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Stéphane Pagano c,3

cLMGC, UMR-CNRS 5508, Université Montpellier II,
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Abstract

Identification techniques solely based on displacement field measurements lack a

stress scale and thus require a complementary information to be provided to com-

plete the problem definition. Such a complementary test is proposed in this study,

which is itself an identification designed for an unbounded two dimensional domain

subjected to a normal point force on its boundary. A complex potential formulation

is used to obtain a simple closed-form solution for the Poisson’s ratio and Lamé’s

shear modulus. In order to evaluate the performance and robustness of this identifi-

cation technique, the sensitivity to noise and error in grid positioning is investigated

numerically.
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1 Introduction

In Solid Mechanics, full field measurement techniques are more and more pop-

ular; photomechanics [1,2] has now reached a stage where the measurement of

a whole kinematic field is compared to numerical simulations. The way exper-

iments are performed has started to shift from mostly homogeneous situations

(e.g., tensile or compressive tests) to heterogeneous cases in which full field

measurements are unavoidable to analyze the results. One way of analyzing

the tests is to identify property fields such as elastic parameters.

Identification procedures are being developed to identify isotropic or anisotropic,

homogenous or heterogeneous elastic properties. Among them, updating tech-

niques based upon the constitutive equation error [3,4] have been used in the

analysis of vibrations [5], the identification of defects [6] or elastic and/or

damage fields [7], the study of heterogeneous tests (e.g., Brazilian test [8]), or

damage under dynamic loading condition [9]. An alternative to the previous

approach is, for instance, the so-called virtual field method that has been used

in a variety of situations mainly dealing with anisotropic and homogeneous

properties of composite materials [10–12]. Most of them require more or less

complete stress/load measurements. Another identification procedure is based

upon the reciprocity gap [13] that can be used to determine a local elastic field
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or to detect cracks in an elastic medium [14]. In many of these identification

techniques, a very detailed (i.e., redundant) information is needed since both

displacement and stress vector on the boundary are required (e.g., in the reci-

procity gap method). This condition can be relaxed in some other approaches

(e.g., constitutive equation error [7] or virtual field method [10]) where only

an integral condition (i.e., resultant forces or moments) is needed.

Recently the extreme opposite philosophy has been advocated for, proposing

to determine heterogeneous elastic/damage [15] (or thermal [16]) properties

by using only displacement (or temperature) measurements with the so-called

reciprocity gap method [17]. Since no scale for stress or flux is fixed from the

used data, only relative properties can be measured, and a global (uniform)

scale factor for the elastic moduli or (thermal) conductivities remains undeter-

mined. This approach has mainly been applied to identify damage fields, and

variants exist for more complex field determination (e.g., independent Lamé

coefficients [18]). To circumvent this difficulty at low cost, it is proposed to add

just one static measurement to the kinematic ones (e.g., displacement field).

The proposed scheme is to apply on the side of the specimen to be analyzed

a point load with a known normal concentrated force F .

Let us mention that the inverse problem of stress identification underneath a

contact has been addressed in the past based on surface displacements out-

side the contact zone [19]. This study is quite different in terms of problem

setting and objectives. An axisymmetric distributed load was considered, a

so-called Hertz-Mindlin contact problem (with a frictional interface), and the

contact stresses where looked for based on known free surface displacements.

One will rather consider a two dimensional (plane stress) geometry, where dis-

placements are assumed to be known on a sectional plane. The identification
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of elastic constants is searched for rather than the detail of the contact stress.

The issue of a finite contact zone and the role of distributed contact stresses

rather than a point force are discussed below.

After introducing the problem in Section 2, some basic properties of 2D Kolos-

soff – Muskhelichvili potentials (Subsection 2.1) and Flamant’s elementary

solution (Subsection 2.2) are recalled. The solution is presented in Section 3.

The relevance of a Flamant’s solution in real cases is discussed in Section 4.

To probe the sensitivity of the proposed tool to noise, the identification proce-

dure is carried out on data that are artificially corrupted by a Gaussian noise.

The effect of grid positioning with respect to the applied load is investigated.

These analyses are presented in Section 5 in addition to some practical consid-

erations concerning the scale at which the displacement measurements have to

be performed and the performances of the measurement technique needed for

the identification procedure. A summary of the main result, and a discussion

underlining the use of such an approach is proposed in Section 6.

2 Problem definition

The following identification procedure is based on the analysis of a two-

dimensional information, typically a surface displacement field obtained from

digital image correlation. Therefore the following approach is restricted to ei-

ther plane stress or plane strain. As shown schematically in Fig. 1, a point

load is applied normal to the free surface of the sample. In the case of plates,

which are suited to this approach, this requires the (2D) point load as being

applied through the entire thickness of the sample. A straight boundary should

also be present, (a constraint that appears as tolerable). This restriction to
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plane elasticity is fundamental to the present study, however a vast literature

shows that this hypothesis may be met in practical cases. Specific difficulties

arising from this plane elasticity setting, and the use of a concentrated force

in this context are discussed below. Displacements are assumed to be mea-

sured at different points, for instance distributed over a regular grid with a

characteristic mesh size a.

Locally, one knows the elastic problem in two dimensions, as Flamant’s prob-

lem. Thus the knowledge of the displacement field close to the force at discrete

points (in practice from ten to a few hundred points) can be used to estimate

the Poisson’s ratio and the shear modulus. The strategy is straightforward

from now on. Mathematically, the convenient potential formulation of 2D elas-

ticity is followed, although other routes may have been pursued (and would

be required if the surface measurement were not representative of the depth,

i.e., 3D problems).

2.1 Kolossoff – Muskhelichvili potentials

Let us use a local coordinate system with the origin at the point where the

load is applied (see Fig.1). Moreover, the 2D domain will be represented by

complex numbers z = x + iy (or using the polar form z = reiθ), and the

indented solid is supposed to lie in the ℑ(z) > 0 half plane close to the origin.

The Kolossoff – Muskhelichvili representation of the elastic problem in the

complex plane is now briefly recalled. The potentials ϕ(z) and ψ(z) are two

holomorphic functions (i.e., ∂ϕ/∂z = ∂ψ/∂z = 0), which allows one to retrieve

the complex displacement field U = ux + iuy as [20]

2µU = κϕ(z) − zϕ′(z) − ψ(z) (1)
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where µ is the Lamé’s shear modulus, κ a dimensionless elastic coefficient that

is related to the Poisson’s ratio ν according to κ = (3 − 4ν) for plane strain,

and κ = (3 − ν)/(1 + ν) for plane stress conditions. The above displacement

is determined up to a rigid body motion (which in complex notations reads

U0 + iΩz with Ω real).

The stress is conveniently represented through two combinations, first the

(real) trace S0 = σxx + σyy, and second the complex function S = σyy − σxx +

2iσxy. From the potentials, they are written as



































S0 = 2[ϕ′(z) + ϕ′(z)]

S = 2[zϕ′′(z) + ψ′(z)]

(2)

The Airy potential A can be expressed from these potentials as

A = ℜ[zϕ(z) + Ψ(z)] (3)

with Ψ′(z) = ψ(z).

2.2 Flamant’s problem

The normal force indentation of an elastic domain has been solved by Fla-

mant [21,22]. Embedded in the above notations, one can write

ϕ(z) = ψ(z) =
iF

2π
log(z) (4)
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The displacement field becomes

U =
iF

4µπ

[

κ log(z) +
z

z
+ log(z) − (κ − 1)

iπ

2
+ 1 − (κ + 1) log(r0)

]

=
iF

4µπ

[

(κ + 1) log(r/r0) + (cos(2θ) + 1) − i(κ − 1)(
π

2
− θ) + i sin(2θ)

]

(5)

where a rigid displacement has been introduced in order to set U(z = ir0) = 0

at a conventionally chosen reference point located at a distance r0 beneath the

surface along the indentation axis.

3 Stress gauging

Let us now assume that the displacement is known at a number of discrete

points zn with n = 1, .., N inside the solid but close to the indentation point.

These measured displacements are denoted by Un. In the absence of noise or

deviation from the present hypothesis, for each point n, the following complex

identity can be written

κ[log(zn) − iπ

2
− log(r0)] + (4iµπ/F )Un =

− log(zn) − zn

zn

− iπ

2
− 1 + log(r0)

(6)

At this stage, it is important to remove the arbitrary rigid body motion that

affects the experimental determination of U. To achieve this aim, the above

equation is averaged over all measurement points

κ[〈log(z)〉 − iπ

2
− log(r0)] + (4iµπ/F )〈U〉 =

−〈log(z)〉 − 〈z
z
〉 − iπ

2
− 1 + log(r0)

(7)
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where 〈.〉 is the average operator. By subtracting both equations, the mean

translation no longer appears

κ[log(zn) − 〈log(z)〉] + (4iµπ/F )(Un − 〈U〉) =

−log(zn) + 〈log(z)〉 − zn

zn

+
〈

z

z

〉

(8)

If the displacements are determined over a set of points that is symmetric with

respect to the load axis, a rigid body rotation is easily removed by considering

only the symmetric part of the displacement field with respect to the indenta-

tion axis, namely for all points zn, U(zn) is replaced by (1/2)[U(zn)−U(−zn)].

If the data points are not symmetric with respect to the indentation axis, one

can still use the same principle by adding the fictitious displacements −Un at

points −zn. Here again, the mean rotation cancels out.

3.1 Solution

Let us introduce the following additional notations



























































An = log(zn) − 〈log(z)〉

Bn = 4iπ(Un − 〈U〉)/F

Cn = log(zn) − 〈log(z)〉 + zn/zn − 〈z/z〉

(9)

so that the identification procedure can be seen as minimizing the quadratic

objective function T

T [κ, µ] ≡
∑

n

|Anκ + Bnµ + Cn|2 (10)
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with respect to κ and µ. In matrix form, one has to solve a linear system

[M](ξ) + (χ) = 0 (11)

with

[M] =
∑

n



















|An|2 ℜ[AnBn]

ℜ[AnBn] |Bn|2



















(ξ) =























κ

µ























(χ) =
∑

n



















ℜ[AnCn]

ℜ[BnCn]



















(12)

It is worth noting that the problem naturally gives rise to a quadratic func-

tion in κ and µ. It is not a specific feature coming from the potential formu-

lation used herein, but rather a property of plane elasticity. Let us also note

that, from dimensional analysis, only µ depends (linearly) with F . Thus the

Poisson’s ratio or equivalently the κ parameter can be determined without

resorting to the force value.

Alternatively, one may also form the three real-valued vectors of length 2N ,

α, β and γ, such that α2n−1 = ℜ[An] and α2n = ℑ[An] (and similarly for β

and γ with respectively B and C). Simple algebraic manipulations show that

[M] =



















|α|2 α.β

α.β |β|2



















(χ) =



















α.γ

β.γ



















(13)
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In practice, it is highly unlikely that the vectors α and β are collinear so that

the matrix [M] is invertible. Consequently, the κ coefficient can be expressed

explicitly as

κ =
|β|2(α.γ) − (α.β)(β.γ)

|α|2|β|2 − (α.β)2
(14)

independently of F since both numerator and denominator are homogeneous

of degree 2 in β. The shear modulus is written as

µ =
|α|2(β.γ) − (α.β)(α.γ)

|α|2|β|2 − (α.β)2
(15)

This completes the procedure to be used.

4 Deviations from Flamant’s solution

A point force in two dimensions (corresponding to a line in three dimensions) is

a mathematical abstraction that cannot be encountered in practice close to the

contact force. A distributed load over a small surface, e.g., Hertz contact [22], is

a more realistic case. Saint-Venant principle may however be invoked to restore

some credibility to the present approach. More quantitatively, a distributed

load over some finite surface of width δ will give rise to a displacement field

that may be expanded over multipoles of increasing order. The dominant term

will correspond to Flamant’s problem (i.e., stress and strain decaying as 1/r).

The second term, because of x ↔ −x symmetry, is not a dipole but rather a

quadrupole (i.e., stress and strain decaying as 1/r3). Higher order terms will

decay with distance with larger powers of r, r−(2n+1) with n ≥ 2. The ratio of

the first correction to the dominant term at a distance r from the center of

the contact zone will be of order δ2/r2 as dictated by homogeneity.
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In order to estimate the impact of such deviations, displacements are assumed

to be known over a regular grid of points with a spacing a as shown in Fig. 1.

For a contact zone which is as large as a/10, the closest point to the contact will

be corrupted by a 1% change as compared to Flamant’s solution. Further away,

this correction will be quite negligible. Thus, since the goal is not to retrieve

detailed information on the contact stresses (as for instance in Ref. [19]), but

rather to extract information on the elastic properties, one may safely resort to

a point-like force as soon as the contact zone is sufficiently small as compared

to the grid size. In a forthcoming section, the influence of the mispositioning

of the grid as compared to the point of loading will be investigated. The

difference between the actual and assumed displacement field is a dipole field,

and hence a more severe discrepancy than the finite extent of a contact zone.

Yet the procedure of symmetrizing the problem before estimating the elastic

constants cancels out exactly this dipolar field, and thus only a quadrupolar

correction is left. Therefore, in some sense, the sensitivity to error positioning

is a good indication of the effect of a finite contact zone. We defer to that

section for a more complete discussion on the quantitative aspects.

In the case of an elasto-plastic material where yielding occurs, the same ar-

gument holds, where δ is the extent of the plastic zone (i.e., of order F/σy if

σy is the yield stress). Thus, as simple rule of thumb, the contribution of the

plastic zone to the local displacement relative to the total displacement will

be of order (σ/σY )2, i.e., the square of the local elastic stress relative to the

yield stress.

One additional interest of the proposed procedure, because of the large re-

dundancy of the (assumed) available information, is that one can trace back

the contribution of each single measurement point to the error. For the above
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cases, where deviation from the ideal Flamant’s problem is confined to the

vicinity of the loading point, one can easily detect that the loading zone cre-

ates deviation from the identified displacement field. Once a physical reason

for such a deviation is identified or hypothesized, the same computation can

be performed excluding measurement points where non-linear, or non punc-

tual contact is suspected because of increasing local error. Alternatively, the

basis of displacement field can be enriched with a quadrupolar term.

5 A (numerical) test case

5.1 Noise sensitivity

The displacement field is computed numerically from the above formula at Npt

discrete points. The latter are distributed over a regular mesh (ixa; (iy+1/2)a)

with −n ≤ ix ≤ n and 0 ≤ iy ≤ n−1, so that Npt = n(2n+1). In the following

two examples are chosen, namely, n = 2 and n = 10 (with Npt = 10 and Npt =

210, respectively). Numerically, the following values a = 1, F/(4πµtruea) = 1

and νtrue = 0.25 are used under plane stress conditions. The displacement

field data is then “corrupted” by the addition of a random noise (with no

spatial correlation). The latter is characterized by a gaussian distribution of

zero mean and standard deviation ǫ. The level of ǫ is to be compared to the

average amplitude 〈|U|〉 of the displacements, which depends on the chosen

grid, namely, 〈|U|〉/a = 7.3 for Npt = 210, and 〈|U|〉/a = 3.0 for Npt = 10

(Fig. 1).

For 10000 different samplings of the noise, the Poisson’s ratio νest and shear

modulus µest (scaled by the force and mesh size of the grid) are estimated.
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They are subsequently rescaled by their initially chosen value, so that the

method accuracy can be determined. The dimensionless indicators are thus

Zν = νest/νtrue and Zµ = µest/µtrue. These simulations provide both the sys-

tematic error through the average value of Z, and the uncertainty σν and σµ

as the standard deviation of the corresponding Z.

Table 1 and Fig. 2 give the average Z ratio for the two grids and different noise

amplitudes. For a vanishing noise, the results are as expected Zν = Zµ = 1. As

noise is increased, the Poisson’s ratio becomes systematically overestimated

while the shear modulus is underestimated. The measurement error |Z−1| in-

creases quadratically with the noise amplitude. This quadratic dependence can

be explained by using a small perturbation approach exploiting the expression

of κ and µ Taylor expanded in β. Because the noise has a zero average, the

first systematic deviation from the mean value comes from quadratic terms in

the noise. The influence of the number of data points and their distribution

in the horizontal and vertical directions is rather weak, and ironically, for a

larger number of data points, the systematic error increases both for µ and ν.

Presumably, only the close proximity of the point load is informative on the

mechanical behavior, whereas remote points are more sensitive to noise.

More important, for the practical use of this tool, is the estimate of the un-

certainties, σν and σµ, displayed in Table 1 and Fig. 3. Both of them vary in

proportion to ǫ as shown in Fig. 3 (data points aligned on straight lines of

slope unity in a log-log plot). A more systematic study on the influence of the

number of measurement points Npt shows that σ decreases as N
−1/2
pt . This can

be interpreted as the consequence of the central limit theorem. More precisely,
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a numerical fit to the data reads

σν ≈ 1.55
ǫ

√

Npt

σµ ≈ 0.66
ǫ

√

Npt

(16)

It can be noted that the uncertainty associated to the identified elastic param-

eters is directly proportional to ǫ that characterizes the (standard) uncertain-

ties in terms of displacement measurement. This point will be further studied

later.

5.2 Influence of errors in grid positioning

One possible source of error from the estimate of the displacements was consid-

ered above. However, the positioning of the grid itself may induce deviations

from the expected solution. In order to test this possibility and quantify it,

direct numerical simulations are performed, and an offset (∆x, ∆y) is intro-

duced in between the origin of the grid coordinates and the point of loading.

This offset is then ignored in the analysis, and the induced error in µ and ν is

evaluated.

Both coordinates do not play the same role. Because of the fact that the

contact point is always in practice distributed over a finite surface, the ∆x

offset may be significant. Values of ∆x as large as a/10 are considered, where

a is the mesh size (Fig. 1). Conversely, the accuracy of the grid positioning in

the y direction, normal to the boundary, is typically much less. For a smooth

boundary, it is common to be able to resolve its position to a fraction of pixel.

Since a is typically 16 or 32 pixels wide, ∆y/a should be of the order of 1%.

Yet, in the numerical study, ten times larger values are investigated.
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The separate effects of ∆x and ∆y are shown in Figs. 4 and 5, respectively.

The error is linear in ∆y, but quadratic in ∆x. This property results from an

argument discussed in Section 4. An offset in y gives rise to a difference in

displacement field which is a dipole field, whereas the x offset, because of the

symmetrization procedure (x ↔ −x symmetry), gives rise to a quadrupole

field. For the largest values of ∆x/a (respectively ∆y/a) considered (0.1), the

maximum error reaches 0.2% (respectively 2%) on the most sensitive quantity

ν. Following the argument on feasible accuracies in the location of the grid

origin, errors should be strictly smaller than one percent.

As argued in Section 4, the error induced by an offset ∆x can be compared to

the effect of a contact taking place over a finite extent, as in Hertz contact.

The radius of contact R will result in a smaller equivalent ∆x, if one focuses

only on the quadrupolar term (namely ∆x = (
√

π/4)R ≈ 0.44R), so that

the maximum error is reached for a radius of contact (relative to the grid

size a) R/a ≈ 0.22. Figures 6 and 7 display maps of errors (absolute values)

for joint errors in x and y. No drastic coupling effects occur, and looking for

extreme values of error, 1.6% and 2.5% are obtained for the most severe cases

respectively for µ and ν.

The conclusion of these two sub-sections is that experimental errors, be they

uncertainty in the displacement evaluation or in the grid positioning, have a

rather limited impact on the estimates of elastic properties, and hence the

approach appears to be quite robust, although experimental tests have to be

performed in order to secure this statement.
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5.3 Applicability to an experimental example

In the following, it is assumed that DIC (i.e., digital image correlation [23]) is

used to determine displacement fields. It consists in matching small zones, i.e.,

interrogation windows, in a reference image prior to applying a load and in

a picture of the surface when the load is applied. Each measurement “point”

corresponds to the center of an interrogation window of size δ × δ pixels. The

separation between two interrogation windows is equal to a (Fig. 1). When

using this type of technique with 8-bit pictures, a displacement resolution [23]

and uncertainty [24] ǫ of the order of 2 × 10−2 pixel can be achieved for an

interrogation window of 16 × 16 pixels (i.e., δ = 16 pixels), and 10−2 pixel

when δ = 32 pixels.

Let us consider an example of a steel (i.e., µ ≈ 100 GPa) plate of thickness

e = 10 mm subjected to a load P equal to 1 kN. The condition that the dis-

placement variation between two neighboring measurement points (separated

by a distance a, Fig. 1) be greater than the displacement uncertainty defines

the maximum distance Rmax to the applied load for which significant data can

be obtained

Rmax ∝ P

πµe

a

ǫ
(17)

so that Rmax ≈ 0.25 mm when δ = a = 16 pixels, and Rmax ≈ 1 mm when

δ = a = 32 pixels. Consequently, a long distance microscope should be used in

both cases with a magnification such that 1 pixel corresponds to about 1 µm.

When the applied load is multiplied tenfold, a conventional zoom can be used

instead when the size δ of the interrogation window is equal to 32 pixels.

There exists also a lower limit Rmin in terms of distance caused by yielding of
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the material

Rmin ∝ P

πσye
(18)

In the previous situation with σy ≈ 100 MPa, Rmin ≈ 0.3 mm so that there is a

large zone for which displacement measurements are relevant to the approach

proposed herein when the size of the interrogation window is equal to 32 pixels.

For a 16-pixel interrogation window, the uncertainty is too high to get relevant

data. The following condition

σy

µ
>

ǫ

a
(19)

must be satisfied in order to perform an identification with displacements

whose uncertainty is acceptable with respect to their level. The left hand side

of the previous equation only depends upon material parameters, whereas the

right hand side is related to the performance of the measurement technique

in terms of strain (standard) uncertainty. It can be noted that this type of

discussion allows the user to choose the correlation parameters, based upon

conditions imposed by the identification procedure. When r0 = Rmax, the

mean displacement is such that 〈|U|〉 ≈ 0.34Rmaxǫ/a, value that is 10 times

greater than ǫ when the magnification is such that 1 pixel corresponds to 1 µm.

Consequently the mean error in the identification of the elastic constants is

expected to be less than 5 % when 10 measurement points are used (Fig. 2).

6 Discussion and conclusion

The proposed use of displacement measurements in the vicinity of a normal

indentation point, in plane elasticity, provides a stress gauge as soon as the in-
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dentation force is known. This information can be used in any further analysis

based solely on kinematic fields to identify elastic properties, stress intensity

factors, or more complex situations (e.g., heterogeneous materials, non-linear

behavior). Independence from other loading applied to a sample can be intro-

duced by using Saint-Venant’s principle. This is a natural trend that can be

pushed to the extreme by cutting the sample into two parts, one for the elastic

identification, and the other one for any other use in digital image correlation.

The only advantage there is the homogeneity of the technique used. Further-

more, the results presented herein can be extended to deal with contact (e.g.,

Hertzian) problems that are often encountered experimentally (e.g., flexural

tests, Brazilian test).

Let us point out that insisting for having decoupled problems might not be

the optimal solution. On the contrary, the novel concept of “diffuse stress

gauging” refers to the fact that the above procedure can be associated with

other load patterns, so that the support of the stress gauge is diffuse on the

sample face. Suppose that a complex load is applied to the sample, for instance

to characterize a complex crack propagation problem. A point load can be

superimposed and contribute to the displacement in a large part of the sample,

and yet can be used in an identification procedure, associating both the main

loading (with its full complexity) and an additional indentation. In practice,

this means to stop the present analysis at Eq. (6), and add to the latter

other contributions. All additional measurements can be purely kinematic. The

system to invert will then be more complex than the simple (i.e., decoupled)

2×2 linear system in the present case. Still the addition of the point load

will allow for this “stress gauging,” and the term diffuse is proposed here to

emphasize that in such case the main test and the stress gauging may share

spatially a significant part of the domain.
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Furthermore, one important point should be emphasized. A symmetrization

procedure has been designed to eliminate the effect of rotations (and spuri-

ous dipolar corrections). Substraction of the average value of all determining

equations has been proposed to avoid the dependence on the artificial rigid

translation that has to be included in Flamant’s solution (i.e., a pathology

of the two dimensional case). This in turn implies an independence of the

procedure with respect to any rigid body motion. Proceeding along the same

lines, one may construct a set of equations that is orthogonal to an arbitrary

constant strain over the region of interest. This will produce a system that

is mathematically decoupled from any other loading that induces a constant

strain over this region. Part of this decoupling is already present at this stage

for symmetry reason, i.e., a simple shear strain εxy cannot couple to the system

because of the x ↔ −x symmetry).

Such a concept of “diffuse stress gauging” is, to the authors’ knowledge, orig-

inal. Yet, as the identification of elastic properties based on image analysis

is a rapidly growing field, one may mention that the use of this concept al-

lows one to relax the conditions usually considered to achieve well-posedness

in identification problems. One single load measurement on the side of the

sample has been shown here to be sufficient to capture the elastic properties

of a (homogeneous part of a) solid. This is to be contrasted with the common

practice that consists in using richer static data.

Let us finally note that due to the singular behavior of the displacement field

close to the indentation point, standard DIC may not be the most appropriate

tool. An integrated approach based on elastic displacement fields (including

Flamant’s field) using in the analysis of raw images can be performed following

the general approach proposed by Wagne et al [25]. The performance of the
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latter approach (yet to be developed) is expected to be much better, and thus

the 1% accuracy is expected to be well within reach experimentally. A similar

strategy has revealed extremely powerful for crack detection [26].
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(GAMAC, Paris (France), 1995).

[2] P. K. Rastogi, edt., Photomechanics, (Springer, Berlin (Germany), 2000), 77.
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[11] M. Grédiac, F. Pierron and Y. Surrel, Novel Procedure for Complete In-plane

Composite Characterization Using a Single T-shaped Specimen, Exp. Mech. 39

[2] (1999) 142-149.
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(MSc report, ENS Cachan, 2002).

[19] J. Ben Abdallah and M. Bonnet, Une approche non-destructive pour

l’identification des contraintes de contact, C. R. Acad. Sci. IIb 328 (2000) 525-

529.

22



[20] N. I. Muskhelishvili, Some basic problems of the mathematical theory of

elasticity, in Russian, (Acad. Sci. USSR, Leningrad (USSR), 1933).

[21] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity , (McGraw-Hill (3rd

edition), New York (USA), 1970).

[22] K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge

(UK), 1985).
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Table 1

Systematic error Z and uncertainty σ on the determination of the Poisson’s ratio

ν and the Lamé’s shear modulus µ. Two numbers of data points Npt, and different

noise amplitudes ǫ are considered.

Npt = 10 Npt = 210

ǫ Zν σν Zµ σµ Zν σν Zµ σµ

0.01 1.0000 0.0049 0.9999 0.0020 1.0001 0.0011 0.9999 0.0005

0.02 1.0001 0.0097 0.9999 0.0040 1.0003 0.0022 0.9998 0.0010

0.04 1.0004 0.0196 0.9996 0.0081 1.0011 0.0044 0.9992 0.0019

0.08 1.0022 0.0388 0.9981 0.0162 1.0045 0.0087 0.9971 0.0038

0.16 1.0101 0.0787 0.9937 0.0325 1.0174 0.0172 0.9882 0.0074

0.32 1.0351 0.1524 0.9746 0.0621 1.0669 0.0328 0.9545 0.0138
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