)

0

The similarity of Eqns. (1) and (6) shows a first link between single and
multiple fragmentation if one remembers that, for very low stress rates, the
mean obscured zone Z(t) has to be limited by the volume, surface or length
Z of the body. The Weibull law is recovered from the fragmentation model

when the entire structure is obscured by only one broken defect.



2.8 Characteristic Parameters and Scalings

When dynamic loadings are considered with a constant stress rate do/dt = <.7,
one can define a dimensionless flaw density (A = A/A.), time (£ = t/t.), space

measure (Z = Z/Z,) and stress (& = o/0.) from the condition

Ae Ze =1 with Ac = Mfo(te)] and Z. = Zi(t.) (8)

where the subscript ‘¢’ denotes characteristic quantities. A characteristic stress
is defined by o, = ¢ t.. Equation (8) expresses the fact that the character-
istic zone of measure Z. contains on average a flaw that may break at the

characteristic time t.. The characteristic parameters are given by

1

S§° ]mﬂ Z.= l(sokc)msm/n]m_ﬂ

XS (KCY* & Xo o ’
gmg ]
GC - A()S (k‘C)n (9)

By using Eqns. (2), (4) and (6) a closed-form solution is proposed for the

differential equation (5) in the case of a constant stress rate o

m Em—i—n

m+n’ (m%”) (10)

where v[p, z] = [ t*~! exp(—t)dt is the incomplete gamma function and (m ;l—nn)

a binomial coefficient.

The variable P, can be used to define a damage variable in the framework of
Continuum Damage Mechanics. By averaging over a representative zone (to
be specified later on), P, is equal to the damage variable D, with D = 0 for

the virgin material and D = 1 for the fully broken one. It is interesting to



notice that the first order approximation of Eqn. (6) leads to the differential
equation proposed by Grady and Kipp [21] to describe the evolution of a
damage variable. By using Eqns. (2), (4) and (6), the evolution of the damage

parameter is written as
@)

D=1-exp I_W (11)

Equation (11) shows that D(@ = 1) 2 0 and D(g = 2) = 1 (i.e., most of
the damage evolution occurs during a time interval equal to t.). During .,
the measure of the horizon is limited by Z;(t.) = Z. therefore the minimum
measure of the representative zone is Z.. By noting that the applied stress X is
related to the local (or effective) stress o by o = /(1 — D) [22], the ultimate

strength (dX/do = 0), denoted by Y,.x, is expressed as

L (")

e (m+n)

m-+4n

Zmax _

2.4 Single / Multiple Fragmentation

The present section is devoted to the analysis of the transition between sin-
gle and multiple fragmentation. Figure 3 shows the evolution of the ultimate
stress vs. stress rate in a volume Z equal to Zegg = 1.25 mm?® (see Table 1).
The lines represent analytical solutions while the dots and error bars represent
Monte-Carlo simulations of an underlying Poisson point process. For a stress
rate within [0 , 5 x 108 MPa x s™!], the ultimate stress is not modified by
the loading rate. When o increases of approximately one order of magnitude,
the ultimate strength follows the proposed solution (Eqn. (12)). During the
single / multiple fragmentation transition, the difference between the solid

lines (Eqns. (3) and (12)) and the Monte-Carlo simulations does not exceed



10%. The standard deviation significantly decreases in the case of multiple
fragmentation when the stress rate increases. Even if the ultimate strength
has to be defined for both static and dynamic loadings by a mean value and
a standard deviation, one can see that dynamic loadings lead to a more ‘de-
terministic’ behavior in the multiple fragmentation regime. Furthermore, for
SSiC ceramics, a stress rate up to 10" MPa x s~! has shown no stress rate
effect on the mean strength [23]. This observation is in good agreement with

the result shown in Fig. 3.

The transition between single and multiple fragmentation can be estimated
by the intersection between the weakest link and the multiple fragmentation

solutions (see Fig. 3)

Ow = Ymax(0). (13)

The transition defined by Eqn. (13) leads to the following inequalities

Z < g(m) Single fragmentation
7el?) (14)
Zf,) > g(m) Multiple fragmentation
with
(m+n) ™™ 1\™
g(m) = |e r (1 + —) . (15)
(" m") m

The size Z. can therefore be considered as the characteristic scale for which
a single / multiple fragmentation transition is observable. This conclusion is
consistent with the analysis following the damage kinetic law (Eqn. (11)).
Furthermore, Fig. 3 shows that when Z/Z. > 1 the ultimate strength scatter

is very small. This characteristic volume can be used in FE computations in
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which the mesh size has to be greater than or equal to Z. to use a continuum
(and deterministic) description of damage. It is worth mentioning that this
transition does not only depend upon material (Weibull) parameters but also
involves the size Z of the considered structure and the applied stress rate
. The response of a large structure can be considered as ‘dynamic’ for low
stress rate even if the same material follows the weakest link hypothesis for
the same loading applied on a smaller volume. There is therefore no intrinsic
relationship between material parameters and characteristic scales to describe

the fragmentation of brittle materials.

The size Z. can also be used to check the mesh-relevance of a finite element
calculation. During a time step, the variables (such as nucleated flaws density,
damage) are computed by using their past evolution over the horizon, as men-
tioned in Section 2.2. An hypothesis of uniformity of the variables over this
horizon is therefore made. When the mesh size is smaller than the horizon,
two contiguous Gauss points (i.e., two neighboring elements in the present
case) have their horizons overlapping: a space location may have two different
sets of variables. To avoid such a situation, the minimum mesh size must be
greater than or equal to the horizon, which is limited by the characteristic
zone Z.. The minimum mesh size is dependent on material properties and on
the loading condition: the higher the stress rate, the smaller the mesh size.
This is consistent with the general practice of mesh refining when shock waves

are suspected to occur.

Lastly, the size Z. may also be used to know whether a continuum or a dis-
crete approach applies. For low stress rates in the structure, few fragments are
generated (i.e., Z < g(m)Z.) and a discrete model has therefore to be used

(e.g., [2]). Conversely, when high stress rates are generated, (i.e., Z > g(m)Z.:

11



many small fragments are produced) the discrete method leads to calculations
of fragmented structures beyond the limits of nowadays computers. A contin-
uum approach can be used to recover the microstructure (fracture density and

orientation) generated during the impact.

3 DAMAGE MODEL

In Section 2.4, it was shown that a continuum description of damage can
be used when the impact stress rate is large enough to generate multiple
fragmentation. Under this assumption, an anisotropic damage model is now

developed.

3.1 Damage Description and Kinetic Law

The analysis of Section 2.2 is extended to account for three-dimensional sit-
uations. The proposed damage variable is defined with the assumption that
many cracks nucleate and propagate due to a tensile stress expressed in the
direction of the maximum principal stress. Since the cracks will be strongly
oriented, an anisotropic damage description is chosen [11]. It is assumed that
the damage directions coincide with the principal stress directions (i.e., mode
I mechanism). The anisotropic description is expressed through a second order
damage tensor by assuming that the cracks remain open so that the energy
contribution of higher order terms can be neglected [24,25]. The damage ten-
sor D is diagonal in the eigen directions of g and only 3 variables (D;, Ds,

Dj3) have to be computed. The relationship between the microscopic principal

12



stress o; and the macroscopic one (%) is [22,26]

i

1—-D;

with i=1,2,3. (16)

g =

The state potential is assumed to be given by the Gibbs’ specific enthalpy
p®. It is expressed as a function of the macroscopic stress tensor ¥ and the

damage variables Dy, Dy and Dj

p® =

; . é(Dh DQ, D3) : E (17)

[N

where S is the compliance tensor dependent upon D;, D, and D3 and ‘:’ the

contraction wrt. two indices. The associated forces are defined as

0

gzp@ = %(DlaDQ,D?:) : ; (18)
0o 1_ 98
Yi_paDi = §§ aDi(DlaD25D3) ) (19)

where E denotes the strain tensor and Y; the energy release rate density asso-
ciated to the damage variable D;. By using Linear Elastic Fracture Mechanics,
one can show that cracking in mode I induces only a compliance increase in
the normal direction to the crack plane [27]. Therefore, in the principal stress
frame (assumed to coincide with the principal damage frame), Eqn. (18) can

be written as

E, 1—1D1 -V -V >4

1
E2 = E —V 1—1D2 et 4 22 (20)
E3 o 20 4 171D3 23
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where E, Fy, F5 are the principal strains and v the Poisson’s ratio of the

virgin material. Similarly, Eqn. (19) yields

Y= L. (21)

The evolution of D; is expressed in a differential form in order to be imple-

mented in the FE code PamShock [28] by using Eqns. (2), (4), (6) and (21)

(1 4D ay;
AN NTAR " when S >0, (22
dtnl<1—Di dt) At( )"S(kc) when 5> 0. (22)

According to classical results of Continuum Damage Mechanics, the evolution
of D; is stopped if dY;/dt < 0. The directions (d;, dy, d3) associated to Dy,
Dy and D3 may change at each time step until D; reaches a threshold value
Dy, = 0.01. Only the direction d; is then locked, the other directions follow
the eigen directions of g, with the constraint to be perpendicular to d;. When

D, reaches the threshold value, the whole directions d; are locked.

3.2 Mesh Size Dependence

To test the mesh-sensitivity of the above-described model, one may consider
a plane shock wave spall configuration. When a compressive stress pulse is
generated in a plate, the reflected (tensile) pulse traveling back from the free
rear surface of the specimen is superimposed on the loading pulse. When the
loading pulse duration is properly prescribed, a tensile stress is generated in
the bulk of the specimen. The thickness of the damaged zone may strongly
vary if the model is mesh-dependent. A one-dimensional code [11] is used with
numerical viscosity parameters chosen in order to preserve the loading pulse

shape during propagation. The plate thickness is 10 mm and the imposed
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pressure is —1 GPa, for a duration of 10 us. Four different mesh densities are
tested: 20 el./mm, 40 el./mm, 80 el./mm, 160 el./mm. The results presented in

Fig. 4 show no dependence of the size of the damaged zone on the mesh density.

4 EXPERIMENTS AND COMPUTATIONS

Tensile cracking, one of the major degradation mechanisms during interaction,
can be observed during impact by using the Edge On Impact configurations
instead of a real configuration where the degradation is ‘hidden’ in the bulk of
the ceramic. These configurations are developed by the Ernst-Mach-Institut
(EMI) in Germany [12,29] and by the Centre Technique d’Arcueil (CTA) in
France [13,16]. In the latter configuration, a blunt steel projectile (11 mm in

diameter and 20 mm in length) impacts a ceramic tile of size 100x50x 10 mm?3.

A first analysis is an EOI with an aluminum confinement (called sarcophagus)
presented in Fig. 5-a. After impact, the tile is coated in an epoxy resin and
polished for macroscopic and microscopic analyses. The post-mortem crack
pattern is presented in Figs. 5-b/c. Different zones can be separated with re-
spect to the crack density and orientation. In front of the projectile, a small
zone exhibits a randomly oriented crack pattern. In the bulk of the ceramic,
one can observe long radial cracks with a second circumferential crack pattern
superimposed on the first one. In this last region, some radial cracks seem to
kink in the circumferential direction, kink one more time and propagate in
the radial direction. The kinked fractures are made of two small (and hardly
visible, see Fig. 5-¢) cracks linked by a small circumferential crack. This com-

plex crack pattern is then opened by the radial motion of the ceramic, widens
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and becomes a long macroscopic ‘kinked’ fracture. This phenomenon shows
that the radial cracks appear prior to the circumferential ones, since the latter
does not go through the former. Near the tile rear face, a third zone exhibits
a high density of cracks. This thin strip remains at a constant distance from
the rear surface, like a spalling zone. It is worth mentioning that the cracks
remain in the radial and circumferential directions even if this zone is parallel
to the rear surface. The numerical prediction is presented in Fig. 5-d. The
cracking mechanism can be described as the superposition of a radially- and
a circumferientially-oriented crack pattern, the former with a higher density
than the latter. The radially-oriented crack pattern is generated during the
first micro-seconds of impact. It is followed by the circumferential ones due
to the relaxation wave emanating from the projectile and the rear face of the
ceramic tile. This result is in good accordance with the experimental obser-
vations. The zone in front of the projectile in which only few radial cracks
seem to have nucleated is well reproduced. Finally, the high density crack
zone looking like a spalling region is also well described, with a crack direction
approximately in the radial and circumferential direction, as observed in the

sarcophagus configuration.

A second utilization of the EOI configuration provides quantitative strain mea-
surements over a field of 32 x 32 mm? during impact. A Moiré photography
set-up has been developed [30]. A typical result of the high-speed Moiré pho-
tography is presented in Fig. 6 with an impactor velocity equal to 330 m/s.
The method used to analyze the fringes cannot give reliable data when they
are blurred. To overcome this problem, the artifacts generated during the
fringe pattern analysis are automatically reset to zero in a gray colored zone
in Figs. 6-¢/d. Figure 6-a is the fringe pattern approximately 2 us after im-

pact. Figure 6-b shows the eigen directions of the third (compressive) strain

16



and confirms that the strain wave induced by an EOI has a circular geom-
etry. The maximum and minimum eigen strains are plotted in Figs. 6-c and
6-d, respectively. The advantage of the Moiré measurement is that a quanti-
tative rather than qualitative analysis can be performed between experiments
and simulations. To compare the evolution of the radial and hoop strains, a
typical result is given in Fig. 7. The strain diagram is plotted for a point M
at a distance of 13 mm from the surface hit by the projectile (see Fig. 6-a).
It can be noticed that the radial strain reaches an important value before
any significant evolution of the hoop strain. This is consistent with a cylin-
drical stress wave in which the tensile strain is induced by the radial motion
of the material. The general shape of the curve is very well reproduced by
the model, with a tendency to under-estimate the compressive strain. A bet-
ter modeling of the compressive behavior of the ceramic should improve the

numerical /experimental agreement.

5 CONCLUSION

A probabilistic approach has been proposed to describe the stress rate de-
pendence of the fragmentation mechanism. Based upon the probabilistic ap-
proach, a damage evolution law in tensile mode is derived for impacted ceram-
ics within the framework of Continuum Mechanics. The material parameters
used in the model are identified through quasi-static 3-point flexural tests. A
closed-form solution for the number of cracks nucleated is proposed and leads
to the definition of the transition between single and multiple fragmentation.
The probabilistic nature of quasi-static failure progressively vanishes with high
stress rates and therefore allows a continuum description of fragmentation by

using damage variables. Characteristic quantities (such as volume or time) are
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proposed to choose the mesh size used in numerical simulations. A spalling
experiment is analyzed to investigate the influence of mesh size on the shape
of the damaged zone. No mesh sensitivity is observed. The model can pro-
vide an estimation of the number and directions of activated flaws as well as
anisotropic damage variables. Complex damage patterns, in which superposi-
tion of cracks of different directions occurs, can be computed. The strains of
an impacted ceramic can also be predicted with a good accuracy, even if the

ceramic becomes fully fragmented.
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Table 1

Material properties of a SSiC ceramic.

Property SSiC
Young’s Modulus (GPa) 410
Density 3.15
Weibull Modulus 9.6
Mean Strength (MPa) 360
Effective Volume (mm?) 1.25

22



;M*
~ e .f..-
? 10 mm
% Lol
—a— t=2s] —b— t=3us| —Cc-—

Fig. 1. a-, b-An example of pictures obtained by real-time visualization of a SSiC
ceramic impacted at a velocity of 203 m/s (after [13]).
c-Depiction of the obscuration mechanism (the white zones represent relaxed areas

where no new cracks can nucleate).

23



Obscured flaws 2
Q 0
&£ |obscured 4 =
= |zone N\ o
Z|(t2_T1) (’3):
N SR
1 Y o(ty
| |
| |
| |
| |
'
M, M, Space (n)
Z
- |
- a -
7
)
£ =
= 0p)
t a(t)
T a(1)
Horizon
of D -
Space (n)
Z
- |
b-

Fig. 2. a-Depiction of obscuration phenomena.

b-Schematic of the obscuration/non-obscuration zones for a defect D.
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Fig. 3. Ultimate strength vs. stress rate (SSiC). The dots and error bars repre-
sent results obtained by Monte-Carlo simulations (500 realizations/point) and their

standard deviation when Z = Zog and n = 3.
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Fig. 4. Damage location for 4 mesh densities in a plane shock wave spall configura-

tion (SSiC).
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Fig. 5. a-Schematic of the ceramic confinement. The tile is confined between two
10 mm thick aluminum plates. The edge confinement is obtained by aluminum tiles
screwed on the plates.

b-Half top view of tile made of SSiC impacted at a velocity of 330 m/s.

c-The magnification (of the boxed area of -b-) shows many short radial cracks linked
by short circumferential ones.

d-Half bottom view of the corresponding numerical simulation. The lines depict
the crack directions (perpendicular to the direction of the associated damage). The

number of cracks is dependent on the nucleated defect density.
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Fig. 6. a-The initial Moiré frame (2 us after impact).

b-Third (negative) eigen direction.

c-and d-First and third eigen strains.

28



0.01 l l l l Moiré
Technique
0.008- . Numerical
Simulation
£ .
g 0.006 ;
) ;
8_ :
S 0.004 ;
I ;
0.002 ;
N
0.0 antRRERRY
1 1 1 1 1 ;
-0.012 -0.008 -0.004 0.0

Radial Strain

Fig. 7. Typical example of strain evolution given by a Moiré technique (dots). A

comparison (curve) is proposed with the model.
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