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AN INVARIANCE PRINCIPLE FOR AZÉMA MARTINGALES.

NATHANAËL ENRIQUEZ

Abstract: An invariance principle for Azéma martingales is presented as well as a new device

to construct solutions of Emery’s structure equations.

1. Introduction

In [9], Meyer raised the problem of finding “normal” martingales, i.e. martingales Mt

on a filtered probability space (Ω,F ,Ft, P ) satisfying 〈M,M〉t = t, which would enjoy
the chaotic representation property. This property, which is stronger than the previsible
representation property, requires the direct sum of the chaoses of M to be equal to the
whole space L2(Ω). The only known examples of such martingales were the Brownian
motion and the compensated Poisson process until Emery found in [5] a way to construct a
whole family of examples, by introducing the beautiful device of structure equations. Among
these examples, some of them, which are self-similar, appeared to be the generalization of
two martingales considered earlier, for different purposes. One had been considered by
Azéma in [1], and the other by Parthasarathy in an unpublished paper [13]. The whole
class of these self-similar martingales is now usually called Azéma martingales. However,
their behavior remains a little mysterious, especially, in the neigbourhood of 0. We refer
the reader to the two lecture notes of Yor [16], and of Mansuy and Yor [8], where a chapter
is devoted to the subject.

Inspired by some elementary remarks on renewal processes, we present an invariance
principle for Azéma martingales, and propose a new device to construct solutions of Emery’s
structure equations. The principle of these approximations turns out to be quite unusual
and differs from the truncation method one can find in dealing with Lévy processes, or from
the discretization scheme already used in the subject by Meyer in [10] to construct solutions
of Emery’s structure equations. It is mainly based on the introduction of some randomness
in the size of the jumps together with keeping the normal martingale property.

2. The basic example: the first Azéma martingale

The aim of this section is to introduce, in a natural way, the device we use in the next
section to approximate general Azéma martingales.

Let us start with the first Azéma martingale. It was obtained by Azéma in [1], by pro-
jecting a Brownian motion Bt starting from 0, on the filtration of sign (B). This projection
yields the following normal martingale

Xt =

√

π

2
sign (Bt)

√

(t − gt)

where gt = sup{s : s ≤ t, Bs = 0}. We refer the reader to Chapter IV of Protter’s book [14]
for a comprehensive discussion about the martingale property of Xt. A clear justification
of the projection property is given in an article of Azéma and Yor [2]: they use an elegant
path decomposition of the Brownian motion on [0, t] involving the Brownian meander, seen
as the renormalisation of the last incomplete excursion.
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Now, it is well known, from P. Lévy, that 2X2
t /πt follows the arcsine law. On the other

hand, there is an old result of Dynkin [4] presented also in Feller’s book ([7] Chap. XIV.3),
obtaining arcsine laws from asymptotic waiting times of renewal processes having non-
integrable inter-arrival times. Now, the question is: can we associate a martingale to any
given renewal process, exactly like the Azéma martingale is associated to the zeroes of the
Brownian motion?

The following elementary proposition gives a positive answer to this question:

Proposition 1. Let X1,X2, ... be an iid sequence of positive random variables admitting a
density function. We denote by Sn :=

∑n
i=1 Xi, and Nt = sup{n : Sn ≤ t}. Now, we denote

by F (t) = P (X1 > t), the tail distribution function of the Xi’s.

Let us now introduce a sequence ε1, ε2, ... of independent symmetric Bernoulli variables
i.e. satisfying P (εi = 1) = 1

2 and P (εi = −1) = 1
2 .

The two following assertions hold:

(i) For every law of X1, the process Zt :=
εNt

F (t − SNt)
is a martingale with respect to its

natural filtration.

(ii) The martingale Zt is normal if and only if X1 follows the distribution of

− lnU +
1

2U2
− 1

2

where U denotes a uniform variable on [0, 1].

Proof: The proof of (i) is based on the fact that, conditionally on the event (t−SNt = x),

the probability for Zt to jump between t and t + h is equal to −F
′
(x)

F (x)
h + o(h), and if a

jump occurs, its expectation is equal to −εNt

F
. On the other hand, when there is no jump,

the increment of the process, between t and t + h, is equal to −εNt

F
′
(x)

(F (x))2
h + o(h). As a

result, the expectations of the increments in both situations are balanced.

Let us now prove (ii). The martingale is normal if and only if the conditional expectation
of the square of the increment of Zt between t and t + h is always equal to h + o(h). Again,
conditionally on the event (t−SNt = x), the probability for Zt to jump between t and t + h

is equal to −F
′
(x)

F (x)
h + o(h), and if a jump occurs, the expectation of its square is equal to

1

2
((1 +

1

F
)2 + (1− 1

F
)2) which is 1 +

1

F
2 . Now, the absence of a jump contributes only in a

o(h) in the expectation of the square of the increment of the process.

Therefore, the martingale is normal if and only if

−(
1

F (x)
+

1

F
3
(x)

)F
′
(x) = 1.

This yields − ln F (x)+
1

2F
2
(x)

− 1

2
= x, so that the distribution function of X1 is the inverse

of x 7→ − ln(1 − x) +
1

2(1 − x)2
− 1

2
. This gives the result. �

Remark: We might have included in Proposition 1, analogous results concerning the

sometimes called “second Azéma martingale” i.e.

√

π

2

√
t − gt − lt, where lt denotes the
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local time of zero at time t. Indeed, for every law of X1, Z̃t :=
1

F (t − SNt)
− Nt is a

martingale which is normal if and only if X1 follows the distribution of
1

2U2
− 1

2
.

But we shall not insist on that fact since this second Azéma martingale is neither mar-
kovian nor enjoys the chaotic representation property, and does not enter the class of Azéma
martingales solving structure equations.

Let us denote by Z
(−1)
t the normal martingale Zt of (ii). We note that Z

(−1)
t is a Markov

process, and more precisely,

Proposition 2. The process Z
(−1)
t is a Markov process with generator:

L(−1)g(x) =
1
2(g(−1) + g(1)) − g(x) + xg′(x)

1 + x2

Proof: From Proposition 1 (ii), we deduce that

−lnF (x) +
1

2F
2
(x)

− 1

2
= x

which implies, by differentiation:

−F
′
(x)

F (x)
=

1

1 +
1

F
2
(x)

Hence, the rate of jump of the process at time t, which is equal to the value of the function

−F
′

F
at (t − SNt), is precisely 1

1 + (Z
(−1)
t )2

, and the speed of the trajectory at a time t

between two jumps is equal to −εNt

F
′
(t − SNt)

F
2
(t − SNt)

which is precisely
Z

(−1)
t

1 + (Z
(−1)
t )2

. �

Corollary 1. The process Z
(−1,n)
t :=

Z
(−1)
nt√

n
is a Markov process with generator:

L(−1,n)g(x) =

1
2 (g(− 1√

n
) + g( 1√

n
)) − g(x) + xg′(x)

1
n + x2

Proof: Consider a differentiable function g. Introduce the function h(x) = g( x√
n
).

The image by L(−1,n) of the function g is given by:

L(−1,n)g = n . (L(−1)h)(
√

n . x)

A direct computation gives the announced expression. �

This last corollary already gives an idea of the proximity between Zn
t and the first Azéma

martingale. Indeed, as writes Emery in [5] about Azéma martingales: “formally (this means:
informally !) it should be Markov, with generator

Lg(x) =







g((1 + β)x) − g(x) − βxg′(x)

β2x2
if x 6= 0

1
2g′′(x) if x = 0”

(in the case of the first Azéma martingale, the parameter β is equal to −1)

This is the aim of the next section which is to prove, among other things, the convergence

in distribution in the sense of the Skorohod topology of
Z

(−1)
nt√

n
towards the first Azéma

martingale.
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3. An invariance principle

Let us begin with the definition of the Azéma martingales.

Following Emery, let us introduce a real parameter β. The structure equation

(1) d[X,X]t = dt + βXt−dXt

has a unique solution.

The existence was proven in a note of Meyer [10], and the uniqueness of the solution
was proven by Emery in [5] (for β < 0) and [6] (for β > 0). The solution of this structure
equation is called the Azéma martingale with parameter β.

When a jump occurs at time t, the value of the process changes by some prescribed factor.
More precisely, Xt = (1 + β)Xt− .

• The case β = 0 corresponds to Brownian motion: the continuous normal martingale.

• The case β = −1 is solved by the martingale (sign Bt)
√

2(t − gt) mentioned in the
previous section.

• The case β = −2 is solved by Parthasarathy’s martingale satisfying |Xt| =
√

t, and who
changes of sign according to a Poisson point process with intensity dt/4t.

• In the case β ≤ −2, the solution, at least starting at a non-null point, is rather easy to
define, since |Xt| always goes away from 0. In proving the uniqueness of the solution, Emery
in [5] shows how to define the process starting from 0 by using a self-similarity argument
and a representation of the process by using a time-changed Poisson process.

For β > −2, things go in a more complicated way since the process Xt reaches 0 in finite
time, and the above formal generator cannot be of much help after that time.

Let us mention finally that the problem of the chaotic representation property still remains
a challenging open question for parameters β which do not belong to [−2, 0].

Now, let us turn to our main purpose concerning the statement of an invariance principle
for these processes. This question is quite natural, since Azéma martingales are self-similar
in the sense that, for all λ > 0 the processes Xt and Xλ2t/λ are equal in distribution (one
can indeed easily check that the process Xλ2t/λ solves the right structure equation, and
conclude by uniqueness in law of the solution).

In order to define the process which will be, in our statement, at the origin of such a limit

theorem, we generalize the definition of Z
(−1)
t introduced in the previous section, and define

for all real parameters β the Markov process Z
(β)
t having generator:

L(β) =
1
2(g((1 + β)x − 1) + g((1 + β)x + 1)) − g(x) − βxg′(x)

1 + β2x2

Let us denote the process Z
(β,n)
t :=

Z
(β)
nt√
n

. It has generator:

L(β,n) =

1
2(g((1 + β)x − 1√

n
) + g((1 + β)x + 1√

n
)) − g(x) − βxg′(x)

1
n + β2x2

We can now state our main result:

Theorem 1. The sequence of processes Z
(β,n)
t :=

Z
(β)
nt√
n

converges to the Azéma martingale

with parameter β, in the sense of the weak convergence for the Skorohod topology.

Proof: The image by L(β,n), of x and x2, being respectively 0 and 1, we deduce that Z
(f,n)
t

are normal martingales. Therefore, by Rebolledo’s theorem (see [15], II.3.1), this sequence
is tight for the weak convergence in the Skorohod topology. All we have to prove is that all
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limiting points of the sequence of processes Z
(β,n)
t satisfy the structure equation (1). The

uniqueness in law of the solution of (1) allows to conclude.

Let us define at a jump time t of the process Z
(β,n)
t , the symmetric Bernoulli variable

ε
(β,n)
t defined by

Z
(β,n)
t − Z

(β,n)
t−

= βZ
(β,n)
t +

ε
(β,n)
t√

n

Let us consider [Z(β,n), Z(β,n)]t. (We replace, in the sequel, the superscript (β, n) by n.)

[Zn, Zn]t =
∑

s≤t

(Zn
s − Zn

s−)2 =
∑

s≤t

(βZn
s− +

εn
s√
n

)(Zn
s − Zn

s−)

=

∫ t

0
βZn

s−dZn
s −

∫ t

0
βZn

s−1∆Zn
s 6=0dZ

n
s +

∑

s≤t

1∆Zn
s 6=0

εn
s√
n

(βZn
s− +

εn
s√
n

)

=

∫ t

0
βZn

s−dZn
s + t −

∫ t

0

ds

1 + n(βZn
s−

)2
+

∑

s≤t

1∆Zn
s 6=0

εn
s√
n

(βZn
s− +

εn
s√
n

)

Our task, now, is to show that the two last terms vanish when n goes to infinity, whereas
the other terms converge to their analogous quantity for the limiting process, so that every
limiting process will solve the structure equation satisfied by an Azéma martingale, and will
therefore be identified with the Azéma martingale with parameter β.

Now we proceed, like in Meyer’s proof of the existence of solutions of structure equations,
and introduce successively:

a probability space (Ω,G, Q), obtained from the Skorohod representation theorem, on

which a subsequence of processes X
σ(n)
s , following the law of an extracted sequence of Zn

s

converges almost surely in λ⊗Q. For ease of reading, we keep writing Zn
s instead of X

σ(n)
s .

In other words, we suppose that, for almost every time t, Zn
t converges almost surely.

a sequence of stopping times T n
N = inf{t : |Zn

t | > N} where N is large enough, so that
Q(T n

N ≤ t) is smaller than any prescribed ǫ, uniformly in n (Doob’s inequality makes it
possible to do so, since the processes Zn

t have the same variance).

Let us compare, in a first step, [Zn, Zn]T n
N
∧t with the sum of the square of its increments

along some subdivision (ti) of the interval [0, t]:

[Zn, Zn]T n
N
∧t −

∑

i

(Zn
T n

N
∧ti+1

− Zn
T n

N
∧ti)

2 = 2
∑

i

∫ ti+1

ti

(Zn
T n

N
∧s− − Zn

T n
N
∧ti)dZ

n
T n

N
∧s

The compensator of ZT n
N
∧s being equal to T n

N ∧ s, we deduce,

E[([Zn, Zn]T n
N
∧t −

∑

i

(Zn
T n

N
∧ti+1

− Zn
T n

N
∧ti)

2)2] ≤ 4E[
∑

i

∫ ti+1

ti

(Zn
T n

N
∧s− − Zn

T n
N
∧ti)

2ds]

which in turn is smaller that 4E[
∑

i

∫ ti+1

ti
(Zn

T n
N
∧s−

−Zn
T n

N
∧ti

)2ds] ≤ 4
3

∑

i(ti+1 − ti)
3. (In this

first step, stopping the martingales at T n
N just ensures the integrability we need. In the

further steps, this stopping argument will be more widely used.)

As a conclusion, we deduce that the ”discrete quadratic Riemann sums” of Zn approx-
imate [Zn, Zn] uniformly, in probability. Now, since the corresponding sums for Z ap-
proximate [Z,Z] in probability, it just remains to notice that we can choose the time of
our subdivisions among the times t for which Zn

t converges almost surely to Zt so that
the quadratic sums of Zn will converge almost surely and therefore in probability to their
corresponding analog for the process Z.



6 N. ENRIQUEZ

In a second step, we deal with the second term
∫ t
0 Zn

s−dZn
s . We prove its convergence to

the corresponding quantity for Z, exactly the same way as in Meyer’s proof.

Now, we have to prove the convergence to 0 in probability of both remaining terms
∫ t

0

ds

1 + n(βZn
s−

)2
and

∑

s≤t

1∆Zn
s 6=0

εn
s√
n

(βZn
s− +

εn
s√
n

).

Again, it suffices to prove it for these quantities when t is replaced by T n
N ∧ t.

This result will be a consequence of the following key lemma, which gives some uniform
control (in n) on the time spent by the processes Zn

t near the origin, and on the number of
their jumps:

Lemma 1. The two following convergence results hold: for all N > 0, and all t > 0,

(i) ∀ǫ > 0, ∃δ > 0, ∃n0 ∈ N, such that ∀n ≥ n0,

P (

∫ T n
N
∧t

0
1Zn

s ∈[−δ,δ]ds > ǫ) < ǫ

(ii)
Nn

T n
N
∧t

n
converges to 0 in probability.

Proof: We start with (i). We will use the following notation for a constant which will
appear repeatedly: C = max(1, 1 + |β|).

Let us fix ε > 0, and, for some δ ∈]0, N
2C [, consider the successive stopping times:

τn
1 = inf{t : |Zn

t | > 2δ}
τn
2 = inf{t > τn

1 : |Zn
t | < δ or |Zn

t | > N}
If τn

2 6= T n
N , we define τn

3 := inf{t > τn
2 : |Zn

t | > 2δ}
and more generally for i ≥ 2,

τn
2i := inf{t > τn

2i−1 : |Zn
t | < δ or |Zn

t | > N}
If τn

2i 6= T n
N , then τn

2i+1 := inf{t > τn
2i : |Zn

t | > 2δ}
Let us denote by K, the random integer K := inf{i ≥ 1 : τn

2i = T n
N}.

From these definitions, we get obviously:
∫ T n

N
∧t

0
1Zn

s ∈[−δ,δ]ds ≤ τn
1 + (τn

3 − τn
2 ) + ... + (τn

2K−1 − τn
2K−2)

Now, we can bound the expectation of the right hand term, by first noticing that, by the
optional sampling theorem applied to the martingale (Zn

t )2 − t,

∀i ≥ 1, E[τn
2i+1 − τn

2i |K > i] = E[(Zn
τn
2i+1

)2 − (Zn
τn
2i

)2 |K > i]

≤ E[(Zn
τn
2i+1

)2 |K > i] ≤ 4max(1, (1 + β)2)δ2 = 4C2δ2

And secondly, we can estimate P (K = i + 1 |K > i), by exploiting that

E[Zn
τn
2i+2

|K > i] = E[Zn
τn
2i+1

|K > i].

But, on one hand, |Zn
τn
2i+1

| ≥ 2δ and, on the other hand, E[Zn
τn
2i+2

|K > i] decomposes

into E[1K=i+1Z
n
τn
2i+2

] + E[1K>i+1Z
n
τn
2i+2

], with

|E[1K=i+1Z
n
τn
2i+2

]| ≤ NC.P (K = i + 1|K > i)

and
|E[1K>i+1Z

n
τn
2i+2

]| ≤ δ
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Therefore,

P (K = i + 1 |K > i) ≥ δ

NC
which implies that P (K ≥ i) ≤ (1 − δ

NC )i−1.

Now, writing

E[τn
1 + (τn

3 − τn
2 ) + ... + (τn

2K−1 − τn
2K−2)] =

∑

i≥1

E[(τn
2i−1 − τn

2i−2)1K≥i]

and, using the strong Markov property at time τn
2i−1, we get

E[τn
1 + (τn

3 − τn
2 ) + ... + (τn

2K−1 − τn
2K−2)] ≤ 4C2δ2

∑

i≥1

(1 − δ

NC
)i−1 = 4NC3δ

We just have to choose δ such that 4NC3δ = ε2 and use Markov inequality, to get (i).

To prove (ii), we will strongly exploit (i). To make the reading easier, we will fix t equal
to 1. Let us divide the interval [0, t] = [0, 1] into n intervals of the type In

k = [ k
n , k+1

n ], where
0 ≤ k ≤ n − 1.

Now, ε being fixed, we introduce δ like in (i), and define the stopping times:

σn
k = inf{s ∈ In

k , |Zn
s | > δ}

with σn
k = ∞ if ∀s ∈ In

k , |Zn
s | ≤ δ.

From (i), we get that, for n large enough, with probability bigger than 1 − ε, for more
than (1 − ε)n integers k, between 0 and n − 1, we have σn

k < ∞.

Let us introduce now the stopping time τn
k := inf{s > σn

k |Zn
s −Zn

s−| 6= 0}, with τn
k = ∞

whenever σn
k = ∞.

Now, for n large enough, the quantity P (|τn
k − σn

k | < 2
n |σn

k < ∞) can be bounded
uniformly in k by some sequence depending on n, which converges to 0. Indeed, if at some
time s, |Zn

s | > δ, and if moreover there is no jump between s and s + 2
n , then |Zn

s | remains

bigger than δ/2 for n large enough. Now, on the time interval [s, s + 2
n ], the intensity of the

jump remains smaller than 1
β2(δ/2)2 .

We deduce that, conditionally on the event (σn
k < ∞), |τn

k − σn
k | ∧ 2

n is stochastically

bigger than e 4
β2δ2

∧ 2
n , where e 4

β2δ2
is an exponential variable having parameter 4

β2δ2 .

So that, for n large enough,

P (|τn
k − σn

k | >
2

n
|σn

k < ∞) > exp(− 8

β2δ2n
)

Now, |τn
k − σn

k | > 2
n implies that there is no jump inside the time interval In

k+1.

So, we deduce that, for n large enough, with probability bigger than 1 − 2ε, the process
Zn

s will not jump on more than (1 − 2ε)n intervals among the In
k ’s.

Finally, since the rate jump of the process is permanently less than n and the length of
each In

k is equal to 1
n , for n large enough, we get that, with an arbitrarily high probability,

there are not more than 4εn jumps on the remaining 2εn intervals In
k which may have some

jumps. �

End of the proof of Theorem 1: The (i) part of Lemma 1 gives immediately the convergence

in probability to 0, of

∫ T n
N
∧t

0

ds

1 + n(βZn
s−

)2
.
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Now,
∑

s≤T n
N
∧t

1∆Zn
s 6=0

εn
s√
n

(βZn
s− +

εn
s√
n

) =
Nn

T n
N
∧t

n
+ β

∑

s≤T n
N
∧t

1∆Zn
s 6=0

εn
s√
n

Zn
s−

Part (i) of Lemma 1 implies the convergence to 0 of the first term of this sum, and we
bound the L2-norm of the second term:

E[(
∑

s≤T n
N
∧t

1∆Zn
s 6=0

εn
s√
n

Zn
s−)2] =

1

n
E[

∑

s≤T n
N
∧t

1∆Zn
s 6=0(Z

n
s−)2] ≤ N2.E[

Nn
T n

N
∧t

n
]

Now, for all ε > 0,

E[
Nn

T n
N
∧t

n
] ≤ ε + E[

Nn
T n

N
∧t

n
.1

(
Nn

Tn
N

∧t

n
>ε)

] ≤ ε + E[(
Nn

T n
N
∧t

n
)2]

1
2 P (

Nn
T n

N
∧t

n
> ε)

1
2

Now, coupling the jump times of the process Zn
t with the points of a Poisson process with

intensity n, we are able to bound E[(
Nn

Tn
N

∧t

n )2] uniformly in n, by t2.

We conclude that
∑

s≤T n
N
∧t

1∆Zn
s 6=0

εn
s√
n

(βZn
s−+

εn
s√
n

) converges to 0 in probability, and obtain

Theorem 1. �

Remark: We might have replaced the randomness of the jumps, having distribution
1
2(δ−1 + δ1) in the case of the process Z

(β,1)
t , by any other one, having compact supported

distribution with mean 0 and variance 1. In other words, the result of Theorem 1 remains

valid, if we take, instead of Z
(β,1)
t , any process having generator

(
∫

R

g((1 + β)x + y)µ(dy)

)

− g(x) − βxg′(x)

1 + β2x2

where µ is a compact supported measure, with mean 0 and variance 1. Indeed, one can
easily check that we still deal with normal martingales.

4. An extension to structure equations

Actually, Meyer is able to construct solutions of the more general structure equation

(2) d[X,X]t = dt + f(Xt−)dXt

where f is an arbitrary continuous function.

The strategy of Meyer consists in solving a discretized structure equation, which leads
to a cascade of second degree polynomial equations satisfied by the discretized increments,
having always exactly two solutions of opposite signs, which are chosen with respect to the
(unique) probability preserving the martingale property of the constructed discrete process.

We want to show in this section how our approach can be used to exhibit a solution of
the structure equation (which may be different from Meyer’s in the non-uniqueness cases).
Inspired by the processes of previous section, we introduce a sequence of normal martingales

Z
(f,n)
t whose limiting points in the sense of the weak convergence for the Skorohod topology

will satisfy the structure equation (2).

However, although our approach has the advantage to give an invariance principle in
the self-similar case of previous section, nonetheless the construction of structure equations
for general continuous functions induces delicate discussions on the time spent near the
zeroes of the function f , and we did not work them out for a general continuous function
f . So, our aim, in this section, is more to examplify things, than to arrive to the most
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general statement, which might be valid for general continuous functions, but we will let
this question open here.

We define Z
(f,n)
t , as the Markov process starting at 0, and having generator:

L(f,n)g(x) =

1
2

(

g(x + f(x) + 1√
n
) + g(x + f(x) − 1√

n
)
)

− g(x) − f(x)g′(x)

1
n + f(x)2

Proposition 3. Suppose f is a continuous function with isolated zeroes. Suppose, in addi-
tion, that, in the neighbourhood of each zero xj of f , f(xj + h) = o(

√
h).

Then, the limiting points of the sequence of processes Z
(f,n)
t , in the sense of the weak

convergence for the Skorohod topology, satisfy the structure equation (2).

Proof: Like in the previous section, we start by noticing that the image by L(f,n), of x
and x2, is respectively 0 and 1. Indeed,

1

2

(

(x + f(x) +
1√
n

) + (x + f(x) − 1√
n

)

)

− x − f(x) = 0

and
1

2

(

(x + f(x) +
1√
n

)2 + (x + f(x) − 1√
n

)2
)

− x2 − 2xf(x) =
1

n
+ f(x)2

We deduce that Z
(f,n)
t are normal martingales. Therefore, by Rebolledo’s theorem (see [15],

II.3.1), this sequence is tight for the weak convergence in the Skorohod topology.

Now, we follow the proof of Theorem 1, and write:

[Zn, Zn]t =

∫ t

0
f(Zn

s−)dZn
s + t −

∫ t

0

ds

1 + nf(Zn
s−

)2
+

∑

s≤t

1∆Zn
s 6=0

εn
s√
n

(f(Zn
s−) +

εn
s√
n

)

Applying again Skorohod representation theorem, we are able to prove the convergence of
the terms [Zn, Zn]t and

∫ t
0 f(Zn

s−)dZn
s to the analogous quantities for the limiting process.

Now, the key point is to check the analogous property to Part (i) of Lemma 1.

In other words, we have to prove, that, for every xj ∈ [−N,N ] (there are a finite number
of them), ∀ǫ > 0, ∃δj > 0, ∃n0 ∈ N, such that ∀n ≥ n0,

P (

∫ T n
N∧t

0
1Zn

s ∈[xj−δj ,xj+δj ]ds > ǫ) < ǫ

We then introduce the same stopping times as in Lemma 1, and the differences with the
proof of Lemma 1 come out when we estimate E[τn

2i+1 − τn
2i |K > i]:

∀i ≥ 1, E[τn
2i+1 − τn

2i |K > i] = E[(Zn
τn
2i+1

)2 − (Zn
τn
2i

)2 |K > i]

≤ E[(Zn
τn
2i+1

)2 |K > i] ≤ (2δj + sup[−2δj ,2δj ] |f(x)|)2 = o(δj)

whereas P (K = i + 1|K > i) remains bigger than a constant times δj .

As a result, E[τn
1 + (τn

3 − τn
2 ) + ... + (τn

2K−1 − τn
2K−2)] is bounded by a constant times

(2δj+sup[−2δj,2δj ] |f(x)|)2

δj
= o(1).

As in Lemma 1, we choose δi such that this fraction is equal to ε2.

We finish the proof the same way as for Theorem 1. �

Remark 1: The framework of Proposition 3 includes the case of asymmetric Azéma mar-
tingales corresponding to a function f of the form ax1x≥0 + bx1x≤0. In this case, Phan
proved in [12] that the solution of the structure equation is unique. From this result, we
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deduce that these processes are self-similar and Proposition 3 provides, in this case, an
invariance principle.

Remark 2: Our assumptions in Proposition 3 are obviously not optimal: for instance,
if f is null, we are back to the case of a simple random walk, and the convergence to the
corresponding solution of the structure equation which is, in this case, the Brownian motion
is obviously valid. It would not be hard to check that one can allow f to be null on a locally
finite number of intervals, and satisfy the assumptions of Proposition 3 on the complement

of the union of these intervals. In this case, the term
∑

s≤t 1∆Zn
s 6=0

εn
s√
n
(f(Zn

s−) + εn
s√
n
) will

not vanish in the limit and will “alternatively” contribute with
∫ t
0

f(Zn

s−
)2

1
n

+f(Zn

s−
)2

ds to build a

compensator equal to t.

It is also very likely that the condition on f to be o(
√

h) near its zeroes is not optimal
(even if our attempts to relax it failed).

5. Construction of the process Z
(β,n)
t

We might just present the construction of Z
(β,1)
t and rescale it, but we prefered to keep

the parameter n in evidence, in order to point out clearly where the randomization of the
jumps appears.

Let us introduce the functions F and H defined on R×R+, in the following way: for any
(x0, t) ∈ R × R+,

F (x0, t) denotes the probability that the first jump of the process Z
(β,n)
t , starting at x0,

takes place after time t.

H(x0, t) is the value of Z
(β,n)
t , starting at x0, conditioned on the event that the first

jump of the process takes place after time t.

From the expression of the generator, we deduce the following system of differential
equations:















1

F

∂F

∂t
(x0, t) = − 1

1
n + β2H2(x0, t)

∂H

∂t
(x0, t) = − βH(x0, t)

1
n + β2H2(x0, t)

with the boundary conditions F (x0, 0) = 1 and H(x0, 0) = x0.

After noticing that
1

β

∂ ln H

∂t
=

∂ ln F

∂t
, we deduce that

H(x0, t) = x0(F (x0, t))
β

From this fact, we deduce the following autonomous equation for F :

− 1

n

1

F

∂F

∂t
− β2x2

0F
2β−1 ∂F

∂t
= 1

which yields

− 1

n
ln F − βx2

0

2
(F

2β − 1) = t

Therefore, the first jump of the process Z
(β,n)
t , starting at x0, follows the law of

− 1

n
ln U − βx2

0

2
(U2β − 1)
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where U is a uniform random variable on [0, 1]. We notice here that the special case n = 1,
β = −1 and |x0| = 1 allows us to recover the law of the random variable we discussed in
Proposition 1 (ii).

Denote T0 = 0 and Ti the i-th time of jump of the process Z
(β,n)
t . We can describe the

process Z
(β,n)
t as follows: there exists a sequence (Ui)i≥1 of independent uniform variables

on [0, 1], and a sequence (εi)i≥1 of independent symmetric Bernoulli variables, such that,
for all i ≥ 1, (we omit here the superscript (β, n).)























Ti = Ti−1 −
1

n
lnUi − β

Z2
Ti−1

2
(U2β

i − 1)

ZT−

i
= ZTi−1U

β
i

ZTi
= ZT−

i
(1 + β) +

1√
n

εi

On the time interval [Ti−1, Ti[, the trajectory (t, Zt) can be parametrized by (t(s), Zt(s))0≤s≤1−Ui

in the following way: for all s ∈ [0, 1 − Ui[,






t(s) = Ti−1 −
1

n
ln(1 − s) − β

Z2
Ti−1

2
((1 − s)2β − 1)

Zt(s) = ZTi−1(1 − s)β

Remark: From this description of Z
(β,n)
t , we can easily deduce a coupling between Z

(−1,n)
t

and Z
(β,n)
t , for all n and all parameters β. But, unfortunately, this coupling cannot be

transported at the level of the corresponding Azéma martingales by merely making n tend
to infinity.

This description allows us to draw some pictures of the process Z
(β,n)
t for large values of

n and different values of the parameter β, having therefore some good approximations of
trajectories of Azéma martingales. However, in this paper, we do not intend to quantify
any error term.

We finish this paper with some simulations of Azéma martingales, which were obtained

by writing a code in MATLAB. It basically draws Z
(β,1)
t , asks for the number of arches one

wants to appear in the graph, and rescale the obtained function in order to get a function
defined on [0, 1]. In the figures below, we asked for 1000 arches to appear.

Figure 1 represents Parthasarathy’s martingale, whose graph is included inside the parabola
of equation |y| =

√
x. Figure 2 represents the first Azéma martingale. We can see on Figure

4 that, for very small values of the parameter β, the Azéma martingale is a perturbation
of the Brownian motion. It was considered as a candidate in [3] to replace the Brownian
motion in the Black-Scholes model. We chose β = −0.07 which was the parameter formerly
estimated by Dritschel and Protter to modelise the variations of some asset prices.

We finally couple figures 3 and 5, which correspond respectively to the parameters −0.5
and 1, and notice similarities in their graphs up to some symmetry and horizontal affinity.
Parthasarathy conjectured, after noticing the duality between the two formal generators of
these processes that, up to a time change, the first process was the time reversal of the other
(the conjecture was formulated, of course, for general positive values of the parameter). This
conjecture was actually proven in an unpublished part of Phan’s thesis [11] by a nice and
unusual argument involving polynomial test functions.
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Fig. 1: β = −2
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Fig. 2: β = −1
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Fig. 3: β = −0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 4: β = −0.07
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