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A note on a.s. �niteness of perpetual integralfuntionals of di�usionsPaavo SalminenÅbo Akademi University,Mathematial Department,Fänriksgatan 3 B,FIN-20500 Åbo, Finland,email: phsalmin�abo.�
Mar YorUniversité Pierre et Marie Curie,Laboratoire de Probabilitéset Modèles aléatoires ,4, Plae Jussieu, Case 188F-75252 Paris Cedex 05, FraneAbstratIn this note, with the help of the boundary lassi�ation of di�u-sions, we derive a riterion of the onvergene of perpetual integralfuntionals of transient real-valued di�usions.In the partiular ase of transient Bessel proesses, we note thatthis riterion agrees with the one obtained via Jeulin's onvergenelemma.Keywords: Brownian motion, random time hange, exit boundary,loal time, additive funtional, stohasti di�erential equation.AMS Classi�ation: 60J65, 60J60.1. Consider a di�usion Y on an open interval I = (l, r) determined bythe SDE

dYt = σ(Yt) dWt + b(Yt) dt,whereW is a standard Wiener proess de�ned in a omplete probability spae
(Ω,F , {Ft},P). It is assumed that σ and b are ontinuous and σ(x) > 0 forall x ∈ I. We assume also that Y is transient and

lim
t→ζ

Yt = r a.s., (1)1



where ζ is the life time of Y. Hene, if ζ <∞ then
ζ = Hr(Y ) := inf{t : Yt = r}.For the speed and the sale measure of Y we use

mY (dx) = 2 σ2(x)eBY (x) dx and SY (dx) = e−BY (x) dx, (2)respetively, where
BY (x) = 2

∫ x b(z)

σ2(z)
dz. (3)Let f be a positive and ontinuous funtion de�ned on I, and onsiderthe perpetual integral funtional

Aζ(f) :=

∫ ζ

0

f(Ys) ds.We are interested in �nding neessary and su�ient onditions for a.s. �nite-ness of Aζ(f).When Y is a Brownian motion with drift µ > 0 suh a onditionis that the funtion f is integrable at +∞ (see Engelbert and Senf [4℄ andSalminen and Yor [9℄). This ondition is derived in [9℄ via Ray-Knight theo-rems and the stationarity property of the loal time proesses (whih makesJeulin's lemma appliable). In this note a ondition (see Theorem 2) validfor general Y is dedued by exploiting the fat that AHx
(f) for x < r an, viarandom time hange, be seen as the �rst hitting time of a point for anotherdi�usion.2. The next proposition presents the key result onneting perpetualintegral funtionals to �rst hitting times. The result is a generalization ofProposition 2.1 in [8℄ disussed in Propositions 2.1 and 2.3 in [2℄.Proposition 1. Let Y and f be as above, and assume that there exists atwo times ontinuously di�erentiable funtion g suh that

f(x) =
(
g′(x)σ(x)

)2
, x ∈ I. (4)Set for t > 0

At :=

∫ t

0

f(Ys) ds. (5)and let {at : 0 ≤ t < Aζ} denote the inverse of A, that is,
at := min

{
s : As > t

}
, t ∈ [0, Aζ).2



Then the proess Z given by
Zt := g (Yat

) , t ∈ [0, Aζ),is a di�usion satisfying the SDE
dZt = dW̃t +G(g−1(Zt)) dt, t ∈ [0, Aζ).where W̃t is a Brownian motion and
G(x) =

1

f(x)

(
1

2
σ(x)2 g′′(x) + b(x) g′(x)

)
.Moreover, for l < x < y < r

AHy(Y ) = inf{t : Zt = g(y)} =: Hg(y)(Z) a.s. (6)with Y0 = x and Z0 = g(x).3. To �x ideas, assume that the funtion g as introdued in Proposition 1is inreasing. We de�ne g(r) := limx→r g(x), and use the same onvention forany inreasing funtion de�ned on (l, r). The state spae of the di�usion Zis the interval (g(l), g(r)) and a.s. limt→ζ(Z)Zt = g(r). Clearly, letting y → rin (6) it follows that
AHr(Y ) = inf{t : Zt = g(r)} a.s., (7)where both sides in (7) are either �nite or in�nite. Now we haveTheorem 2. For Y, A, f and g as above it holds that Aζ is a.s. �nite if andonly if for the di�usion Z the boundary point g(r) is an exit boundary, i.e.,
∫ g(r)

SZ(dα)

∫ α

mZ(dβ) <∞, (8)where the sale SZ and the speed mZ of the di�usion Z are given by
SZ(dα) = e−BZ (α) dα and mZ(dβ) = 2 eBZ (β) dβwith

BZ(β) = 2

∫ β

G ◦ g−1(z) dz.The ondition (8) is equivalent with the ondition
∫ r (

SY (r) − SY (v)
)
f(v)mY (dv) <∞. (9)3



Proof. As is well known from the standard di�usion theory, a di�usion hitsits exit boundary with positive probability and an exit boundary annot beunattainable (see [5℄ or [1℄). This ombined with (7) and the haraterizationof an exit boundary (see [1℄ No. II.6 p.14) proves the �rst laim. It remainsto show that (8) and (9) are equivalent. We have
BZ(α) = 2

∫ g−1(α)

G(u) g′(u) du

= 2

∫ g−1(α) (
1

2

g′′(u)

g′(u)
+

b(u)

σ2(u)

)
du

= log(g′(g−1(α))) +BY (g−1(α)).Consequently,
SZ(dα) = e−BZ (α) dα =

1

g′(g−1(α))
exp

(
−BY (g−1(α))

)
dαand

mZ(dα) = 2 eBZ(α) dα = 2 g′(g−1(α)) exp
(
BY (g−1(α))

)
dα.Substituting �rst α = g(u) in the outer integral in (8) and after this β = g(v)in the inner integral yield

∫ g(r)

SZ(dα)

∫ α

mZ(dβ) = 2

∫ r

du e−BY (u)

∫ u

dv (g′(v))2 eBY (u)

= 2

∫ r

dv (g′(v))2 eBY (v)

∫ r

v

du e−BY (u)by Fubini's theorem. Using the expressions given in (2) for the speed andthe sale of Y and the relation (4) between f and g omplete the proof.4. It is easy to derive a ondition that the mean of Aζ(f) is �nite. Indeed,
Ex (Aζ(f)) =

∫
∞

0

Ex (f(Ys)) ds

=

∫ r

l

GY
0 (x, y) f(y)mY (dy) <∞, (10)where GY

0 is the Green kernel of Y w. r. t. mY . Under the assumption (1)we may take for x ≥ y

GY
0 (x, y) = SY (r) − SY (x).4



Consequently, the ondition (9) may be viewed as a part of the ondition(10).5. Sine the exit ondition (8) plays a ruial r�le in our approah wedisuss here shortly two proofs of this ondition, thus making the paper asself-ontained as possible.Let Y be an arbitrary regular di�usion living on the interval I with theend points l and r. The sale funtion of Y is denoted by S and the speedmeasure by m. It is also assumed that the killing measure of Y is identiallyzero. Reall the de�nition due to Feller
r is exit ⇔

∫ r

S(dα)

∫ α

m(dβ) <∞. (11)Note that by Fubini's theorem
∫ r

S(dα)

∫ α

m(dβ) =

∫ r

m(dβ)(S(r)− S(β)),and, hene, S(r) < ∞ if r is exit. Moreover, if r is exit then Hr < ∞ withpositive probability.5.1. We give now some details of the proof of (11) following losely Kallen-berg [7℄ (see also Breiman [3℄). For l < a < b < r let Hab := inf{t : Yt =
a or b}. Then for a < x < b

Ex (Hab) =

∫ b

a

ĜY
0 (x, z)m(dz), (12)where ĜY

0 is the (symmetri) Green kernel of Y killed when it exits (a, b),i.e.,
ĜY

0 (x, z) =
(S(b) − S(x))(S(y) − S(a))

S(b) − S(a)
x ≥ y.If r is exit there exists h > 0 suh that Px(Hr < h) > 0 for any �xed

x ∈ (a, r). Using this property it an be dedued (see [7℄ p. 377) that for any
a ∈ (l, r)

Ex (Har) <∞,whih, from (12), is seen to be equivalent with (11).5.2. Another proof of (11) an be found in It� and MKean [5℄ p. 130. Topresent also this brie�y reall �rst the formula
Ex(exp(−λHb)) =

ψλ(x)

ψλ(b)
, (13)5



where λ > 0 and ψλ is an inreasing solution of the generalized di�erentialequation
d

dm

d

dS
u = λu. (14)Letting b → r in (13) it is seen that

r is exit ⇔ lim
b→r

ψλ(b) <∞.Let ψ+
λ denote the (right) derivative of ψλ with respet to S. Sine ψλ isinreasing it holds that ψ+

λ > 0. The fat that ψλ solves (14) yields for z < r

ψ+
λ (r) − ψ+

λ (z) = λ

∫ r

z

ψλ(a)m(da).In partiular, ψ+
λ is inreasing and ψ+

λ (r) > 0. Hene, assuming now that
ψλ(r) < ∞ we obtain S(r) <∞, and, further,
λψλ(z)

∫ r

z

S(dα)

∫ α

z

m(dβ) ≤ λ

∫ r

z

S(dα)

∫ α

z

ψλ(β)m(dβ)

=

∫ r

z

S(dα)
(
ψ+

λ (α) − ψ+
λ (z)

)

= ψλ(r) − ψλ(z) − ψ+
λ (z) (S(r) − S(z)) <∞,whih yields the ondition on the right hand side of (11). Assume next thatthe ondition on the right hand side of (11) holds, and onsider for z < β

0 ≤ (ψλ(β))−1 (
ψ+

λ (β) − ψ+
λ (z)

)
= (ψλ(β))−1

∫ β

z

ψλ(α)m(dα).Integrating over β gives
log(ψλ(r)) − log(ψλ(z)) − ψ+

λ (z)

∫ r

z

(ψλ(β))−1 S(dβ)

=

∫ r

z

S(dβ) (ψλ(β))−1

∫ β

z

ψλ(α)m(dα)

≤

∫ r

z

S(dβ)

∫ β

z

m(dα) <∞,whih implies that ψλ(r) <∞, thus ompleting the proof.6



6. As an appliation of Theorem 2, we onsider a Bessel proess withdimension parameter δ > 2. Let R denote this proess. It is well known that
limt→∞Rt = +∞ and that R solves the SDE

dRt = dWt +
δ − 1

2Rt

dt,where W is a standard Brownian motion. Here the funtion BR (f. (3))takes the form
BR(v) = (δ − 1) log v,and, onsequently,

∫
∞

dv (g′(v))2 eBR(v)

∫
∞

v

du e−BR(u)

=

∫
∞

dv (g′(v))2 vδ−1

∫
∞

v

du u−δ+1

=

∫
∞

dv (g′(v))2 vδ−1 1

δ − 2
v−δ+2leading to

∫
∞

0

f(Rt) dt <∞ ⇔

∫
∞

u f(u) du < +∞.Another way to derive this ondition is via loal times and Jeulin's lemma[6℄. Indeed, by the oupation time formula and Ray-Knight theorem for thetotal loal times of R (see, e.g. [10℄ Theorem 4.1 p. 52) we have
∫

∞

0

f(Rs) ds
(d)
=

∫
∞

0

f(a)
ρaγ

γ aγ−1
da

=
1

γ

∫
∞

0

a f(a)
ρaγ

aγ
dawhere δ = 2 + γ and ρ is a squared 2-dimensional Bessel proess. Usingthe saling property, it is seen that the distribution of the random variable

ρaγ/aγ does not depend on a. Hene, we obtain by Jeulin's lemma that if thefuntion a 7→ a f(a), a > 0, is loally integrable on [0,∞) then
∫

∞

0

f(Rs) ds <∞ ⇔

∫
∞

a f(a) da <∞. (15)7



The same argument allows us to reover the result in [9℄, that is,
∫

∞

0

g(W (µ)
s ) ds <∞ ⇔

∫
∞

g(x) dx <∞. (16)where g is any non-negative loally integrable funtion and W (µ) denotes aBrownian motion with drift µ > 0. To see this, write g(x) = f(ex) and useLamperti's representation
exp(W (µ)

s ) = R
(µ)

A
(µ)
s

, s ≥ 0,where
A(µ)

s =

∫ s

0

du exp(2W (µ)
u )and R(µ) is a Bessel proess with dimension d = 2(1 + µ) starting from 1, weobtain (f. [8℄ Remark 3.3.(3))

∫
∞

0

f(exp(W (µ)
s )) ds =

∫
∞

0

(
R(µ)

u

)−2
f(R(µ)

u ) du a.s.,and, in order to get (16) it now only remains to use the equivalene (15).We wish to underline the fat that in Theorem 2 it is assumed that thefuntion f is ontinuous whereas the approah via Jeulin's lemma, whih wedeveloped above, demands only loal integrability.Referenes[1℄ A.N. Borodin and P. Salminen. Handbook of Brownian Motion � Fatsand Formulae, 2nd edition. Birkhäuser, Basel, Boston, Berlin, 2002.[2℄ A.N. Borodin and P. Salminen. On some exponential integral funtionalsof BM(µ) and BES(3). Zap. Nauhn. Semin. POMI, 311:51�78, 2004.Preprint available in http://arxiv.org/abs/math.PR/0408367.[3℄ L. Breiman. Probability. Addison Wesley, Reading, MA, 1968.[4℄ H.J. Engelbert and T. Senf. On funtionals of Wiener proess with driftand exponential loal martingales. In M. Dozzi, H.J. Engelbert, andD. Nualart, editors, Stohasti proesses and related topis. Pro. Win-tersh. Stohasti Proesses, Optim. Control, Georgenthal/Ger. 1990,number 61 in Math. Res., Aademi Verlag, pages 45�58, Berlin, 1991.8
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