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ABSTRACT

We introduce an expectation-maximization (EM) algorithm for
image inpainting based on a penalized likelihood formulated us-
ing linear sparse representations. Taking advantage of the spar-
sity of representations, a regularization through a prior penalty
is imposed on the reconstructed coefficients. From a statisti-
cal point of view, the inpainting can be viewed as an estimation
problem with missing data. The EM framework is a general it-
erative algorithm for ML estimation in such situations. The EM
framework gives a principled way to establish formally the idea
that missing samples can be recovered based on sparse represen-
tations. Furthermore, owing to its well known theoretical prop-
erties, the EM algorithm allows to investigate the convergence
behavior of the inpainting algorithm.

1. INTRODUCTION

Inpainting is to restore missing image information based
upon the still available (observed) cues. The keys to suc-
cessful inpainting are to infer robustly the lost informa-
tion from the observed cues. The inpainting can also be
viewed as an interpolation or a desocclusion problem. The
classical image inpainting problem can be stated as fol-
lows. Suppose the ideal complete imageX defined on a
finite domainΩ (the plane), and its degraded version (but
not completely observed)Y . The observed (incomplete)
imageYobs is the result of applying the lossy operatorM
onY :

M : Y 7→ Yobs = M [Y ] = M [X ⊙ ε] (1)

where⊙ is any composition of two arguments (e.g. ’+’
for additive noise, etc),ε is the noise.M is defined on
Ω \ E, whereE is a Borel measurable set. A typical ex-
ample ofM that will be used throughout this paper is the
binary mask; a diagonal matrix with ones (observed pixel)
or zeros (missing pixel). Inpainting is to recoverX from
Yobs which is an inverse ill-posed problem.

Recent wave of interest in inpainting was started from
the pioneering work of [1], where applications in the movie
industry, video, and art restoration were unified. These
authors proposed nonlinear PDE model for inpainting. Fol-
lowing their work, [2] then systematically investigated
inpainting based on the Bayesian and (possibly hybrid)
variational principles with different penalizations (TV,l1
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norm on wavelets coefficients). Many other authors have
also proposed inpainting algorithms under the variational/PDE
framework. More recently, [3] introduced a novel inpaint-
ing algorithm that is capable of reconstructing both tex-
ture and cartoon image contents, i.e.X = Φα, where
Φ is a dictionary of sparse transform (e.g. curvelets for
cartoon and local cosines for locally stationary textures).
This algorithm is a direct extension of the MCA (Morpho-
logical Component Analysis), designed for the separation
of an image into different semantic components [4].

Combining elements from statistics and harmonic anal-
ysis theories, we here introduce an EM algorithm [5] for
image inpainting based on a penalized maximum likeli-
hood formulated using linear sparse representations, i.e.
X = Φα, where the imageX is supposed to be effi-
ciently by the atoms in the dictionary. Taking advantage
of the sparsity of representations, a regularization through
a prior penalty is imposed on the reconstructed coeffi-
cients. From a statistical point of view, the inpainting can
be viewed as an estimation problem with incomplete or
missing data. The EM framework is a very general itera-
tive algorithm for ML estimation in such situations. The
EM algorithm formalizes the idea of replacing the missing
data by estimated ones from coefficients of previous iter-
ation, and then reestimate the new expansion coefficients
from the complete formed data, and iterate the process un-
til convergence [5, 6]. We here restrict ourselves to zero-
mean additive white gaussian noise, even if the theory of
the EM can be developed for the regular exponential fam-
ily. It also turns out that there are several connections
between our EM algorithm and the BCR-based inpainting
algorithm as proposed recently by [3]. The EM frame-
work gives a principled way to establish formally the idea
that missing samples can be recovered based on sparse
representations. Furthermore, owing to its well known
theoretical properties [7], the EM algorithm allows to in-
vestigate the convergence behavior of the inpainting al-
gorithm. Some results are finally shown to illustrate our
algorithm.

2. PENALIZED MLE WITH MISSING DATA

2.1. Problem formulation

Suppose that the an image hasn pixels. First, let’s ignore
the missing data mechanism and write the completen-



dimensional observation vector (by simple reordering)Y
as:

Y = Φα + ε, ε ∼ N (0, σ
2) (2)

Φ is an× p matrix corresponding to a sparse representa-
tion (possibly overcompletep ≥ n). EstimatingX from
Y can be accomplished using the penalized maximum
likelihood estimator (PMLE)̂X = arg minX −ℓℓ (Y |X)+
log pX(x). This estimator can also be viewed as a MAP
Bayesian estimator wherepX(x) is the prior density func-
tion. AsX is supposed to be sparsely decomposed in the
chosen dictionary. The MAP/PMLE estimation problem
can then be expressed in terms of the decomposition coef-
ficientsα, which gives, for additive white gaussian noise
with known varianceσ2:

α̂ = arg min
α

1

2σ2
‖Y − Φα‖2

2 + λΨ(α) (3)

whereΨ(α) is a penalty function promoting reconstruc-
tion with low complexity taking advantage of sparsity.
Standard assumptions about the penalty (or -log-prior) is
to consider that it is continuous, even-symmetric and strictly
increasing on(0, +∞) (but not necessarily convex). A
bunch of work departing from this equation has been pro-
posed in the literature for the complete data setting (the
so-called basis-pursuit problem).

2.2. The EM algorithm

Let’s now turn to the missing data case and let’s write
Y = (Yobs, Ymiss), with Ymiss = {yi}i∈Im

is the missing
data, andYobs = {yi}i∈Io

. The incomplete observations
do not contain all information to apply standard methods
to solve (3) and get the PMLE ofθ = (αT , σ2)T ∈ Θ ⊂
R

p × R
+∗. Nevertheless, the EM algorithm can be ap-

plied to iteratively reconstruct the missing data and then
solve (3) for the new estimate. The estimates are itera-
tively refined until convergence. Recall that the EM algo-
rithm is a means of obtaining MAP/PMLE estimates (of
which maximum likelihood is a particular case) of a pa-
rameter in cases where the PMLE is hard to obtain. The
(Bayesian) EM algorithm will then produce a sequence of
estimates alternating between two steps:

• E-step Computes the conditional expectation of the
log-likelihood of the complete data, given the ob-
served data and the current estimateθ

(t), by defin-
ing the surrogate function:

Q
�
�|�(t)

�
= E

h
ℓℓ (Y |�) |Yobs,�(t)

i
− λΨ(α) (4)

• M-step Updates the estimates according to:

�(t+1) = arg min
�∈Θ

− Q
�
�|�(t)

�
(5)

2.2.1. The E step

For regular exponential families, it is known that the E
steps involves finding the expected values of the sufficient
statistics of the complete dataY given observed dataYobs

and the estimate ofα(t) and σ2(t)

[5, 6]. Then, as the
noise is zero-mean white gaussian, the E-step (4) reduces
to calculating the conditional expected values and the con-
ditional expected squared values of the missing data, that
is:

y
(t)
i = E

�
yi|Φ, Yobs, α

(t)
, σ

2(t)
�

=

(
yobsi

for observed data,i ∈ Io

ΦT
i α(t) for missing data,i ∈ Im

andE

�
y
2
i |Φ, Yobs, α

(t)
, σ

2(t)
�

=

8<:y2
obsi

i ∈ Io�
ΦT

i α(t)
�2

+ σ2(t)

ı ∈ Im

(6)

2.2.2. The M step

This step consists in maximizing the penalized surrogate
function of (4) with the missing observations replaced by
their estimates in the E step at iterationt, that is:

�(t+1) = arg min
α,σ2

1

2σ2
‖Y (t) −Φα‖2

2 + λΨ (α) +
n

2
log 2πσ

2

(7)

Thus, the M step updatesX(t+1) andσ2(t+1)

according
to:

X
(t+1) = ΦDΦ+

Y
(t) (8)

σ
2(t+1)

=
1

n

"X
i∈Io

�
yi − x

(t)
i

�2

+ (n − no)σ
2(t)

#
(9)

whereno = tr M = Card Io is the number of ob-
served pixels.D denotes whichever estimation operation,
associated to the penalty functionΨ(α), applied to the
expansion coefficients inΦ. Φ+ is the Moore-Penrose
generalized inverse. Note that at convergence, we have:

σ
2(t+1)

= σ
2(t)

= σ̂
2 =

1

no

X
i∈Io

�
yi − x

(t)
i

�2

(10)

which is the noise variance inside the mask (i.e. with ob-
served pixels). If the noise variance is known in advance,
the re-estimation ofσ2 in the M step can be ignored.

A very important feature of the M step is that it in-
volves a denoising operation (8) depending on the choice
of the penalty function. For example, under thel1 norm
penalization and an orthogonal dictionary,α(t+1) can be
simply estimated using the well known soft thresholding
scheme. This can also be extended to redundant represen-
tations as we will see later. Other prior penalties will lead
to different estimation rules in the M-Step.

2.3. Extension to highly redundant sparse representa-
tions

Our goal is to extend the EM algorithm above while pre-
serving its convergence properties, e.g. monotonic de-
crease of the -log-posterior function (3). The algorithm
is dedicated to dictionaries whose individual transforma-
tions are either bases, frames or tight frames (e.g. a dictio-
nary composed of the curvelet, wavelet, local DCT trans-
forms, etc).



Suppose thatΦ = (Φ1, . . . ,ΦK), whereΦk is the op-
erator associated with the transformationk. Hence, the
Generalized EM [5, 6] M-step is accomplished by cycling
(either randomly or sequentially) between the individual
transforms and minimizing with respect to eachαk keep-
ing the other coefficients fixed, that is:

α
(t+1)
k

= arg min
αk

1

2σ2








0@Y

(t)
−

X
k′ 6=k

Φk′α
(t)
k′

1A− Φkαk








2

2

+λΨ(αk)

(11)
where we additionally assumed thatΨ(α) is separable

(e.g. l1 norm), andσ2 is fixed for simplicity. Note the
similarities with the BCR algorithm. Moreover, compared
to the EM algorithm, it is easy to verify that this GEM
algorithm satisfies the weaker condition:

Q
�
α

(t+1)|α(t)
�
≥ Q

�
α

(t)|α(t)
�

(12)

Owing to the general convergence properties of the EM
(and the GEM), the above condition will also entail an
increase of the penalized likelihood.

2.4. The GEM inpainting algorithm

Require: Observed imageYobs and a maskM, conver-
gence thresholdδ,

1: repeat
2: E Step
3: Update the image estimate:

Y
(t) = Yobs + (I −M)X(t) (13)

4: M Step
5: for Each transformationk in the dictionarydo
6: Calculate the transform coefficients

Φ+
k

(

Y (t) −
∑

k′ 6=k Φk′α
(t)
k′

)

,

7: Apply the estimation operatorD (e.g. soft thresh-
olding) to these coefficients and getα

(t+1)
k ,

8: end for
9: UpdateX(t+1) =

∑

k Φkα
(t+1)
k ,

10: Updateσ2(t+1)

according to (9).

11: until Convergence, i.e.
‖X(t+1)−X(t)‖

2

‖X(t)‖
2

≤ δ

The computational complexity of this algorithm is dom-
inated by that of the transformations used in the M step.
More interestingly, if the update equation of the E step is
replaced by:

r
(t) = Yobs −MX

(t) (14)

wherer(t) are the residuals inside the mask, then step 6
of the above algorithm will simply reduce to calculating

the coefficients ofΦ+
k

(

r(t) + Φkα
(t)
k

)

, which involves

calculating only the transformation corresponding toΦk

for eachk. This considerably reduces the computational
load of the M step.

A formidable impact of this remark is that it turns
out that these modified update equations are exactly the
same as those of the MCA-based inpainting recently pro-
posed by [3] for simultaneous cartoon and texture recov-
ery. Therefore, the EM framework gives a principled way

to establish formally the intuitive idea that missing sam-
ples can be recovered based on sparse representations. It
also generalizes it to any penalty function. However, an
important difference between the GEM and the MCA-
based algorithms is the evolution of the regularizing pa-
rameterλ. Here, we considered it as a fixed hyperparam-
eter directly embedded in the penalty function, while the
MCA decreases it according to a given schedule (linear
or exponential). This would be expected to confer to the
MCA a greater chance to converge to one of the global
minima, but no proof of this has been established yet.
On the other hand, the GEM can handle the case where
σ2 must be adaptively estimated, and owing to its well
known theoretical properties, the GEM algorithm allows
to investigate the convergence behavior of the inpainting
algorithm.

3. CONVERGENCE ANALYSIS OF THE EM
INPAINTING

We here characterize the existence and unicity of the solu-
tions of the EM-based image inpainting. The convergence
study carried out in this section is essentially based on the
seminal results of [5] and revisited by [7].

3.1. Convergence to a stationary point

The EM provides a sequence of estimates whose penal-
ized -log-likelihood is non-decreasing and bounded. Then,
following [7, Theorem 2], a sufficient condition which
guarantees the convergence of the sequence of EM in-

painting to a stationary point is thatQ
(

θ|θ(t)
)

is contin-

uous in both arguments. Thus, the penalty function must
be continuous inα which is true by assumption. This
is a weak condition which covers many penalties used in
practice. The limit points may be local minima or saddle-
points.

3.2. Convergence to a local or global minimum

In [5, 7], there is no simple general result for the EM
that guarantees convergence to a local or global minimum
without further assumptions. For instance, if the penalty
function is convex, then the penalized -log-likelihood will
be strictly convex and the EM algorithm will be guaran-
teed to converge to the unique maximum penalized like-
lihood value and a unique optimal image. This follows
from results of [7] stated for the EM. But, if the penalty
function is not convex then the sequences of the Bayesian
EM estimates will only converge to a stationary point.
The image at convergence will depend on the initializa-
tion of the algorithm. As noted in [5], the convergence
rate (at least when the initial position is not too far from
the true image) is linear and governed by the fraction of
missing information, that can be evaluated from the Fisher
Information matrix. Thus, here we device to use the ob-
served part of the imageYobs as an initial estimate.



Many interesting penalties that produce sparse solu-
tions are non-convex or even non-smooth. Unfortunately,
their use will be at the price of no guaranty to converge
to a global or even to a local minimum. To circumvent
this major drawback, we use the same heuristic argument
as that of the MCA, for which we give a statistical inter-
pretation. Indeed, one can consider the penalized -log-
likelihood functional of the M-step as a Gibbs energy,
where the regularization parameter parallels the temper-
ature in the same spirit as for simulated annealing. Then,
we start at a high temperature (i.e.λ) and then decrease
λ according to a prescribed schedule (e.g. exponential
or linear). For each value ofλ, we run one iteration of
the GEM inpainting Algorithm 2.4. This algorithm has
flavour of a stochastic version of the EM [8].

4. EXPERIMENTAL RESULTS

The GEM inpainting algorithm was applied to several syn-
thetic and real degraded images, from which we present
few examples. Fig.1 depicts an example on Lena (input
SNR=30dB). The dictionary contained the curvelet trans-
form and the convexl1 penalty was used. The threshold
parameter was fixed to the classical value3σ. The algo-
rithm converged after 100 iterations.

Original Degraded Restored

Fig. 1. Example with Lena.

To further illustrate the power of the GEM inpainting
algorithm, we applied it to the Barbara textured image. As
stationary textures are efficiently represented by the local
DCT, the dictionary contained both the curvelet (for the
geometry part) and the LDCT transforms. Again, thel1
penalty was used. The result is portrayed in Fig.2. The
algorithm is not only able to recover the geometric part
(cartoon), but particularly performs well inside the diffi-
cult textured areas, e.g. trousers.

The algorithm was finally applied to a real old de-
graded photograph. The missing areas (mask of degraded
parts to be recovered) were manually plotted. The result
is shown in Fig.3. Here, the dictionary contained the un-
decimated DWT. Curvelets yield similar results.

5. CONCLUSION

We proposed a novel generalized EM-based algorithm for
image inpainting. Our work is now directed towards deeper
investigation of the mathematical properties (e.g. conver-
gence behaviour and relation to stochastic versions of the
EM, asymptotic properties, etc) of this algorithm.

Original Degraded Restored

Zoom DegradedZoom Original Zoom Restored

Fig. 2. Example with Barbara.

Original degraded Restored

Fig. 3. GEM inpainting of a real degraded image.
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