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Abstract

Using the multiple stochastic integrals we prove an existence and uniqueness result
for a linear stochastic equation driven by the fractional Brownian motion with any
Hurst parameter. We study both the one parameter and two parameter cases. When
the drift is zero, we show that in the one-parameter case the solution in an exponential,
thus positive, function while in the two-parameter settings the solution is negative on
a non-negligible set.

Key words: Fractional Brownian motion, fractional Brownian sheet, multiple stochastic in-
tegral, Girsanov transform.
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1 Introduction

The significant amount of applications where the fractional Brownian motion (fBm) is used
led to the intensive development of the stochastic calculus with respect to this process
and its planar version. The study of stochastic differential equations (SDEs) driven by a
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fractional Brownian motion followed in a natural way. Let us consider (Bf')cor] a fBm
with Hurst parameter « € (0, 1). Essentially, one can consider the SDE

in two ways:

e the pathwise (Stratonovich) type (that is, the stochastic integral is considered in a
pathwise sense);

e the divergence (Skorohod) type (that is, the stochastic integral is of divergence type).

The first type of equations, which includes the rough paths theory and the stochastic calculus
via regularization, can in general be solved by now standard methods. We refer, among
others, to [[l, @, B, B, [3, [[3, [[6, BT]. The second type (Skorohod stochastic equations) is
more difficult to be solved. Even in the standard Brownian motion case (corresponding to
a =1/2), we have an existence and uniqueness result only in two situations:

e when o(s, X;) = o(s)Xs with o(s) random: we then use an anticipating Girsanov
transform, see [},

e when (s, Xs) = 0(s) X and b(s, Xs) = b(s)Xs with 0, b two deterministic functions: we

can then use a method based on the Wiener-Ito6 chaotic expansion.

This second approach will be considered in our paper. We will consider the stochastic
equation
X; = 1+/ aXséBg‘—i-/ bXds (2)
[0,t] [0,¢]
where a, b are real numbers and the stochastic integral is understood in the Skorohod sense.
We first prove existence and uniqueness results in the one-parameter case (that is when
t € [0,T]) and in the two-parameter case (that is when ¢ € [0,7]? and with B® replaced by
a fractional Brownian sheet W*# with Hurst parameters o, B).

Of course, the fact that the above linear equation can be solved by using Wiener-It6
multiple integrals is not very surprising; it has already used in [[7] for o > % Nevertheless,
we have to check some new technical aspects like: the proof of the case a € (0,1) or the
proof of the two-parameter case for any Hurst parameters o and 3.

More surprising is, as in the case of the standard Brownian sheet (see [[[J]), the
behavior of the solution of (f) when the drift b is zero: in the one-parameter case, the solution
is an exponential, hence positive, function while in the two-parameter case the solution is
negative on a non-negligible set. We also mention that, comparing to the standard case
when the Hurst parameters are %, new techniques like fractional Girsanov theorem and
estimations of fractional norms of the kernels appearing in the chaotic expression of the
solution of (f), are here needed. We refer to [Ig] for applications of stochastic equations
driven by fractional Brownian sheet to statistics.



We organized our paper as follows. Section 2 contains some preliminaries on frac-
tional Brownian motion and fractional Brownian sheet. In Section 3 we study the existence,
the uniqueness and the properties of the solution of equation (f]) in both one-parameter and
two-parameter cases. Section 4 contains a technical proof.

2 Preliminaries

Consider (Bf")¢c(o,r] @ fractional Brownian motion (fBm) with Hurst parameter o € (0, 1)
and let us denote by R® its covariance function

R*(s,u) = % (820‘ +u? —|s — u|20‘) (3)
for every s,u € [0, T]. It is well-known that B® admits the Wiener integral representation
By = /Ot K“(t,s)dWs

where W denotes a standard Wiener process and

t
KOt s) = do (t— )2 + "3 F) <‘> | W
s
do being a constant and F(2) = dg (3 — ) fozfl go—3/2 (1-(0+ 1)0‘71/2) do.
By H(«) we will denote the Hilbert space associated to B defined as the closure of
the linear space generated by the indicator functions {1[07,5},75 € [0, 7]} with respect to the
scalar product

(Ljo,175 Ljo,u] ) H(a) = B (t,u). (5)
The structure of H(a) depends on the values of the Hurst parameter . Let us recall the
following facts:

e if o € (1, 1), then it follows from [1§] that the elements of H(c) may be not functions but
distributions of negative order. Thus it is more convenient to work with subspaces of
H(«) that are sets of functions. A such space is the set |H(«)| of measurable functions
on [0,7] such that

T T
[ [ sl = o 2udo <
0 0

endowed with the scalar product
T T -
(fs D) = aa — 1)/0 /0 fw)g(v)|u —v|** *dudwv. (6)

We have actually the inclusions

L3([0,T)) € L= ([0,T]) € [H(a)| € H(a). (7)



e if a € (0, 3) then the Hilbert space H(«) is a space of functions contained in L%([0, T]).
It contains the space of Holder functions of order @ — ¢ with € > 0 and it can be
characterized by

H(a) = (K*)H(L*([0,T])) (8)
where the operator K* is given by
T «
(" 0)(s) = KA (T9)e(s) + [ (o) = o) 2~ s)ar. 0

A fBm being a Gaussian process, it is possible to construct multiple Wiener-Ito
stochastic integrals with respect to it. We refer to [[4] for general settings or to [[[7]] for
the adaptation to the fractional Brownian motion case. We only recall that the multiple
integral of order n (denoted by I,,) is an isometry from U®™ to L*(Q) where U is the Hilbert
space |H ()| if a € (3,1) and the Hilbert space H(a) if o € (0, 1).

We need to introduce the space D" of stochastic processes that can be expressed
in terms of multiple stochastic integrals. That is, we denote by D the set of processes
u € L2(Q;U) such that for every t € [0, 7],

ur =3 Lo(ful 1))

n>0

where f,, € U®"H! is symmetric in the first n variables and

S+ DUl Zenss < oo (10)

n>1

It follows from [[q] (for a > ) or [,[I0] (for v < 1) that if u € D" then u is Skorohod

integrable with respect to the fBm B and in this case its Skorohod integral is

5(“) = ZInJrl(fn) (11)

n>0

where fn means the symmetrization of f,, with respect to n + 1 variables. Actually, in the
case a < % the expression ([[]) corresponds to the divergence integral in the extended sense

(see [H).

Let us consider now the two-parameter case. Here, WP is a fractional Brown-
ian sheet with Hurst parameters a, 3 € (0,1). Recall that W is defined as a centered
Gaussian process starting from 0 with the covariance function

E(WiWel) = Rt

1

=5 (520‘ + % — s — u|2a) (tw + 0¥ — |t — v|2ﬁ)

N |
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and it can be represented as

t s
we' = [ [ KR s 0w,
0 JO
where (Wy,p)y,vefo,7] is @ standard Brownian sheet and K is given by (). Denote by
KB(t,s) = K*(t,u) K" (s,v)

and let H® (a, B) := H® be the canonical Hilbert space of the fractional Brownian sheet
WP That is, H? is defined as the closure of the set of indicator functions {Lo,x[0,5): 8 €
[0,7]} with respect to the scalar product

(L0 [0,5]> Lo [0,0]) 3 = RP(s,t,u,v) (12)

for every t, s, u,v € [0,T].

By the above considerations, we will have:

o if a,( € (%, 1), the elements of H® may be not functions but distributions. Thus it is
more convenient to work with subspaces of H that are sets of functions. We have
actually the inclusions

L*([0,T]%) c |H|® c H® (13)

where

H|? = [H(a)| @ [H(B)|
and |H(«)| is defined by ().

o if , 5 € (0, %) then the canonical space H(? is a space of functions that can be written
as

HE = (K2)71 (L2([0,T]%)) < L*([0,T]) (14)
where K*?2 is the product operator K* ® K* and K* is given by ().

o ifae (3,1) and B € (0,4), then |H|? is not a space of functions and we will work with
the subspace |H(«)| @ H(S).

Let us denote by V the Hilbert space: |H|(2) if a,8 € (%,1); HP if o,8 € (0, %) and
[H(a)| @ H(B) if a € (§,1) and B € (0,1).
We can of course consider multiple stochastic integrals with respect to the Gaussian

process W®# . Here the multiple integral of order n, still denoted by I,,, will be a isometry
from V®" to L?(Q).



3 Linear stochastic equations with fractional Brownian mo-
tion and fractional Brownian sheet

Let us consider the following stochastic integral equation

t t
X, =1+ / aX 0B + / bX,ds, te[0,T), (15)
0 0

where a,b € R and the stochastic integral above is considered in the Skorohod sense. We
will first prove the existence and the uniqueness of the solution of ([[§), in the space D,
For o > % this has been proved in [[L7].

Proposition 1 The equation (@) admits an unique solution X € D" given by

Xp = S Ll 1)) (16)

n>0
where the kernels f,, are given by
and for everyn > 1,
a”
Faltis oo tn 1) = —e 1y (e ). (17)

Proof: The expression ([[7) of the kernels f, follows from Proposition 3.40 of [[[7]. One
can also compute it easily by the recurrence relation

fO(t) = ebta fn(tla M 7tn7t) = afn—l(t17 M 7tn—17tn)1[0,t}(tn)a VTL Z 1 (18)

We only then need to prove that f,, € |H(a)|®"! (if & > 1) and f,, € H(a)®" ! (if a < 3)
and that the sum ([L0) converges.
If a > 3, this follows easily from the inclusion (), since

Il enss < est | full L2 o7y

and we can reduce to the classical situation («a = %) where the result is known.
Ifa< %, then we need a new proof because the norm H(«) is bigger than the norm
L?. Let us show that the kernel f, given by ([[7) (viewed as a function of n 4 1 variables
t1,...tn,t) belongs to the space H(a)®" 1. Here we can adapt an argument used in [20].
We will show that
KL f, € L2([0, 7))

where K*™ is the n times tensor product of K*. It holds, by applying first the operator K*
to the variables 1, ...,t, and then to the variable t,

*,m+1 _ a" * bt *, ®
A A LE (K "(1[Oj;])>
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and therefore, since

1B (AR 2 0,7y = I (Lo, IF5 o, 70y = €2

we get
K*,nJrl _ |a|n K* btt2na
| anL2([0,T]n+1) = —H (e )”L2([0,T])

_ |a|n H Z | K* <tk+2an> ”LQ([O,T})-

Since for every k > 1, the function t*+2°" is Lipschitz, then we have, using {2)

T
I (5522 oy < CWJWk+%mﬂ/)KWﬂ®%“M%ﬁ
0

1/2
+ /OT </tT(r - t)%(r,t)dr>2dt] /
< C(a,T)(k + 2an)TF+reCn+l),
This implies that
LK oy < estl 2 oD (19)
The function f, being symmetric in the first n variables, we have

B m+1
Falti, . tmir) = m+1 an Hlyene st ity tm)

where ¢!, means that ¢, is on the position i. Clearly the bound (f[9) holds for fn- By
the above estimate, it is not difficult to see that the sum ([L() is convergent because

D+ DI fallyyens < cst Z TZO‘(Q"“) < 0.
nz0 n>0 !

The uniqueness of the solution in D" is obvious because, if there are two solutions, then
the kernels of the chaotic expansion verifies both the relation ([[§). |

In fact, we have

Corollary 1 The unique solution in D" of the equation (f3) is given by

2
X =exp <an‘ — %tza + bt> . (20)



Proof: Formula (R() was already proved in [[J], page 117. But, to compare to the two-
parameter case, let us nevertheless show how (R() is obtained in the particular case where
b = 0. Consider the equation

t
Xt:1+/ aX6B%,  t€[0,T] (21)
0

and let, for every t € [0, T

= Z In(fn ('7t))

n>0

be the chaotic expression of X. Equation (RI]) can be rewritten as

> (1) =140 s (fa (9 Tp (%)) (22)

n>0 n>0

where - represents n variables, x denotes one variable and fy, (-, %) 1|94 (x) denotes the sym-
metrization of the function f, (-, %) 1jg (%) in n + 1 variables.
By identifying the corresponding Wiener chaos, we easily get

fo(t) =1, fl(tl,t) = al[oﬂ (tl)

and
2

a
fa(t, ta,t) = 5 (L0421 (£2) 110, (B1) + L0207 (B1) 110,41 (B2)) = [0 q 2 (t1, t2).
By induction we will get for every n > 1

n

_ a
fulty te, ...t _nlz 18 )Ly () = — — 10 (b ty) (23)
where by #; we denoted the vector (t1,...,t,) with ¢; missing. Therefore, we can express
the solution of (1)) as
a” ® u_ @ 2
X=X D (1) = ew (o B = ol (24)
n>0
where for the last equality we refer e.g. to [{]. |

Remark 1 In Skorohod setting, it is dlfﬁcult in general, to write an Euler’s type scheme
associated to the equation X; = x¢ + fo Xs)0BY, even if aw > 1/2. Indeed, by using
the integration by parts for the Skorohod mtegral 9 and the Malliavin derivative D (see
[4) 6(Fu) = Fé(u) — (DF, u)y(o) and by assuming that we approximate X 1)/, by

X/ + fkk+1)/n 0(Xg/n)dBS (as in the case a = 1/2), one obtains

v (n) _ (”) w(n) a a (n) ¢ (n)
Xinyn = X +0(Xg/n) <B(k+1)/n_Bk/n> —UI(X/ HDX, s Lo, (1) /] 3(0)-

8



The problem is that the quantity D)?,g% appears and that it is difficult to compute it
directly (without knowing the solution). Moreover, standard Euler scheme do not apply
here because the L?-norm of the Skorohod integral involves the first Malliavin derivative
which involves the second Malliavin derivative etc. and we cannot have closable formulas. In
the linear case, taking advantage from the fact that we know explicitly the solution, we can
see what the correct Euler scheme should be. Indeed, since we have DXy, = aXy/n10,k/n)
(see Corollary [l above), a natural Euler’s type scheme associated to ([§) with b= 0 is

n n n2H |-
In fact, it is not very difficult to prove that ()?fn)) converges in L%(Q) if and only if o > 1/2

and that, in the case where o > 1/2, the limit is exp <an‘ - %) We refer to [[L1]] for other

questions about schemes associated to stochastic equations driven by a fractional Brownian
motion.

2
(1) ) v (pa o @~ (n)
)((k+1)/n = )(k/n *“1)(k/n/( (k+1)/n — k/n) o Tj')(k/n

As we have seen, the solution of (P1)) is an exponential, hence positive, function. We
will show that the situation is different in the two-parameter case.

Before that, let us consider the equation corresponding to ([[§) in the two-parameter
case

_Xz::1+l/ aX}MWﬁﬁ4—/m bX,.dr (25)
[0,2] [0,2]

where z = (s,t) € [0,T]? and W*# is a fractional Brownian sheet with Hurst parameters
a,B € (0,1).

We will denote now by D2 the class of functionals that can be represented as a serie
of multiple stochastic integrals with respect to W8 (that is, D2 is the two-parameter
equivalent of DCh). In the next proposition, we show that (@) admits a unique solution in
this space:

Proposition 2 Let us denote by A, the set {(z1,...,2,) € (R)" : Jo € &, Zo(l) S oo <
Zo(n)} (in the one-parameter case: A, = R"). If z € Ay, we consider 0 = o, € &, such
that Za(l) S S Za(n)'

The equation () admits an unique solution X € D™? given by X, = >, <o In(fn (-, 2))
where

fr(z1y s 2n,2) = %ho(b(s = Sa.m)(t = to.m))) X L, (21, zn)l([%z](zl, s Zn)

26
X [Ti<jcn M0(0(50.(j) = So.(5-1)) (to. () — to.(-1)) 26)

with z = (s,t), z; = (s4,t;) and ho(x) = Y7, % We also used the convention that
0,(0) =0 and z = (0,0).



~

Proof: We only prove the algebraic part () of the Proposition. Indeed, the fact that
the kernels f,, belongs to V&"*1 did not present new difficulties with respect to the proofs
of Propositions 1 and 3. Thus, we return to these proofs for this point. Let us write

X, = gofn (fn(+2))-

Here, I, is the n-order Wiener-It6 multiple integral with respect to the fractional Brownian
sheet W# and f, € L2 ([0,7]*"). ;From (5) we have that fo(z) = ho(bst) and for n > 1,

—_——

fu(215 s 20, 2) = afn-1(21, s 20) 102 (20) + b [ ]fn('zl’ ceny 2, T) T
0,z

Let n = 1. We therefore have
fl(zl, Z) = aho(bsltl)l[o,z}(zl) +b 0. fl(zl,r)dr
0,z
and
fi1(21,2) = aho(bsity) ho (b(s — s1)(t — t1)) Lo .1 (21)
hence (20) is satisfied. If n = 2 it holds that

—_—

1
221,22, 23)1p0,)(23) = 5 (aho(bsity) ho (b(s2 — s1)(t2 — 1)) Loz <z

+aho(bsata) ho (b(s1 — s2)(t1 — t2)) Lo<zy<ai<z) -

Since
fa(z1, 22, 2) = afi(21, 22)1 5 (22) + b [ ]fl(Zl,T)dT
0,z
we deduce that
2
fa(z1,22,2) = % (ho(bs1t1) ho (b(s2 — s1)(t2 — 1)) ho (b(s — s2)(t — t2)) Lo<z <zp<=

+ho(bsata) ho (b(s1 — s2)(t1 = t2)) ho (b(s = s1)(t — 1)) Lo<zy<z<z)
and again (Rf) is verified. The above computations can be easily extended to an induction
argument. [ ]

Let us now discuss the case b = 0:

Proposition 3 The equation
X, =1+ / aX.0WeP 2 e0,T)? (27)
[0,2]

admits an unique solution X € D®? given by X, = > ns0 In(fn(:,2)) where

n

a" = o1,
fn (P17---7Pn72) = m 1%’%}1([)2)1[0@]([)2) (28)
Ti=1

10



Proof: Let us write

X, = Z In (fa(+,2)) -

n>0

;From the equivalent of relation (B2) in the two-parameter case, we obtain

fo(z) =1, fi(p1,2) = alp(p1)

and in general relation (B§) holds. Since A,, # (R?)" (recall that A,, is defined in Proposition
2), note that this last expression is not equal to %1%7@] (p1,...pn) as in the one-parameter
case (see Corollary 1).

Let us now prove that the kernel f,, belongs to the space V"1 When the Hurst
parameters « and § are bigger than %, then we can use ([13) and then refer to the standard
case of the Brownian sheet. We will thus only discuss the case «, 8 < %; the case a > % and

0 < % will be a mixture of the other two cases. We use the induction. We will illustrate

first the case n = 2. We check that 1y .(22)1jp,2,)(21) belongs to HEE
reduces to proving that

. This actually

Lo, (t2)10,4) (t1) € H(a)®2.

Let us apply the operator K*?2 in three steps: first to the variable ¢;, then to the variable
t and then to t9. It holds that

1572 (o ()0 (00)) ooy = 1K™ (530 (t2) Iz2o.ryey
= K (BT = 2)*) 20,

and to conclude we refer to Proposition 3.6 in [J]: it is a straightforward consequence of
Lemma 4.3 in [f] that (T — t2)?*(B“)? belongs to the extended domain of the divergence
and therefore its expectation is in H(a).

We will show now that the kernel 1%;;}1(,6@-)1[0,4 (pi) has a finite norm in H®

by assuming that the result is true for n variables. It suffices to check that the function of
n+ 1 (real) variables

®n+1

Lo, (tn) Ljo,60) (Fnt1) - - - Lo, (1)

belongs to H(a)®" ! or, equivalently, the operator K*"*! applied to the above function is
in L2([0, T]"*1). By applying first the operator K* to the variable ¢; it holds that

™ (Lo, (En) Vo ta] (bt ) - - Lo,ea) (1)) 1720 27041

= K" (Lo, (tn) o) (bnt1) - - Loas) (82)85%) 12 j0.1pm)
= K" (13%9(t2)) 72 0.
where the function to — g(t2) = [|[K*™ 1 (1j.4(tn)L0.t0) (bns1) - - - Ljo,es] (t2)) “%2([077“]7171)

belongs to H(«a) by the induction hypothesis. Now, we refer to the proof of Proposition 3.6
in ] for the fact that g(-)E (B.?) has a finite norm in H(a).

11



It can actually be proved as above that

n
o) (P 1021 (P) lygczyomer < —

for every n where C' is a positive constant. Now we can finish as in proof of Proposition 1.
|

We will need the following Girsanov theorem. Its proof will be given in the Appendix.

Lemma 1 For any € > 0, the process

t
we =W == (20)

s

has the same law as a fractional Brownian sheet with parameters «, 8 under the new prob-
ability P. given by

aps 1oap 1 . 2
— _exp<€WT7T_ = /W (Kb (FC) () d,o) (30)

where F(t,s) =ts and K, is the operator associated to the kernel of the Wb,

The solution of the equation (R7) has a different behavior comparing to the one-
parameter case (Corollary [[). We prove actually below that the solution of (R7) is almost
surely negative on a non-negligible set. Note that the same problem has been studied in
the case of the standard Brownian sheet in [[Lg].

Proposition 4 Let X be the unique solution to (7) in the space D2, Then
P{there exists an open set A C [0,T]* such that X, < 0 for all z € A} > 0. (31)

Remark 2 It seems that the following statement is also true: there exists an open set
A C [0,T)? such that
P{X, <0 forall z€ A} >0.

A way to obtain it would be to prove that we have (keeping the same notations as in the
proof of Proposition [l)

E | sup |th—h0(—ast)‘2 —e0 0
stelo,r)]

instead of (BH). Although it seemed possible to us to show this more restrictive convergence,
we prefered, for the simplicity, only to prove (BI).

12



Proof of Proposition i: Note that the deterministic equation

g(s,t) =1+ /0 ) /0 t ag(u, v)dudy (32)

admits the unique solution g(s,t) = ho(ast) with ho(z) = _, - @ 7;2 and that the function

hg satisfy the property: there exists an open set I = (—f, —«) such that hy(z) < =6 < 0
for any 2 € I (see [LF], page 231).
Suppose a > 0, fix N > 0 and define the open set

A ={(s,t),a <ast<(3,0<s,t<N}.

For every € > 0, consider

Xe=1+ / aeXEoW P,
[0,2]

Thanks to Corollary [, we know that the solution X¢ of () is given by

X: = Z e"In (fn(+,2))

n>0

where the kernels f,, are given by fn (p1,...,pn,2) = S 30, 1%’; (Pi)10,2)(pi)- Let us
consider the equation

VE=1+ / acYEdW e =1 + /
[0.2]

acYEdW P — / aYedr (33)
[0,2]

[0,2]

and recall that, by Lemma [I WBe is a fractional Brownian sheet under P.. Now, we

observe that

K =supsup E |YZ|* < 0. (34)
e>0 =z

In fact, to show that (B4) holds is not difficult because it follows from Proposition 2 that
the kernel of order n appearing in the chaotic expression of the solution of ([B) are of
the form & multiplied to the kernel of order n of the solution of (B3) with e = 1. Then,

K <sup, F |YZI‘2 < 00.
Now, by (B2) and (BJ) we have, for z = (¢, s),

Y5 — ho(—ast) = —a/ / s — ho(—auv)) dvdu+ae/ / YE’UdWif‘,f

and using the bound (B4) and the Gronwall Lemma in the plane we obtain

sup E UY;t — ho(—ast)|2] —¢00. (35)
5,6€[0,T]

13



Since ho(—ast) < — for (s,t) € A, it follows that
P(YE <0) —._0 1, uniformly on z € A.
Thus, for every € > 0 small enough
P(YF<0)>0, VzeA

and .
P.(Y;<0)=P(X;<0)>0, VzeA.

Since ngcﬁ has the same law as c‘f‘chsofgﬁ as process, we get that X7, is equal in law to

Xe2ag 284 S0, for € > 0 small enough,
P (X 20008 <0) >0, Vz=(s,t)€A

and the conclusion follows. [ |

4 Appendix

Proof of Lemma [l The conclusion will follow from the Girsanov theorem for the frac-
tional Brownian sheet (see Theorem 3 in [ff]) if we show that the functions F(s,t) = st

belongs to the space I ot3.6+3 (L%([0,T]?)) or equivalently,

Ko (F() € L*([0,TT).

To show this, we will need the expression of its inverse operator in terms of fractional
integrals and derivatives (see e.g. [[])

2p
K Lh(t,s) = o257 2 2720 <téas%5§98t> . < (36)
and 2,
1
R T e (e ey B B N
Here,
17 () = e [ @07 = 0P s o)dudo
7 F(Q)F(ﬁ) 0o Jo ’
and

8 £ _ 1 2 Ty f(u,v) wdo
D) = S TR 8edy Gty

with I" the Euler function.
For o, 8 € (0,3) we have
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K LF(t,s) = to 257203072 (t%*aséfﬁ>

t s
= - L T to‘ésﬁé/ / (t—u)féfauéfa(s—v)fé*ﬁvéfﬁdvdu
I'(z —a)l'(5 - B) 0 Jo

and this belongs to L2([0,T]?).
If a,3 € (1,1) then by (B7) we can write

K LF(t,s)
— o agP s paahs (t2*°‘s%*ﬁ> (t,s)
I—Oé _/3
:ta%sﬁé 5 13 t2 1821
I'(s —a)l(5 =B) |2 2572
o — % t t%_o‘sé_ﬁ u%_asz_ﬁ
+ 1 / 1 du
sz Jo (t—u)*t2
+5 - % /s t2g2 B _ tE*av%*Bd
v
to=2 Jo (S—U)B—’—;
1 1. [t (st 0528 _ya—g3 B _pa—ay; =B + w3 B
Ha-35)(6-3) 1 5l dvdu
0o Jo (t—u)*T2(s —v)’"z

Since

ti—a -

t —

/ L —du = c(a)t' 7,
0 (t—wu)*t2

it is not difficult to see that the above function is in L2([0, T]?).
If a € (0,3) and B € (3, 1), then we have

_ 1 7 C1ig 14
Ka,bF(t,s) = C(a,p)t¢ 2/0(t—u) 22" %u

1 /5 t%_o‘s%_ﬁ - t%_o‘v%_ﬁ
0

) PRI

2

and the conclusion is clearly a consequence of the above two cases. The proof of Lemma is
done. |
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