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Abstract

The fragmentation processes of exchangeable partitions have already been studied by sev-
eral authors. In this paper, we examine rather fragmentation of exchangeable compositions,
that means partitions of N where the order of the blocks counts. We will prove that such a
fragmentation is bijectively associated to an interval fragmentation. Using this correspon-
dence, we then calculate the Hausdorff dimension of certain random closed set that arise in
interval fragmentations and we study Ruelle’s interval fragmentation.
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1 Introduction

Random fragmentations describe an object which splits as time passes. Two types of fragmenta-
tion have received a special attention : fragmentation of partitions of N and mass-fragmentation,
i.e. fragmentation on the space S↓ = {s1 ≥ s2 ≥ . . . ≥ 0,

∑
i si ≤ 1}. Berestycki [3] has proved

that for each homogeneous fragmentation process of exchangeable partitions, we can canoni-
cally associate a mass fragmentation. More precisely, according to the work of Kingman [16],
we know that if π = (π1, π2, . . .) is an exchangeable random partition of N (i.e. the distri-
bution of π is invariant under finite permutation of N), the asymptotic frequency of block πi,

fi = limn→∞
Card(πi∩{1,...,n})

n , exists a.s. We denote by (|πi|
↓)i∈N the sequence (fi)i∈N after a

decreasing rearrangement. If (Π(t), t ≥ 0) is a fragmentation of exchangeable partitions, then

(|Πi(t)|
↓
i∈N

, t ≥ 0) is a mass fragmentation. Conversely, a fragmentation of exchangeable parti-
tions can be constructed from a mass fragmentation via a ”paintbox process”.

One of our goal in this paper is to develop an analog theory for fragmentations of exchange-
able compositions and interval fragmentations. The notion of composition structure has been
introduced by Gnedin [14] ; roughly speaking, it can be thought of a partition where the order
of the block counts. Gnedin proved a theorem analogous to Kingman’s Theorem in the case of
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exchangeable compositions : for each probability measure P that describes the law of a random
exchangeable composition, we can find a probability measure on the open subset of [0,1], such
that P can be recovered via a ”paintbox process”. This is why it seems very natural to look for
a correspondence between fragmentations of compositions and interval fragmentations.

The first part of this paper develops the relation between probability laws of exchangeable
compositions and laws of random open subsets, and its extension to infinite measures. Then
we prove that there exists indeed a one to one correspondence between fragmentation of com-
positions and interval fragmentations. The next part gives some properties and characteristics
of these processes and briefly presents how this theory can be extended to time-inhomogeneous
fragmentations and self-similar fragmentations.

We then turn our attention to the estimation of the Hausdorff dimension of random closed
sets which arise in an interval fragmentation. Finally, as an application of this theory, we study
in Section 6.1 a well known interval fragmentation introduced by Ruelle [2, 9, 11, 18] and we
give a description of its semi-group of transition.

2 Exchangeable compositions and open subsets of ]0, 1[

2.1 Probability measures

In this section, we define exchangeable compositions following Gnedin [14], and recall some
useful properties.
For n ∈ N, let [n] be the set of integers {1, . . . , n} and write [∞] = N.

Definition 2.1 For n ∈ N, a composition of [n] is an ordered sequence of disjoint, non empty
subsets of [n], γ = (A1, . . . , Ak), with ∪Ai = [n].
We denote by Cn the set of composition of [n].

Let ρn : Cn → Cn−1 be the restriction of a composition of [n] to a composition of [n− 1] and
let C be the projective limit of (Cn, ρn). We endow C with the product topology, then it is a
compact set.

We say that a sequence (Pn)n∈N of measure on (Cn)n∈N is a consistent sequence of measures
if, for all n ≥ 2, Pn−1 is the image of Pn by the projection ρn, i.e., for all γ ∈ Cn−1, we have

Pn−1(Γn−1 = γ) =
∑

γ′∈Cn:ρn(γ′)=γ

Pn(Γn = γ).

By Kolmogorov theorem, such a sequence (Pn)n∈N determines the law of a random compo-
sition of N.

In the sequel, for n ∈ N∪ {∞}, γ ∈ Cn and A ⊂ [n], γA will denote the restriction of γ to A.
Hence, for m ≤ n and, γ[m] will denote the restriction of γ to [m].

A random composition Γ of N is called exchangeable if for all n ∈ N, for every permutation
σ of [n] and for all γ ∈ Cn, we have :

P(Γ[n] = γ) = P(σ(Γ[n]) = γ),

where σ(Γ[n]) the image of the composition Γ[n] by σ. Hence, given an exchangeable random
composition Γ, we can associate a function defined on finite sequences of N by

∀k ∈ N,∀n1, . . . , nk ∈ N
k, p(n1, . . . , nk) = P(Γ[n] = (B1, . . . , Bk)),
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with |Bi| = ni and n1 + . . . + nk = n. This function determines the law of Γ and is called the
exchangeable composition probability function (ECPF) of Γ.

Notation 2.2 Let Γ be a composition of N. For i, j ∈ N
2, we will use the following notation :

• i ∼ j, if i and j are in the same block.

• i ≺ j, if the block containing i is before the block containing j.

• i ≻ j, if the block containing i is after the block containing j.

Definition 2.3 Let U be an open subset of [0, 1]. We construct a random composition of N in
the following way :
Let us draw (Xi)i∈N iid random variables with uniform law on [0, 1]. Then we use the following
rules :

• i ∼ j, if i = j or if Xi and Xj belong to the same component interval of U .

• i ≺ j, if Xi and Xj do not belong to the same component interval of U and Xi < Xj .

• i ≻ j, if Xi and Xj do not belong to the same component interval of U and Xi > Xj .

This defines a probability measure on C that we shall denote PU ; the marginal of PU on Cn
will be denoted by PU

n . If ν is a probability measure on U , we denote by P ν the law on C which
marginals are :

P ν
n (·) =

∫

U
PU

n (·)dν(U).

Let U be the set of open subset of ]0, 1[. For U ∈ U , let

χU(x) = min{|x− y|, y ∈ U c}, x ∈ [0, 1],

where U c = [0, 1]\U . We define also a distance on U by :

d(U, V ) = ||χU − χV ||∞.

It will be convenient to use the notation 1 =]0, 1[. The composition of Cn (resp. C) with a single
non empty block will be denoted by 1n (resp. 1N) and we will write C∗n for Cn\{1n}.

Let us recall here two useful theorems from Gnedin [14] :

Theorem 2.4 [14] Let Γ be an exchangeable random composition of N, Γ[n] its restriction to
[n]. Let (n1, . . . , nk) be the sequence of the block sizes of Γ[n] and n0 = 0. Define Un ∈ U by :

Un =

k⋃

i=1

]ni−1

n
,
ni

n

[
.

Then Un converges almost surely to a random element U ∈ U . The conditional law of Γ given
U is PU .
As a consequence, if P be an exchangeable probability measure on C, then there exists a unique
probability measure ν on U such that P = P ν.
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Hence, for each exchangeable composition Γ, we can associate an element of U which we will
call asymptotic open set of Γ and denote UΓ.
We shall also write |Γ|↓ for the decreasing sequence of the lengths of the interval components of
UΓ. More generally, for U ∈ U , |U |↓ will be the decreasing sequence of the interval component
lengths of U .

Let us notice that this theorem is the analogue of Kingman’s Theorem for the representation
of exchangeable partitions. Actually, let Q be an exchangeable probability measure on P∞, the
set of partition of N and let π be a partition with law Q.

Kingman [16] has proved that each block of π has almost surely a frequency, i.e. if π =
(π1, π2, . . .), then

∀i ∈ N fi = lim
n→∞

♯{πi ∩ [n]}

n
exists Q-a.s.

One calls fi the frequency of the block πi. Therefore, for all exchangeable random partitions,
we can associate a probability on S↓ = {s = (s1, s2, . . .), s1 ≥ s2 ≥ . . . ≥ 0,

∑
i si ≥ 1} which

will be the law of the decreasing rearrangement of the sequence of the partition frequencies.
Conversely, given a law ν̃ on S↓, we can construct an exchangeable random partition whose

law of its frequency sequence is ν̃ (cf. [16]) : we pick s ∈ S↓ with law ν̃ and we draw a sequence
of independent random variables Ui with uniform law on [0, 1]. Conditionally on s, two integers
i and j are in the same block of Π iff there exists an integer k such that

∑k
l=1 sl ≤ Ui <

∑k+1
l=1 sl

and
∑k

l=1 sl ≤ Uj <
∑k+1

l=1 sl. We denote by ρν̃ the law of this partition (and by a slight abuse of
notation, ρu denotes the law of the partition obtained with ν̃ = δu). Kingman’s representation
Theorem states that any exchangeable random partition can be constructed in this way.

Let ℘1 be the canonical application from the set of composition C to the set of partition
P∞ and ℘2 the application from the set U to the set S↓ which associates to an element U of U
the decreasing sequence |U |↓. To sum up, we have the following diagram between probability
measures on P∞, C, S↓, U :

(C, P ν)
Gnedin
←−−−−→ (U , ν)

℘1

y ℘2

y
(P∞, ρν̃)

Kingman
←−−−→ (S↓, ν̃).

2.2 Representation of infinite measures on C

In this section, we show how Theorem 2.4 can be extended to the case of an infinite measure µ
on C such that :

• µ is exchangeable.

• µ(1N) = 0.

• For all n ∈ N, µ({γ ∈ C, γ[n] 6= 1n}) <∞.

A measure on C fulfilling this three properties will be called a ”fragmentation measure”. We
will see in the sequel that such a measure can always be associated to a fragmentation process
and conversely.

We will prove that we can decompose every fragmentation measure µ in two measures, one
characterizing µ on the compositions with asymptotic open set Uγ =]0, 1[, and the other on the
complementary event. The measure on the event Uγ =]0, 1[ is called erosion measure and the
measure on the event Uγ 6=]0, 1[ is called dislocation measure.
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Definition 2.5 A measure ν on U is called a dislocation measure if :

ν(1) = 0,

∫

U
(1− s1)ν(dU) <∞,

where s1 is the length of the largest interval component of U .

In the sequel, for any ν measure on U , we define the measure P ν on C by

P ν(dγ) =

∫

U
PU (dγ)dν(U).

Notice that if ν is a dislocation measure, then P ν(dγ) is a fragmentation measure. In fact, the
measure P ν is exchangeable since PU is an exchangeable measure.
For U 6= 1, we have PU (1N) = 0, and as ν(1) = 0, we have also P ν(1N) = 0.
We now have to check that P ν({γ ∈ C, γ[n] 6= 1n}) < ∞ for all n ∈ N. Let us fix U ∈ U . Set

|U |↓ = s = (s1, s2, . . .).

PU ({γ ∈ C, γ[n] 6= 1n}) = 1−

∞∑

i=1

sn
i ≤ 1− sn

1 ≤ n(1− s1)

and so P ν({γ ∈ C, γ[n] 6= 1n}) <∞.

We can now state the following theorem :

Theorem 2.6 Let ǫi be the composition of N, ({i}, {N \ {i}}) and ǫ =
∑

i δǫi
. Let ǫ′i be the

composition of N, ({N \ {i}}, {i}) and ǫ′ =
∑

i δǫ′i
. These are two exchangeable measures on C.

If µ is a fragmentation measure, there exists cl ≥ 0, cr ≥ 0 and a dislocation measure ν such
that :

µ = clǫ + crǫ
′ + P ν .

Besides, the restriction of µ to {Γ ∈ C, UΓ = 1} is clǫ+ crǫ
′ and the restriction to {Γ ∈ C, UΓ 6=

1} is P ν .

Recall that in the case of fragmentation measure on partitions, Bertoin [4] proved the fol-
lowing result :
Let ǫ̃i be the partition of N,

{
{i}, {N \ {i}}

}
and define the measure ǫ̃ =

∑
i δǫ̃i

. Let µ̃ be an
exchangeable measure on P∞ such that µ(1N) = 0 and µ̃(π ∈ P∞, πn 6= 1n) is finite for all
n ∈ N. Then there exists a measure ν̃ on S↓ such that ν̃(1) = 0 and

∫
S↓(1 − s1)ν(ds), and a

nonnegative number c such that :
µ̃ = ρν̃ + cǫ̃.

Notice that Theorem 2.6 is an analogous decomposition as in the case of fragmentation
measure on compositions, except that, in this case, there is two coefficients of erosion, one
characterizing the left erosion and the other the right erosion.

Proof. We adapt a proof due to Bertoin [4] for the exchangeable partition to our case.
Set n ∈ N. Set µn = 1{Γ[n] 6=1n}µ, therefore µn is a finite measure. Let −→µn be the image of µn by
the n-shift, i.e. :

i

→n

Γ
≺ j ⇔ i + n

Γ
≺ j + n, i

→n

Γ
∼ j ⇔ i + n

Γ
∼ j + n, i

→n

Γ
≻ j ⇔ i + n

Γ
≻ j + n.
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Then −→µn is exchangeable since µ is and furthermore, it is finite measure. So, we can apply
Theorem 2.4 :

∃ ! νn finite measure on U such that −→µn(dγ) =

∫

U
PU (dγ)νn(dU).

According to theorem 2.4, since −→µn is an exchangeable finite measure, −→µn-almost every com-
position has an asymptotic open set and so µn-almost every composition has also an asymptotic
open set, and as µ = lim ↑ µn, µ-almost every composition has also an asymptotic open set.
Besides we have :

µn(n + 1 ≁ n + 2 | UΓ = U) = −→µn(1 ≁ 2 | UΓ = U) = PU (1 ≁ 2) = 1−
∑

si
2 ≥ 1− s1.

So

µn(n + 1 ≁ n + 2) ≥

∫
(1− s1)νn(dU).

Set ν = limn→∞ ↑ νn. Since

µn(n + 1 ≁ n + 2) ≤ µ(n + 1 ≁ n + 2) ≤ µ(1 ≁ 2) <∞,

we have ∫
(1− s1)ν(dU) <∞.

Hence ν is a dislocation measure. Set γk ∈ Ck.

µ(Γ[k] = γk, UΓ 6= 1) = lim
n→∞

µ(Γ[k] = γk,Γ{k+1,...,k+n} 6= 1n, UΓ 6= 1)

= lim
n→∞

µ(
→n
Γ [k] = γk,Γ[n] 6= 1n, UΓ 6= 1)

= lim
n→∞

−→µn(Γ[k] = γk, UΓ 6= 1)

=

∫

C∗

PU (Γ[k] = γk)ν(dU).

Thus we have

µ( · , Uγ 6= 1) =

∫
PU ( · )ν(dU).

We now have to study µ on the event {Uγ = 1}.

Let µ̃ be µ restricted to {1 ≁ 2, Uγ = 1}. Let
→
µ̃ be the image of µ̃ by the 2-shift. The measure

→
µ̃ is finite and exchangeable and its asymptotic open set is almost surely 1, so

→
µ̃ = aδ1 where

a is a nonnegative number.
So µ̃ = c1δγ1 + . . . + c10δγ10 where γ1, . . . , γ6 are the six possible compositions build from the
blocks {1}, {2}, N\{1, 2},
γ7 = ({1}, N\{1}), γ8 = ({2}, N\{2}),
γ9 = (N\{1}, {1}), γ10 = (N\{2}, {2}). We must have c1 = . . . = c6 = 0, for otherwise, by
exchangeability, we would have µ({1}, {n}, N\{1, n}) = c > 0 and this would yield µ(S∗

2) =∞.
By exchangeability, we also have c7 = c8 and c9 = c10 and so, by exchangeability,

µ1{Uγ=1} = cl

∑

i

δǫi
+ cr

∑

i

δǫ′i
.2

As in section 2.1, we can now draw a diagram between fragmentation measures on C and P∞
and dislocation measures on U and S↓. Let us recall that ℘1 is the canonical projection of C to
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P∞, and denote q : (U , R+, R+) 7→ (S↓, R+) the application defined by q(U, a, b) = q(|U |↓, a+ b).
Then we have the following diagram :

(C, µ)
Theorem 2.6
←−−−−−−→

(
U , (ν, cl, cr)

)

℘1

y q

y
(P∞, µ̃)

Bertoin
←−−−−−−−→

(
S↓, (ν̃, cl + cr)

)
.

It remains to prove that µ̃ = ρν̃ + (cl + cr)ǫ̃. Set µ̃ = ρν + cǫ̃. Since µ̃ is the image by ℘1 of
µ, we have

µ̃(ǫ̃1) = µ(ǫ1) + µ(ǫ′1) and then c = cr + cl.

Let us fix n ∈ N and π ∈ Pn\{1n}. Set A = {γ ∈ Cn, ℘1(γ) = π}. Remark now that for all
U, V ∈ U such that |U |↓ = |V |↓, we have PU (A) = P V (A). Moreover we have PU (A) = ρs(π) if
s = |U |↓. So

P ν(A) =

∫

S↓

PU (A)ν(U, |U |↓ = ds) =

∫

S↓

ρs(π)ν̃(ds) = ρν̃(π).

We get

µ(A) = P ν(A) + clǫ(A) + crǫ
′(A) = ρν̃(π) + (cl + cr)ǫ̃(A) = ρν(π) + (cl + cr)ǫ̃(A) = µ̃(π).

So we deduce that ν = ν̃. 2

3 Fragmentation of compositions and interval fragmentation

3.1 Fragmentation of compositions

Definition 3.1 Let us fix n ∈ N and γ ∈ Cn with γ = (γ1, . . . , γk). Let γ(.) = (γ(i), i ∈
{1, . . . , n}) with γ(i) ∈ Cn for all i. Set mi = min γi. We denote γ̃(i) the restriction of γ(mi) to
γi. So γ̃(i) is a composition of γi. We consider now γ̃ = (γ̃(1), . . . , γ̃(k)) ∈ Cn.
We denote by FRAG(γ, γ(.)) the composition γ̃. If γ(.) is a sequence of i.i.d. random variables
with law p, p-FRAG(γ, ·) will denote the law of FRAG(γ, γ(.)).

We remark then that the operator FRAG has some useful property. First, we have that
FRAG(γ,1(.)) = γ. Furthermore, the fragmentation operator is compatible with the restriction
i.e. for every n′ ≤ n :

FRAG(γ, γ(.))[n′] = FRAG(γ[n′], γ
(.)).

Besides, the operator FRAG preserves the exchangeability. More precisely, let (γ(i), i ∈ {1, . . . , n})
be a sequence of random compositions which is doubly exchangeable, i.e. for each i, γ(i) is an
exchangeable composition, and moreover, the sequence (γ(i), i ∈ {1, . . . , n}) is also exchange-
able. Let γ be an exchangeable composition of Cn independent of γ(·). Then FRAG(γ, γ(.)) is
an exchangeable composition. Let us prove this property. Let us fix a permutation σ of [n]. We
shall prove that

FRAG(γ, γ(.))
law
= σ(FRAG(γ, γ(.))).

Let k be the number of blocks of γ and denote by m1, . . . ,mk the minimums of γ1, . . . , γk.
Let define now m′

1, . . . ,m
′
k the minimums of σ(γ1), . . . , σ(γk). Define now γ′(·) = (γ′(i), i ∈

{1, . . . , n}) by
γ′(m′

i) = σ(γ(mi)) for 1 ≤ i ≤ k
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γ′(j) = σ(γ(f(j))) for j ∈ {1, . . . , n} \ {m′
i, 1 ≤ i ≤ k},

where f is the increasing bijection from {1, . . . , n}\{m′
i, 1 ≤ i ≤ k} to {1, . . . , n}\{mi, 1 ≤ i ≤ k}.

We get
σ(FRAG(γ, γ(.))) = FRAG(σ(γ), γ′(.)).

Since σ(γ)
law
= γ and γ′(.) law

= γ(.) and γ′(.) remains independent of γ, we get

FRAG(σ(γ), γ′(.))
law
= FRAG(γ, γ(.)).2

We can now define the notion of exchangeable fragmentation process of compositions.

Definition 3.2 Let us fix n ∈ N and let (Γn(t), t ≥ 0) be a Markov process on Cn which is
continuous in probability.
We call Γn an exchangeable fragmentation process of compositions if :

• Γn(0) = 1n a.s.

• Its semi-group is described in the following way : there exists a family of probability mea-
sures on exchangeable compositions (Pt,t′ , t ≥ 0, t′ > t) such that for all t ≥ 0, t

′

> t the
conditional law of Γn(t

′

) given Γn(t) = γ is the law of Pt,t′ -FRAG(γ, γ(.)). The fragmen-
tation is homogeneous in time if Pt,t′ depends only on t′ − t.

A Markov process (Γ(t), t ≥ 0) on C is called an exchangeable fragmentation process of compo-
sitions if, for all n ∈ N, the process (Γ[n](t), t ≥ 0) is an exchangeable fragmentation process of
compositions on Cn.

In the sequel, a c-fragmentation will denote an exchangeable fragmentation process on com-
positions.

3.2 Interval fragmentation

In this section we recall the definition of a homogeneous1 interval fragmentation [7].
We consider a family of probability measures (qt,s, t ≥ 0, s > t) on U . For all interval I =]a, b[⊂
]0, 1[, we define the affine transformation gI :]0, 1[→ I given by gI(x) = a + x(b − a). We still
denote gI the induced map on U , so, for V ∈ U , gI(V ) is an open subset of I. We define then qI

t,s

as the image of qt,s by gI . Hence qt,s is a probability measure on the open subset of I. Finally,
for W ∈ U with interval decomposition (Ii, i ∈ N), qW

t,s is the distribution of ∪Xi where the Xi

are independent random variables with respective law qIi
t,s.

Definition 3.3 A process (U(t), t ≥ 0) on U is called a homogeneous interval fragmentation if
it is a Markov process which fulfills the following properties :

• U is continuous in probability and U(0) = 1 a.s.

• U is nested i.e. for all s > t we have U(s) ⊂ U(t).

• There exists a family (qt,s, t ≥ 0, s > t) of probability measure on U such that :

∀t ≥ 0, ∀s > t, ∀A ⊂ U , P(U(s) ∈ A| U(t)) = q
U(t)
t,s (A).

1In [7], Bertoin defines more generally self-similar interval fragmentations with index α. Here, the term
homogeneous means that we only consider the case α = 0.
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In the following, we abbreviate an interval fragmentation process as an i-fragmentation.

We remark that if we take the decreasing sequence of the sizes of the interval components
of an i-fragmentation, we obtain a mass-fragmentation, denoted here a m-fragmentation (see [4]
for definition of m-fragmentation). But, with the m-fragmentation, we loose the genealogical
aspect present in the i-fragmentation.

3.3 Link between i-fragmentation and c-fragmentation

From this point of the paper and until Section 4.4, the fragmentation processes will always be
homogeneous in time, i.e. qt,s depends only on s− t, hence we will just write qt−s to denote qt,s.

Theorem 3.4 There is a one to one correspondence between laws of i-fragmentations and laws
of c-fragmentations. More precisely :

• let (U(t), t ≥ 0) be an i-fragmentation. Let (Vi)i≥0 be a sequence of independent random
variables uniformly distributed on ]0,1[. Using the same process as in Definition 2.3 with
U(t) and (Vi)i≥1, we define a process (Γ(t), t ≥ 0) on C. Then (Γ(t), t ≥ 0) is a c-
fragmentation and we have UΓ(t) = U(t) a.s. for each t ≥ 0.

• Let (Γ(t), t ≥ 0) be a c-fragmentation. Then (UΓ(t), t ≥ 0) is an i-fragmentation.

Proof. We begin by proving the first point. We have by Theorem 2.4, UΓ(t) = U(t) a.s. for
each t ≥ 0. Let us fix n ∈ N and t ≥ 0. We are going to prove that, for s > t, the conditional law
of Γ[n](s) given Γ[n](t) = (γ1, . . . , γk) is the law of FRAG(Γ[n](t), γ

(·)), where γ(·) is a sequence
of iid exchangeable compositions with law Γ[n](s − t). Since (U(s), s ≥ 0) is a fragmentation
process, we have U(t + s) ⊂ U(t). By construction of Γ[n](t), it is then clear that Γ[n](t + s) is a
finer composition than Γ[n](t). Hence each singleton of Γ[n](t) remains a singleton of Γ[n](t + s).
So we can assume that Γ[n](t) has no singleton. For 1 ≤ i ≤ k, fix l ∈ γi and define

ai = sup{a ≤ Vl, a /∈ U(t)}, bi = inf{b ≥ Vl, b /∈ U(t)}.

Notice that ai and bi do not depend on the choice of l ∈ γi. Furthermore, since Γ[n](t) has no
singleton, we have ai < bi almost surely. We define also

Y i
j =

(
Vj − ai

bi − ai

)

j∈γi,1≤i≤k

.

By construction of Γ[n](t), the random variables (Y i
j )j∈γi,1≤i≤k are independent and uniformly

distributed on ]0, 1[. Besides, (]ai, bi[)1≤i≤k are k distinct interval components of U(t). Since
U(t) is a fragmentation process, the processes

(
U i(s) =

1

bi − ai
(U]ai,bi[(s)− ai), s ≥ t

)

1≤i≤k

are k independent i-fragmentations with law (U(s− t), s ≥ t). Let γ(i)(s) be the composition of
γi obtained from U i(s) and (Y i

j )j∈γi
using Definition 2.3. Hence, γ(i)(s) has the law of Γγi

(s− t)

and the processes (γ(i)(s), s ≥ t)1≤i≤k are independent. Furthermore, by construction we have
Γ[n](t + s) = FRAG(Γ[n](t), γ

(·)(s)). Hence, (Γ[n](t), t ≥ 0) has the expected semi group of
transition.

Let us now prove the second point. In the following, we will write Ut to denote UΓ(t).
First, we prove that for all s > t, Us ⊂ Ut. Fix x /∈ Ut, we shall prove x /∈ Us. We have

9



χUt(x) = min{|x− y|, y ∈ U c
t } = 0. Let Un

t be the open subset of ]0, 1[ corresponding to Γ[n](t)
as in Theorem 2.4. So we have limn→∞ d(Un

t , Ut) = 0. Fix ε > 0. Hence, there exists N ∈ N

such that, for all n ≥ N , χUn
t
(x) ≤ ε. This implies that :

∀n ≥ N,∃yn /∈ Un
t such that |yn − x| ≤ ε.

Besides, as (Γ(t), t ≥ 0) is a fragmentation, we have for all n ∈ N, Un
s ⊂ Un

t . Hence, we have
also

∀n ≥ N, yn /∈ Un
s ,

and so χUn
s
(x) ≤ ε for all n ≥ N . We deduce that χUs(x) = 0 i.e. x /∈ Us.

We now have to prove the branching property. Fix t > 0. We consider the decomposition of
Ut in disjoint intervals :

Ut =
∐

k∈N

Ik(t).

Set Fk(s) = Ut+s ∩ Ik(t). We want to prove that, given Ut :

• ∀l ∈ N,∀m1, . . . ,ml distinct, Fm1 , . . . , Fml
are independent processes.

• Fk has the following law :

∀A open subset of ]a, b[, P((Fk(s), s ≥ 0) ∈ A |Ik(t) =]a, b[) = P((Us, s ≥ 0) ∈ (b−a)A+a).

For all k ∈ N, there exists ik ∈ N such that, if Jn
ik

(t) denotes the interval component of Un
t

containing the integer ik, then Jn
ik

(t)
n→∞
−→ Ik(t). Let Bk be the block of Γ(t) containing ik. As

Bk has a positive asymptotic frequency, it is isomorphic to N. Let f be the increasing bijection
from the set of element of Bk to N. Let us re-label the elements of Bk by their image by f . The
process (UΓBk

(t+s), s ≥ 0) has then the same law as (Us, s ≥ 0) and is independent of the rest of

the fragmentation. Besides, given Ik(t) =]a, b[, Fk(s) = a + (b − a)UΓBk
(t+s), so the two points

above are proved. 2

Hence, this result completes an analogous result due to Berestycki [3] in the case of m-
fragmentations and p-fragmentation (i.e. fragmentations of exchangeable partitions). We can
again draw a diagram to represent the link between the four kinds of fragmentation :

(
C, (Γ(t), t ≥ 0)

) Theorem 3.4
←−−−−−−→

(
U , (UΓ(t), t ≥ 0)

)

℘1

y ℘2

y
(
P∞, (Π(t), t ≥ 0)

) Berestycki
←−−−−−−→

(
S↓, (|UΓ(t)|

↓, t ≥ 0)
)
.

4 Some general properties

In this section, we gather general properties of i and c-fragmentations. Since the proof of these
results are simple variations of those in the case of m and p-fragmentations [4], we will be a bit
sketchy.

4.1 Measure of a fragmentation process

Let (Γ(t), t ≥ 0) be a c-fragmentation. As in the case of p-fragmentation [4], for n ∈ N and
γ ∈ C∗n, we define a jump rate from 1n to γ :

qγ = lim
s→0

1

s
P
(
Γ[n] (s) = γ

)
.

10



With the same arguments as in the case of p-fragmentation, we can also prove that the family
(qγ , γ ∈ C∗n, n ∈ N) characterizes the law of the fragmentation (you just have to use that distinct
blocks evolve independently and with the same law). Furthermore, observing that we have

∀n < m, ∀γ′ ∈ C∗n, qγ′ =
∑

γ∈Cm,γ[n]=γ′

qγ ,

and that
∀n ∈ N, ∀σ ∈ σn, ∀γ ∈ C∗n, qγ = qσ(γ),

we deduce that there exists a unique exchangeable measure µ on C such that µ(1) = 0 and
µ(Q∞,γ) = qγ for all γ ∈ C∗n and n ∈ N, where Q∞,γ = {γ′ ∈ C, γ′

[n] = γ}. Furthermore, the
measure µ characterizes the law of the fragmentation.

We remark also that if µ is the measure of a fragmentation process, we have for all n ∈ N,

µ({γ ∈ C, γ[n] 6= 1n}) =
∑

γ∈C∗
n

qγ <∞.

So we can apply Theorem 2.6 to µ and we deduce the following corollary :

Corollary 4.1 Let µ be the measure of a c-fragmentation. Then there exist a dislocation mea-
sure ν and two nonnegative numbers cl and cr such that :

• µ1{Uγ 6=1} = P ν.

• µ1{Uγ=1} = clǫ + crǫ
′.

With a slight abuse of notation, we will write sometimes in the sequel that µ = (ν, cl, cr)
when µ = P ν + clǫ + crǫ

′.

4.2 The Poissonian construction

Let us recall that we define in Section 2.2 a fragmentation measure as a measure µ on C such
that :

• µ is exchangeable.

• µ(1N) = 0.

• For all n ∈ N, µ({γ ∈ C, γ[n] 6= 1n}) <∞.

Notice that if µ is the measure of a c-fragmentation, then µ is a fragmentation measure.
Conversely, we now prove that, if we consider a fragmentation measure µ, we can construct a
c-fragmentation with measure µ.

We consider a Poisson measure M on R+ × C × N with intensity dt ⊗ µ ⊗ ♯, where ♯ is the
counting measure on N . Let Mn be the restriction of M to R+×C

∗
n×{1, . . . , n}. The intensity

measure is then finite on the interval [0, t], so we can order the atoms of Mn according to their
first coordinate.
For n ∈ N, (γ, k) ∈ C × N, let ∆

(.)
n (γ, k) be the composition sequence of Cn defined by :

∆(i)
n (γ, k) = 1n if i 6= k and ∆(k)

n (γ, k) = γ[n].

11



We construct then a process (Γ[n](t), t ≥ 0) on Cn in the following way :
Γ[n](0) = 1n.
(Γ[n](t), t ≥ 0) is a pure jump process which jumps at times when an atom of Mn appears. More

precisely, if (s, γ, k) is an atom of Mn, set Γ[n](s) = FRAG(Γ[n](s
−),∆

(.)
n (γ, k)).

We can check that this construction is compatible with the restriction ; hence, this defines a
process (Γ(t), t ≥ 0) on C.

Proposition 4.2 Let µ be a fragmentation measure. The construction above of a process on
compositions from a Poisson point process on R+ × C × N with intensity dt ⊗ µ⊗ ♯, where ♯ is
the counting measure on N , yields a c-fragmentation with measure µ.

The proof is an easy adaptation of the Poissonian construction of p-fragmentations (cf. [4]).

As the sequence ∆
(.)
n (γ, k) is doubly exchangeable, we also have that Γ[n](t) is an exchangeable

composition for each t ≥ 0. Looking as the rate jump of the process Γ[n](t), it is then easy to
check that the constructed process is a c-fragmentation with measure µ.2

A Poissonian construction of an i-fragmentation with no erosion is also possible with a
Poisson measure on R+ × U × N with intensity dt ⊗ ν ⊗ ♯. The proof of this result is not as
simple as for compositions because we can not restrict to a discrete case as done above. In
fact, to prove this proposition, we must take the image of the Poisson measure M above by an
appropriate application. For more details refer to Berestycki [3] who have already proved this
result for m-fragmentation and the same approach works in our case.

To conclude this section, let us notice how the two erosion coefficients affect the fragmenta-
tion. Let (U(t), t ≥ 0) be an i-fragmentation with parameter (0, cl, cr). Set c = cl + cr. We have
:

U(t) =
]cl

c
(1− e−tc), 1 −

cr

c
(1− e−tc)

[
a.s.

Indeed, consider a c-fragmentation (Γ(t), t ≥ 0) such that uΓ(t) = U(t) a.s. We define µcl,cr =
clǫ + crǫ

′. Hence (Γ(t), t ≥ 0) is a fragmentation with measure µcl,cr . Recall that the process
(Γ(t), t ≥ 0) can be constructed from a Poisson measure on R+×C×N with intensity dt⊗µcl,cr⊗♯.
By the form of µcl,cr , we remark then that, for all t ≥ 0, Γ(t) have only one block non reduced
to a singleton. Furthermore, for all n ∈ N, the integer n is a singleton at time t with probability
1−e−tc, and, given n is a singleton of Γ(t), {n} is before the infinite block of Γ(t) with probability
cl/c and after with probability cr/c. By the law of large number, we deduce that the proportion
of singletons before the infinite block of Γ(t) is almost surely cl

c (1− e−tc) and the proportion of
singletons after the infinite block of Γ(t) is almost surely cr

c (1− e−tc).

Remark 4.3 Berestycki [3] has proved a similar result for the m-fragmentation. He also proved
that if (F (t), t ≥ 0) is a m-fragmentation with parameter (ν, 0), then F̃ (t) = e−ctF (t) is a m-
fragmentation with parameter (ν, c). But, we can not generalize this result for i-fragmentation
because the proportion of singleton between two successive component intervals of the fragmen-
tation depends on the time where the two component intervals split.

4.3 Projection from U to S↓

We know that if (U(t), t ≥ 0) is an i-fragmentation, then its projection on S↓, (|U(t)|↓, t ≥ 0) is
a m-fragmentation. More precisely, we can express the characteristics of the m-fragmentation
from the characteristics of the i-fragmentation.
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Proposition 4.4 The ranked sequence of the length of an i-fragmentation with measure (ν, cl, cr)
is a m-fragmentation with parameter (ν̃, cl + cr) where ν̃ is the image of ν by the application
U → |U |↓.

Proof. Let (Γ(t), t ≥ 0) be a c-fragmentation with measure µ = (ν, cl, cr). Let (Π(t), t ≥ 0)
be its image by ℘1. The process (Π(t), t ≥ 0) is then a p-fragmentation. Set n ∈ N and π ∈ P∗

n.
We have

qπ = lim
s→0

1

s
P(Π[n](s)) = π)

= lim
s→0

1

s
P
(
Γ[n](s)) ∈ ℘−1(π)

)

= µ̃(π),

where µ̃ is the image of µ by ℘1. Besides we have already prove that µ̃ = (ν̃, cl + cr). We
consider now the i-fragmentation (UΓ(t), t ≥ 0) with measure (ν, cl, cr). We get that the process

(|UΓ(t)|
↓, t ≥ 0) is a.s. equal to the m-fragmentation (|Π(t)|↓, t ≥ 0) which fragmentation measure

is (ν̃, cl + cr). 2

According to Proposition 4.4 and using the theory of m-fragmentation (see [4]), we deduce
then the following results :

• Let (Γ(t), t ≥ 0) be a c-fragmentation with parameter (ν, cl, cr). We denote by B1 the
block of Γ(t) containing the integer 1. Set σ(t) = − ln |B1(t)|. Then (σ(t), t ≥ 0) is a
subordinator. If we denote ζ = sup{t > 0, σt < ∞}, then there exists a non-negative
function φ such that

∀q, t ≥ 0, E[exp(−qσt), ζ > t] = exp(−tφ(q)du).

We call φ the Laplace exponent of σ and we have :

φ(q) = (cl + cr)(q + 1) +

∫

U
(1−

∞∑

i=1

|Ui|
q+1)ν(dU),

where (|Ui|)i≥0 is the sequence of the lengths of the component intervals of U .

• An (ν, cr, cl) i-fragmentation (U(t), t ≥ 0) is proper (i.e. for each t, U(t) has almost surely
a Lebesgue measure equal to 1) iff

cl = cr = 0 and ν

(∑

i

si < 1

)
= 0.

4.4 Extension to the time-inhomogeneous case

We now briefly expose how the results of the preceding sections can be transposed in the case
of time-inhomogeneous fragmentation. We will not always detail the proof since their are very
similar as in the homogeneous case. In the sequel, we shall focus on c-fragmentation (Γ(t), t ≥ 0)
fulfilling the following properties :

• for all n ∈ N, let τn be the time of the first jump of Γ[n] and λn be its law. Then λn

is absolutely continuous with respect to Lebesgue measure with continuous and strictly
positive density.
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• for all γ ∈ C∗n, hn
γ (t) = P(Γ[n](t) = γ | τn = t) is a continuous function of t.

Remark that a time homogeneous fragmentation always fulfills this two points. Indeed, in
that case, λn is an exponential random variable and the function hn

γ (t) does not depend on t.
As in the case of fragmentation of exchangeable partitions [2], for n ∈ N and γ ∈ C∗n, we can
define an instantaneous rate of jump from 1n to γ :

qγ,t = lim
s→0

1

s
P
(
Γ[n] (τn) = γ & τn ∈ [t, t + s] | τn ≥ t

)
.

With the same arguments as in the case of fragmentation of exchangeable partitions [2], we can
also prove that, for each t > 0, there exists a unique exchangeable measure µt on C such that
µt(1) = 0 and µt(Q∞,γ) = qγ,t for all γ ∈ Cn\{1} and n ∈ N, where Q∞,γ = {γ′ ∈ C, γ′

n = γ}.
Furthermore, the family of measure (µt, t ≥ 0) characterizes the law of the fragmentation.

We remark also that if (µt, t ≥ 0) is the family of measure of a fragmentation process, we
have for all n ∈ N,

µt({γ ∈ C, γ[n] 6= 1n}) =
∑

γ∈C∗
n

qγ,t <∞ and

∫ t

0
µu({γ ∈ C, γ[n] 6= 1n} = − ln(λn(]t,∞[)) <∞.

So we can apply Theorem 2.6 to µt and we deduce the following proposition :

Corollary 4.5 Let (µt, t ≥ 0) be the family of measure of a c-fragmentation. Then there exists
a family of dislocation measures (νt, t ≥ 0) and two families of nonnegative numbers (cl,t, t ≥ 0),
(cr,t, t ≥ 0) such that :

• µt1{Uπ 6=1} = P νt.

• µt1{Uπ=1} = cr,tǫ + cr,tǫ
′.

Besides we have for all T ≥ 0,

∫ T

0

∫

U
(1− s1) νt (dU) dt <∞ and

∫ T

0
(cl,t + cr,t)dt <∞.

The first part of the proposition comes from Theorem 2.6. For the second part, use that

∫

U
(1− s1) νt (dU) ≤ µt

(
{π ∈ P∞, π|2 6= 1}

)
.

For the upper bound concerning the erosion coefficients, we remark that :

ct + c′t = µt ({1}, N \ {1}) + µt (N \ {1}, {1}) .2

In the same way as for homogeneous fragmentation, we define a fragmentation measure
family as a family (µt, t ≥ 0) of exchangeable measures on C such that, for each t ∈ [0,∞[, we
have :

• µt(1N) = 0.

• ∀n ∈ N µt({γ ∈ C, γ[n] 6= 1n}) <∞ and
∫ t
0 µu({γ ∈ C, γ[n] 6= 1n})du <∞.

• ∀n ∈ N, ∀A ⊂ C∗n, µt(A) is a continuous function of t.
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Proposition 4.6 Let (µt, t ≥ 0) be a fragmentation measure family. A c-fragmentation with
fragmentation measure (µt, t ≥ 0) can be constructed from a Poisson point process on R+×C×N

with intensity dt ⊗ µt ⊗ ♯, where ♯ is the counting measure on N in the same way as for time-
homogeneous fragmentation.

It is very easy to check that the proof of the homogeneous case applies here too.
Of course, a Poissonian construction of a time-inhomogeneous i-fragmentation with no ero-

sion is also possible with a Poisson measure on R+ × U × N with intensity dt⊗ νt ⊗ ♯.
Concerning the law of the tagged fragment, if you define σ(t) = − ln |B1(t)|, with B1 the

block containing the integer 1, we have now that σ(t) is a process with independent increments.
And so, if we denote ζ = sup{t > 0, σt <∞}, then there exists a family of non-negative functions
(φt, t ≥ 0) such that

∀q, t ≥ 0, E[exp(−qσt), ζ > t] = exp(−

∫ t

0
φu(q)du).

We call φt the instantaneous Laplace exponent of σ at time t and we have :

φt(q) = (cl,t + cr,t)(q + 1) +

∫

U
(1−

∞∑

i=1

|Ui|
q+1)νt(dU),

where (|Ui|)i≥0 is the sequence of the lengths of the component intervals of U . Furthermore, an
(νt, ct, c

′
t)t≥0 i-fragmentation (U(t), t ≥ 0) is proper iff :

∀t > 0, cl,t = cr,t = 0 and νt(
∑

i

si < 1) = 0).

Finally, we can also compute the law of an (0, cl,t, cr,t)t≥0 i-fragmentation. After some
calculus, we obtain that we have :

U(t) =
] ∫ t

0
cl,u exp(−Cu)du, 1−

∫ t

0
cr,u exp(−Cu)du

[
a.s.

with Cu =
∫ u
0 (cl,v + cr,v)dv.

4.5 Extension to the self-similar case

A notion of self similar fragmentations has been also introduced [7]. We recall here the definition
of a self similar p-fragmentation, the reader can easily adapt this definition to the three other
cases of fragmentation.

Definition 4.7 Let Π = (Π(t), t ≥ 0) be an exchangeable process on P∞. We call Π a self
similar p-fragmentation with index α ∈ R if

• Π(0) = 1N a.s.

• Π is continuous in probability

• For every t ≥ 0, let Π(t) = (Π1,Π2, . . .) and denote by |Πi| the asymptotic frequency of
the block Πi. Then for every s > 0, the conditional distribution of Π(t + s) given Π(t) is
the law of the random partition whose blocks are those of the partitions Π(i)(si) ∩ Πi for
i ∈ N, where Π(1), . . . is a sequence of independent copies of Π and si = s|Πi|

α.
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Notice that an homogeneous p-fragmentation corresponds to the case α = 0.
We have still the same correspondence between the four types of fragmentation. In fact, a

self similar fragmentation can be constructed from a homogeneous fragmentation with a time
change :

Proposition 4.8 [7] Let (U(t), t ≥ 0) be an homogeneous interval fragmentation with measure
ν. For x ∈]0, 1[, we denote by Ix(t) the interval component of U(t) containing x. We define

Tα
t (x) = inf{u ≥ 0,

∫ u

0
|Ix(r)|−αdr > t} and Uα(t) = U(Tα

t ) =
⋃

Ix(Tα
t (x)).

Then (Uα(t), t ≥ 0) is a self similar interval fragmentation with index α.

A self similar i-fragmentation (or c-fragmentation) is then characterized by a quadruplet
(ν, cl, cr, α) where ν is a dislocation measure on U , cl and cr are two nonnegative numbers and
α ∈ R is the index of self similarity.

5 Hausdorff dimension of an interval fragmentation

Let (U(t), t ≥ 0) be a self similar i-fragmentation with index α > 0. Let K(t) = [0, 1]\U(t).
The set K(t) is a closed set, and if the fragmentation is proper (i.e. the fragmentation has with
no erosion and its fragmentation measure verifies ν(

∑
i |Ui|

↓ < 1) = 0), its Lebesgue measure
is equal to 0. Hence, to evaluate the size of F (t), we shall compute its Hausdorff measure.
Here, we will just examine time-homogeneous fragmentation. First we recall the definition of
the Hausdorff dimension of a subset of ]0,1[.

Definition 5.1 [13] Let A ∈]0, 1[. Let d ≥ 0 and r > 0. We set

Jr
d (A) = inf

{
∞∑

i=1

|bi − ai|
d, A ⊂

∞⋃

i=1

[ai, bi], |bi − ai| ≤ r

}
and Hd(A) = lim

r→0+
Jr

d (A),

(this limit exists since Jr
d (A) decreases with r). Hd(A) is the d-Hausdorff measure of A. Fur-

thermore, there exists a unique number D such that

∀d > D,Hd(A) = 0 and ∀d < D,Hd(A) =∞.

This number is the Hausdorff dimension of A and is denoted by dimH(A).

We will now calculate the Hausdorff dimension of the complement of a time-homogeneous
i-fragmentation in the case where the measure of fragmentation fulfils some conditions.

Hypothesis 5.2 Let ν be a dislocation measure. We assume that ν fulfills the following condi-
tions :

(H1) ν is conservative i.e. ν(
∑

i |Ui|
↓ < 1) = 0.

(H2) There exists an integer k such that ν(|Uk|
↓ > 0) = 0, i.e. ν is carried by the open sets with

at most k − 1 interval components.

(H3) Let h(ε) =
∫
U (Card{i, |Ui| ≥ ε} − 1)ν(dU). Then h is regularly varying with index −β as

ε→ 0+.
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(H4) Let g be the left extremity of the largest interval component of a generic open set and d the

right extremity. Then as ε→ 0+, we have either lim inf ν(g≥ε)
ν(d≤1−ε) > 0 or lim sup ν(g≥ε)

ν(d≤1−ε) <
∞.

We can now state the theorem :

Theorem 5.3 Let ν be a dislocation measure fulfilling Hypothesis 5.2. Let (U(t), t ≥ 0) be an
i-fragmentation with characteristics (ν, 0, 0) and index of self-similarity α strictly positive. Let
K(t) = [0, 1]\U(t). Then the Hausdorff dimension of K(t) is β for all t > 0 simultaneously, a.s.

In fact, if the index of self-similarity is zero, the lower bound of the Hausdorff dimension
still holds. Besides, Hypothesis (H4) is only needed to prove the lower bound and allows a large
class of dislocation measure such as symmetric measures or, at the opposite, measures for which
the largest fragment is always on the same side.

Proof. We will first prove the upper bound. Let us recall a lemma proved by Bertoin in [8]
for m-fragmentation processes whose dislocation measure fulfills Hypothesis 5.2.

Lemma 5.4 [8] Let (U(t), t ≥ 0) be a self-similar (ν, 0, 0, α) i-fragmentation with index of
self similarity strictly positive and whose dislocation measure fulfills (H1), (H2), (H3). Let
(X(t) = (Xi(t))i≥1, t ≥ 0) the associated m-fragmentation. Let N(ε, t) = Card{i ≥ 1,Xi(t) ≥ ε}

and M(ε, t) =
∑

i Xi(t)1{Xi≤ε}. Then limε→0+
N(ε,t)
h(ε) and limε→0+

M(ε,t)
εh(ε) exist and are strictly

positive and finite.

Let us now fix d ∈]0, 1[ and look for a upper bound of the d-Hausdorff measure of K(t).
Let Iε =]0, 1[\{ interval components of U(t) which size is larger than ε}. So we have K(t) ⊂ Iε

and |Iε| = M(ε, t) since ν is conservative. Furthermore, Iε has at most N(ε, t) + 1 interval
components. Using notation of Definition 5.1, we get :

Jε
d(K(t)) ≤ Jε

d(Iε) ≤ εd

(
M(ε, t)

ε
+ N(ε, t) + 1

)
≤ h(ε)εd

(
M(ε, t)

h(ε)ε
+

N(ε, t) + 1

h(ε)

)
.

As h is regularly varying as ε → 0+ with index −β, we deduce that for d > β, h(ε)εd → 0 as
ε→ 0+ and so Hd(K(t)) = 0. This proves that dimH K(t) ≤ β.

Let us now prove the lower bound. We first prove the lower bound for a homogeneous i-
fragmentation, i.e. we suppose here that α = 0. Let us fix T0 > 0 and search for a lower bound of
the Hausdorff dimension of K(T0). The two conditions of Hypothesis (H4) are symmetric by the

transformation x→ 1−x, so, without loss of generality, we suppose here that lim inf ν(g≥ε)
ν(d≤1−ε) > 0.

Hence there exists a constant C such that for ε small enough we have Cν(g ≥ ε) ≥ ν(d ≤ 1− ε).
We denote by ]gt, dt[ the largest interval of the fragmentation at time t and T = inf{t ≥
0, dt − gt ≤ 1/2} ∧ T0. So, for 0 < s < t < T , ]gt, dt[⊂]gs, ds[. The idea is to prove that
dimH{gt, 0 < t < T} ≥ β and as {gt, 0 < t < T} ⊂ K(T0), we will conclude that lower bound
holds for dimH K(T0).

We know that (U(t), t ≥ 0) can be constructed from a PPP on R × U × N with intensity
measure dt× ν × ♯. So we have

gt =
∑

s∈D∩[0,t]

ξs(ds− − gs−),
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where (s, ξs)s∈D are the atoms of a Poisson measure on R × [0, 1] with intensity ds × ν(g ∈ ·).
We introduce now

σt =
∑

s∈D∩[0,t]

ξs.

Then σ is a subordinator with Levy measure Λ(dε) = ν(g ∈ dε) and we have :

∀ 0 < s < t < T, gt − gs ≥
1

2
(σt − σs),

since ds − gs < 1/2 for s ≤ T .
It is then well known that, if we want to prove that dimH{gt, 0 < t < T} ≥ γ, it is sufficient

to prove that g−1 is Hölder-continuous with exponent γ. We have then the following lemma :

Lemma 5.5 Let (f(t), 0 ≤ t ≤ T ) and (h(t), 0 ≤ t ≤ T ) be two strictly increasing càdlàg
functions such that for all 0 < s < t < T , we have h(t) − h(s) ≥ 1

2 (f(t) − f(s)). Define
f−1(x) = inf{u ≥ 0, f(u) > x} and suppose that f−1 is Hölder-continuous with exponent γ.
Then h−1 is also Hölder-continuous with exponent γ.

Proof of the lemma. Let s ≥ t be two elements of the set H = {h(t), 0 ≤ t ≤ T}. Hence
there exist x ≥ y such that h(x) = s and h(y) = t. Then we have, for some constant K

h−1(t)− h−1(s) = y − x = f−1 ◦ f(y)− f−1 ◦ f(x) ≤ K(f(y)− f(x))γ .

Besides we have t− s = h(y)− h(x) ≥ 1
2(f(y)− f(x)), so we get :

h−1(t)− h−1(s) ≤ 2γK(t− s)γ .

Furthermore, h−1 is constant on the interval components of Hc, and it follows then

h−1(t)− h−1(s) ≤ 2γK(t− s)γ for all s < t. 2

Hence to prove that dimH{gt, 0 < t < T} ≥ β, we just have to prove that σ−1 is Hölder-
continuous with exponent γ for all γ < β. We use then the following lemma :

Lemma 5.6 [5] Let (σs, s ≥ 0) be a subordinator with no drift and Lévy measure Λ. Let
Φ(λ) =

∫∞
0 (1− e−λx)Λ(dx) and γ = sup{α > 0, limλ→∞ λ−αΦ(λ) =∞}. Then, for every ε > 0,

σ−1 is a.s. Hölder-continuous on compact intervals with exponent γ − ε.

To finish the proof of the homogeneous case, we have now to study Λ(dε) = ν(g ∈ dε). In
the following we denote by k an integer such that ν(sk > 0) = 0.

We remark that {g ≥ ε} ⊂ {Card{i, si > ε/k} ≥ 2}, so h(ε/k) ≥ ν(g ≥ ε). We notice also
that h(ε) ≤ kν(g ≥ ε or d ≤ 1− ε). As ν(d ≤ 1− ε) ≤ Cν(g ≥ ε) we get

h(ε)

(C + 1)k
≤ ν(g ≥ ε) ≤ h(ε/k).

Using that h is regularly varying as ε → 0+ with index −β, an easy calculus proves that
sup{α > 0, limλ→∞ λ−αΦ(λ) = ∞} = β and so σ−1 is Holder-continuous with exponent β − ε
for all ε > 0. Hence we get that for each t > 0, dimH K(t) = β a.s. As for t < s, K(t) ⊂ K(s),
dimH K(t) increases with t, and so we have also dimH K(t) = β for all t > 0 simultaneously a.s.

It remains now to prove the lower bound for an i-fragmentation with strictly positive index
of self similarity . Let us use now Proposition 4.8 which changes the index of self-similarity
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of a fragmentation. Let (Uα(t), t ≥ 0) be a self similar fragmentation fulfilling (H). We write
Uα(t) = U(Tα

t ) as in Proposition 4.8 where (U(t), t ≥ 0) is a homogeneous fragmentation. We
denote by (gt, t ≥ 0) (resp. (gα

t , t ≥ 0)) the left bound of the largest interval component of U(t)
(resp. Uα(t)). We know that for all T > 0, dimH{gt, 0 ≤ t ≤ T} ≥ β. Or for t small enough, we
have gα

t = gf(t) where f is a continuous increasing function, so for all t > 0, there exists t′ > 0
such that

dimH(Kα(s), 0 ≤ s ≤ t) ≥ dimH(gα
s , 0 ≤ s ≤ t) ≥ dimH(gs, 0 ≤ s ≤ t′) ≥ β. 2

Corollary 5.7 Let ν be a dislocation measure fulfilling Hypothesis 5.2. Let (U(t), t ≥ 0) be a
self-similar i-fragmentation with characteristics (ν, 0, 0, α) with α > 0. Let K(t) = [0, 1]\U(t).
Then the packing dimension of K(t) is β for all t > 0 simultaneously, a.s.

Proof. Let us first recall the definition of the packing dimension [19]. For a subset E ⊂ R

and α > 0, let us define

Mα(E) = lim
ε→0+

sup

{
∞∑

i=1

(2ri)
α, [xi − ri, xi + ri] disjoint, xi ∈ E, ri < ε

}
,

and

M̂α(E) = inf

{
∞∑

n=1

Mα(En), E ⊆

∞⋃

n=1

En

}
.

The packing dimension of E is defined by

dim℘(E) = inf{α > 0, M̂α(E) = 0} = sup{α > 0, M̂α(E) =∞}.

For a subset E ⊂ R and ε > 0, let Z(E, ε) be the smallest number of interval of lengths 2ε
needed to cover E. We define

∆(E) = lim sup
ε→0

log Z(E, ε)

− log ε
.

Tricot [19] proved that we have :

dim℘(E) = inf

{
sup

n
∆(En), E ⊂ ∪nEn

}
.

It is then easy to see that for all E ⊂ R, we have dimH E ≤ dim℘ E. Hence, to prove Corollary
5.7, we just have to get an upper bound of the packing dimension of K(t). We use the same idea
as for the Hausdorff dimension. Let Iε =]0, 1[\{ interval components of U(t) which size is larger than ε}.
So we have K(t) ⊂ Iε and |Iε| = M(ε, t) since ν is conservative. Furthermore, Iε has at most
N(ε, t) + 1 interval components. We deduce that

Z(K(t), ε) ≤ Z(Iε, ε) ≤ h(ε)

(
M(ε, t)

2εh(ε)
+

N(ε, t) + 1

h(ε)

)
.

We get

dim℘(K(t)) ≤ ∆(K(t)) ≤ lim sup
ε→0

log h(ε)

− log ε
= β.

Hence, the packing dimension of the subset K(t) coincides almost surely with its Hausdorff
dimension (such subset is called ”regular subset”). 2
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To conclude this section, let us discuss an example. We consider the m-fragmentation intro-
duced by Aldous and Pitman [1] to study the standard additive coalescent. Bertoin [6] gave a
construction of an i-fragmentation (U(t), t ≥ 0) whose projection on S↓ is this fragmentation.
More precisely, let ε = (εs, s ∈ [0, 1]) be a standard positive Brownian excursion. For every
t ≥ 0, we consider

ε(t)
s = ts− εs, S(t)

s = sup
0≤u≤s

ε(t)
u .

We define U(t) as the constancy intervals of (S
(t)
s , 0 ≤ s ≤ 1). Bertoin [7] proved also that

(|U(t)|↓, t ≥ 0) is an m-fragmentation with index of self similarity 1/2 and its dislocation measure
is carried by the subset of sequences

{s = (s1, s2, . . .) ∈ S
↓, s1 = 1− s2 and si = 0 for i ≥ 3}

and is given by

ν̃AP (s1 ∈ dx) =
(
2πx3(1− x)3

)−1/2
dx.

This proves that (H1), (H2) and (H3) hold with β = 1/2. Besides, as

lim
s→0+

εs

s
=∞ a.s.,

0 is almost surely an isolated point of [0, 1]\U(t) and this implies that νAP (g > 0) is finite.

Hence we have lim sup ν(g≥ε)
ν(d≤1−ε) < ∞ and Hypothesis (H3) holds. By Theorem 5.3, we deduce

that the Hausdorff dimension of [0, 1]\U(t) is 1
2 a.s., a fact that can be checked directly using

properties of Brownian motion.

6 Interval components in uniform random order

Definition 6.1 Let ν̃ be a measure on S↓ such that ν̃(
∑

i si < 1) = 0. We define ν̂ as the mea-
sure on U which projection on S↓ is ν̃ and which interval components are in uniform random
order. More precisely, set s = (si)i∈N ∈ S

↓ with law ν̃. Let (Vi)i∈N be iid random variables uni-
form on [0, 1]. We denote then U the random open subset of ]0, 1[ such that, if the decomposition
of U in disjoint open intervals ranked by their length is

∐∞
i=1 Ui, we have

• For all i ∈ N, |Ui| = si.

• For all i 6= j, Ui ≺ Uj ⇔ Vi ≤ Vj.

Since we have
∑

i si = 1 a.s., there exists almost surely a unique open subset of ]0, 1[ fulfilling
this two points. We denote by ν̂ the distribution of U .

Proposition 6.2 Let (U(t), t ≥ 0) is an i-fragmentation with measure (ν, 0, 0) and such that
for all t ≥ 0, U(t) has interval components in uniform random order. Then ν has also interval
components in uniform random order.

Proof. Let (F (t), t ≥ 0) be the projection of (U(t), t ≥ 0) on S↓. We know that F is then
a m-fragmentation with measure (ν̃, 0) where ν̃ is the image of ν by the canonical projection
U → S↓. Let γ ∈ Cn. Let π ∈ Pn be the image of γ by the canonical projection ℘1 between C
and P∞. Let now remark that we have

qγ =
1

s
lim
s→0

P(Γ[n](s) = γ) =
1

k!
qπ,
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where k is the number of blocks of γ and qπ the jump rate of the p-fragmentation. Let ν̂ be the
measure on U obtained in Definition 6.1 from ν. Let us recall that Q∞,γ = {γ′ ∈ C, γ′

[n] = γ}

and define also P∞,π = {π′ ∈ P∞, π′
[n] = π}. We have then

P ν̂(Q∞,γ) =
1

k!
P ν̃(P∞,π) =

1

k!
qπ = qγ = P ν(Q∞,γ).

So we get that ν = ν̂ and hence ν has interval components in uniform random order. 2

Let us notice that the proof uses qγ = 1
k!qπ, so if we want to extend this proposition to

the time-inhomogeneous case, we must not only suppose that U(t) has interval components in
uniform random order, but more generally that the semi-group of U(t), qt,s(]0, 1[) has interval
components in uniform random order for all t ≥ 0 and for all s > t.

Conversely, we can ask if (U(t), t ≥ 0) is an i-fragmentation with measure (ν, 0, 0) and
ν has interval components in uniform random order, does this implies that U(t) has interval
components in uniform random order ? The answer is clearly negative. Indeed, let ν be the
following measure :

ν = δU1 + δU2 with U1 =
]
0,

1

3

[
∪
]1
3
,
2

3

[
∪
]2
3
, 1
[

and U2 =
]
0,

1

2

[
∪
]1
2
, 1
[
.

Then ν has interval components in uniform random order, but U(t) has not this property
since we have

P

(
U(t) =

]
0,

1

3

[
∪
]1
3
,
1

2

[
∪
]1
2
,
2

3

[
∪
]2
3
, 1
[)

> 0

and

P

(
U(t) =

]
0,

1

6

[
∪
]1
6
,
1

2

[
∪
]1
2
,
5

6

[
∪
]5
6
, 1
[)

= 0.

6.1 Ruelle’s fragmentation

In this section, we specify the semi-group of Ruelle’s fragmentation seen as an interval fragmen-
tation. Let us recall the construction of this interval fragmentation [10].

Let (σ∗
t , 0 < t < 1) be a family of stable subordinators such for every 0 < tn < . . . < t1 < 1,

(σ∗
t1 , . . . , σ

∗
tn)

law
= (σt1 , . . . , σtn) where σti = τα1 ◦ . . . ◦ ταi

and (ταi
, 1 ≤ i ≤ n) are n independent

stable subordinators with indices α1, . . . , αn such that ti = α1 . . . αi. Fix t0 ∈]0, 1[ and for
t ∈]t0, 1[ define Tt by :

σ∗(Tt) = σ∗
t0(1).

Then consider the open subset :

U(t) =
]
0, 1
[∖{ σ∗

t (u)

σ∗
t0(1)

, 0 ≤ u ≤ Tt

}cl

.

Bertoin and Pitman proved that (U(t), t ∈ [t0, 1[) is an i-fragmentation (with initial state
U(t0) 6= 1 a.s.) and the semi-group of transition at time t to time s of the m-fragmentation
(|U(t)|↓, t ∈ [t0, 1[) is PD(s,−t)-FRAG where PD(s,−t) denotes the Poisson-Dirichlet law with
parameter (s,−t) (see [17] for more details about the Poisson-Dirichlet laws). Furthermore, the
instantaneous dislocation measure of this m-fragmentation at time t is 1

t PD(t,−t) (cf. [2]). We
would like now to calculate the dislocation measure of the i-fragmentation (U(t), t ∈ [t0, 1[).

21



Lemma 6.3 Let us define P̂D(t, 0) as the measure on U obtained from PD(t, 0) by Definition

6.1. The distribution at time t of U(t) is P̂D(t, 0).

Proof. For t ∈]t0, 1[, we have σ∗
t0 = σ∗

t ◦ τα where αt = t0 and τα is a stable subordinator
with index α and independent of σ∗

t . Hence we get

U(t) =
]
0, 1
[∖{ σ∗

t (u)

σ∗
t (τα(1))

, 0 ≤ u ≤ τα(1)

}cl

.

We can thus write

U(t) =
]
0, 1
[∖{σt(x)

σt(a)
, x ∈ [0, a[

}cl

,

where σt is a stable subordinator with index t and a is a random variable independent of σt.
If we denote by (ti, si)i≥1 the time and size of the jump of σt in the interval [0, a[ ranked by
decreasing order of the size of the jumps, this family has the same law of (tτ(i), si)i≥1 for any τ
permutation of N. 2

Proposition 6.4 The semi-group of transition of the Ruelle’s interval fragmentation from time
t to time s is P̂D(s,−t)-FRAG and the instantaneous dislocation measure at time t is 1

t P̂D(t,−t).

We would like now to apply Proposition 6.2 to determine the instantaneous measure of
dislocation of Ruelle’s fragmentation, but this proposition holds only for time-homogeneous
fragmentation. If the fragmentation is inhomogeneous in time, we must first prove that the
semi-group of U(t) has interval component in uniform order. Fix t ≥ 0 and s > t. Fix y ∈]0, 1[
and denote by I(t) the interval component of U(t) containing y. We shall prove that U(s)∩ I(t)
has its interval component in uniform random order. By the construction of U(t), there exists
x ∈]0, Tt[ such that

I(t) =
]σ∗

t (x
−)

σ∗
t0

(1)
,
σ∗

t (x)

σ∗
t0

(1)

[
.

We have σ∗
t = σ∗

s ◦ τt/s where τt/s is a stable subordinator with index t/s and is independent of
σ∗

t+s. Hence, we get :

U(s) ∩ I(t) = I(t)
∖{ σ∗

s(y)

σ∗
t0(1)

, τt/s(x
−) ≤ y ≤ τt/s(x)

}cl

.

Since τt/s is independent of σ∗
s , the jump of σ∗

s on the interval ]τt/s(x
−), τt/s(x)[ are in uniform

random order. Since as m-fragmentation the semi-group of transition is PD(s,−t)-FRAG,

we deduce that, as i-fragmentation, the semi-group is P̂D(s,−t)-FRAG. To prove that the

dislocation measure at time t is 1
t P̂D(t,−t), we just have to apply the Proposition 6.2. 2

6.2 Dislocation measure of the fragmentation derived from the additive co-

alescent

Recall the construction of an i-fragmentation (U(t), t ≥ 0) from a Brownian motion exposed in
Section 5. We already know its characteristics as a m-fragmentation : the erosion rate is null,
the index of self similarity is equal to 1/2 and the dislocation measure ν̃AP is given by :

ν̃AP (s1 ∈ dx) = (2πx3(1− x3))−1/2dx for x ≥ 1/2, ν̃AP (s1 = 1− s2) = 1.
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Proposition 6.5 The i-fragmentation derived from a Brownian motion [6] has dislocation mea-
sure νAP such that :

• νAP is carried by the subset of ]0,1[ shaped as ]0, 1[\x. So we will write νAP (x) instead of
νAP (]0, 1[\x).

• For all x ∈]0, 1[, νAP (dx) = (2πx(1 − x3))−1/2dx.

Notice that we have νAP (dx) = xν̃AP (s1 ∈ dx or s2 ∈ dx) for all x ∈]0, 1[. Hence, given that
the m-fragmentation splits in two block of size x and 1−x, the left block of the i-fragmentation
will be a size biased pick of x and 1− x.

Proof. The first part of the proposition is immediate since we have ν̃AP (s1 = 1 − s2) = 1.
For the second part, let us use Theorem 9 in [6] which gives the distribution ρt of the most left
fragment of U(t) :

ρt(dx) = t
1√

2πx(1 − x)3
exp

(
−

xt2

2(1− x)

)
dx for all x ∈]0, 1[.

We get

νAP (dx) = lim
t→0

1

t
ρt(dx) =

1√
2πx(1− x)3

.2

We can also give a description of the distribution at time t > 0 of U(t). Recall the result
obtained by Chassaing and Janson [12]. For a random process X on R and t ≥ 0, we define
ℓt(X) as the local time of X at level 0 on the interval [0, t], i.e.

ℓt(X) = lim
ε→0+

1

2ε

∫ t

0
1{|Xs|<ε}ds,

whenever the limit makes sense.
Let Xt be a reflected Brownian bridge conditioned on ℓ1(X

t) = t. We define µ ∈]0, 1[ such
that

ℓµ(Xt)− tµ = max
0≤u≤1

ℓu(Xt)− tu.

It is well known that this equation has almost surely a unique solution. Let us define the process
(Zt(s), 0 ≤ s ≤ 1) by

Zt(s) = Xt(s + µ [mod 1]).

Chassaing and Janson [12] have proved that for each t ≥ 0

U(t)
law
= ]0, 1[\{x ∈ [0, 1], Zt(x) = 0}.

Besides, as the inverse of the local time of Xt defined by

Tx = inf{u ≥ 0, ℓu(Xt) > x}

is a stable subordinator with Lévy measure (2πx3)−1/2dx conditioned to Tt = 1, we deduce the
following description of the distribution of U(t) :

23



Corollary 6.6 Let t > 0. Let T be a stable subordinator with Lévy measure (2πx3)−1/2dx
conditioned to Tt = 1. Let us define m as the unique number on [0, t] such that

tTm− −m ≤ tTu − u for all u ∈ [0, t],

where Tm− = limx→m− Tx. We set :

T̃x = Tm+x − Tm− for 0 < x < t−m,
Tm+x−t − Tm− + 1 for t−m ≤ x ≤ t.

Then
U(t)

law
= ]0, 1[\{T̃x, x ∈ [0, t]}cl.

Proof. It is clear that {u,Xt(u) = 0} coincides with {Tx, x ∈ [0, t]}cl when T is the inverse
of the local time of Xt. Hence, we just have to check that if we set m = ℓµ(Xt), then m verifies
the equation tTm− −m ≤ tTu − u for all u ∈ [0, t]. Since Xt(µ) = 0, we have Tm− = µ, thus we
get :

tTm− −m = tµ− ℓµ(Xt) ≤ tv − ℓv(X
t) for all v ∈ [0, 1].

Let us fix u ∈ [0, t]. Since ℓv(X
t) is a continuous function, there exists v ∈ [0, 1] such that

ℓv(X
t) = u. Besides we have T−

u ≤ v ≤ Tu, so we get

tTm− −m ≤ tTu − u. 2

Hence, the distribution of [0, 1] \U(t) can be obtained as the closure of the range of a stable
subordinator (Ts, 0 ≤ s ≤ t) with index 1/2 and conditioned on Tt = 1 randomly shifted (recall
also that Chassaing and Jason [12] have proved that the left most fragment of U(t) is size-biased
picked).
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[5] J. Bertoin. Lévy processes. Cambridge University Press, Cambridge, 1996.

[6] J. Bertoin. A fragmentation process connected to brownian motion. Probab. Theory Related
Fields, 117(2):289–301, 2000.

[7] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist., 38(3):319–
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