
HAL Id: hal-00013788
https://hal.science/hal-00013788v1

Preprint submitted on 13 Nov 2005 (v1), last revised 20 May 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing with Conway’s Problem
Emmanuel Jeandel, Nicolas Ollinger

To cite this version:

Emmanuel Jeandel, Nicolas Ollinger. Playing with Conway’s Problem. 2005. �hal-00013788v1�

https://hal.science/hal-00013788v1
https://hal.archives-ouvertes.fr

Playing with Conway’s Problem

Emmanuel Jeandel1 and Nicolas Ollinger2

1 LIP, UMR CNRS, École Normale Supérieure de Lyon,
46 allée d’Italie, 69364 Lyon Cedex 07, France,

Emmanuel.Jeandel@ens-lyon.fr

2 LIF, UMR CNRS, Université de Provence, CMI,
39 rue Joliot-Curie, 13453 Marseille Cedex 13, France,

Nicolas.Ollinger@lif.univ-mrs.fr

Abstract. The centralizer of a language is the maximal language com-
muting with it. The question, raised by Conway in 1971, whether the
centralizer of a rational language is always rational, recently received a
lot of attention. In Kunc 2005, a strong negative answer to this prob-
lem was given by showing that even complete co-recursively enumerable
centralizers exist for finite languages. Using a combinatorial game ap-
proach, we give here an incremental construction of rational languages
embedding any recursive computation in their centralizers.

1 Introduction

In 1999, Choffrut et al. [1] renewed an old problem raised by Conway [2] in 1971:
given a rational language, does its centralizer — the maximal language commut-
ing with it — have to be rational? The property is known to hold for some
particular families of languages. In the case of codes, Ratoandramanana [13]
showed in 1989 that it holds for biprefix codes, raising a restriction of Conway’s
problem to codes which recently recieved a positive answer by Karhumäki et al.
[5]. In the general case, until recently, the best known result, by Karhumäki and
Petre [6], was that the centralizer of a recursive language has to be co-recursively
enumerable. This property may also be considered as a particular case of results
of Okhotin [11] concerning the computational power of systems of equations on
languages. In 2004, the community was thrilled by an announcement by Kunc
[8] that Conway’s problem deserved a strong negative answer. This announce-
ment was followed by a conference communication [9] in 2005 showing that
finite languages exist whose centralizers are complete for co-recursively enumer-
able languages. It includes a sketch of the proof for the special case of rational
languages. While simpler than the proof for finite languages, this proof is still
rather involved — mostly due to a direct construction of the language encoding
a given Minsky machine.

In this paper we propose another proof of the existence of rational languages
with non-recursive centralizers. The key arguments of the proof come from a
careful study of the first example in Kunc [9] leading to the core constructions

2 E. Jeandel and N. Ollinger

of our proof: checking and flooding. Our approach significantly differs for two rea-
sons. First, a combinatorial game point of view is taken through the whole proof.
Apart from the fun of dealing with a problem raised by Conway using games,
games are convenient tools to embed a dynamical process like a computation into
a static object like a fix-point. Using this point of view, a computation can be
transformed incrementally into a centralizer by transforming winning strategies
from one game to another more specialized game. Secondly, the construction of
the language embedding a particular computation is incremental — explicitly
explaining how to compile a program into a language so that its centralizer cor-
responds to the computation. Whereas the final proof is by no way shorter than
Kunc original proof, cutting the construction into locally independent proposi-
tions improves its readability. Our proof also uses Post tag systems instead of
Minsky machines as Post tag systems are in a way closer to centralizers.

In this paper, the letters Σ and Γ denote finite alphabets. The set of finite
words over an alphabet Σ is denoted by Σ?, the empty word by ε, the catenation
of two words x and y by xy and the length of x ∈ Σ? by |x|. A word x is a prefix
(resp. suffix) of a word y, denoted by x ≺ y (resp. y � x), if there exists a word
z ∈ Σ? such that xz = y (resp. y = zx); this word z is unique and is denoted as
x−1y (resp. yx−1). A word x is a subword of a word y if there exists two words
z, z′ ∈ Σ? such that zxz′ = y. A language over Σ is a subset of Σ?. The product
XY of two languagesX and Y is the language {xy : x ∈ X, y ∈ Y }. The language
of prefixes (resp. suffixes) of a language X, denoted as Pref(X) (resp. Suff(X))
is the set of every prefixes (resp. suffixes) of each word in X. The language of
subwords of a languageX, denoted as Sub(X) is the set of every subwords of each
words in X. The language X−1Y is the language {z : ∃x ∈ X,∃y ∈ Y, y = xz}.
The language Y X−1 is the language {z : ∃x ∈ X,∃y ∈ Y, y = zx}.

Two languages X and Y commute if the equation XY = Y X is satisfied.
The set of languages that commute with a given language X is closed by union.
Thus it admits a unique maximal element for inclusion called the centralizer
of X, denoted by C(X). The centralizer of X always contains X?. Moreover, if
X contains the empty word then its centralizer is equal to Σ?. Otherwise, it is
contained into Pref(X?) ∩ Suff(X?).

2 Cutenation games

In this section cutenation3 games are introduced and their relations with central-
izers are explained before sketching the proof of existence of rational languages
with non-recursive centralizers.

2.1 Definition

A cutenation game is a tuple (A,B, L,R, VA, VB) where both (A,B, L) and
(A,B, R) are bipartite graphs whose edges are tagged with words on Σ (i.e.
3 cutenation is a free contraction of both words cut and catenation.

Playing with Conway’s Problem 3

L,R ⊆ A×B×Σ?) and the mappings VA : A → Σ? and VB : B → Σ? constraint
the positions. Given such a game, a A-configuration (a, x) ∈ A × Σ? verifies
x ∈ VA(a). Symmetrically a B-configuration (b, y) ∈ B×Σ? verifies y ∈ VB(b).

Remark. In this paper we will only consider connected cutenation games, that is
cutenation games (A,B, L,R, VA, VB) for which the bipartite graph (A,B, L∪R)
is connected and both sets A and B are finite.

Notation. We will depict L and R by a graph where A-vertices are represented
by black points, B-vertices are represented by white points, L-edges are repre-
sented by plain edges and R-edges are represented by dashed edges (for clarity
ε tags will be omitted).

β

c

γ

δ

αa b

ab

baa

Fig. 1. graphical representation of a simple cutenation game

Example. A sample cutenation game, omitting VA and VB , is depicted on Fig. 1
where A = {α, β, γ, δ}, B = {a,b, c}, L = {(a, β, ab), (b, α, ε), (c, α, ε)} and
R = {(a, α, ε), (b, δ, baa), (c, β, ε), (c, γ, ε), (c, δ, ε)}.

A cutenation game is played as an iterated two-player combinatorial game
where the set of A-configurations is the set of positions of the player A and the set
of B-configurations is the set of positions of the player B. A move of the player
A, from a A-configuration (a, x) to a B-configuration (b, y), is a catenation:

– either a l-move (a, x) `A,l (b, yx) such that yx ∈ VB(b) and (a, b, y) ∈ L;
– or a r-move (a, x) `A,r (b, xy) such that xy ∈ VB(b) and (a, b, y) ∈ R.

Symmetrically, a move of the player B, from a B-configuration (b, y) to a A-
configuration (a, x), is a cut:

– either a l-move (b, yx) `B,l (a, x) such that x ∈ VA(a) and (a, b, y) ∈ L;
– or a r-move (b, xy) `B,r (a, x) such that x ∈ VA(a) and (a, b, y) ∈ R.

A round of the game starts from a A-configuration (a, x) and consists first of
a move of the player A from (a, x) to a B-configuration (b, y), then of a move of
the player B from (b, y) to a A-configuration (a′, x′). Furthermore if A plays a

4 E. Jeandel and N. Ollinger

l-move then B must play a r-move and symmetrically if A plays a r-move then
B must play a l-move. If a player cannot move then the player looses. The next
round will start from (a′, x′). If the game lasts forever then the player B wins.

Example. For the cutenation game of Fig. 1, this is a valid sequence of consec-
utive rounds:

1. (β, aa) `A,l (a, abaa) `B,r (α, abaa) ;
2. (α, abaa) `A,l (b, abaa) `B,r (δ, a) ;
3. (δ, a) `A,r (c, a) `B,l (α, a) .

Lemma 1. Starting from a A-configuration (a, x) either the player A has a
winning strategy or the player B has a winning strategy.

Proof. Let (a, x) be a A-configuration for which neither the player A nor the
player B has a winning strategy. If every move from the player A starting from
(a, x) would lead to a B-configuration from which the player B could move to a
A-configuration on which the player B has a winning strategy then the position
(a, x) would be winning for the player B. Thus, the player A has a valid move
from (a, x) to a B-configuration (b, y) from which the player B can move either
to a A-configurations on which the player A has a winning strategy or to A-
configurations on which neither the player A nor the player B have a winning
strategy. On such configurations the best moves from both the player A and the
player B would lead to an infinite run. By the rules, the player B would win
which implies that the player B has a winning strategy starting from (a, x). �

2.2 Languages and centralizers

Given a cutenation game (A,B, L,R, VA, VB) and an element a of A, the lan-
guage L(a) is the set of words x ∈ Σ? such that the configuration (a, x) admits
a winning strategy for the player B.

In the special case where both A and B are finite and L, R, VA and VB are
recursive, given an element a of A, the language L(a) is co-recursively enumer-
able. It follows from the fact that one can exhaustively search a winning strategy
for the player A as a finite one exists — the player B only has finitely many
valid moves starting from a B-configuration.

The centralizer C(X) of a given language X can be expressed as the lan-
guage L associated to the unique element of A of the cutenation game where:
both A and B are singletons, L and R are both equal to the language X and
both VA(a) = Σ? and VB(b) = Σ?. In the following, we call such a game a com-
mutation game. For the sake of readability, when manipulating cutenation game
where A and B are singletons, we will manipulate L, R, VA and VB as subsets
of Σ? and denote the language associated with the game as L. For the same
reasons A-configurations and B-configurations will be considered as elements of
Σ?.

Playing with Conway’s Problem 5

In order to prove the main result of this paper, we will proceed through the
following steps. First, we restrict ourselves to a specific subset of special cutena-
tion games. Then, we show how to recursively encode co-recursively enumerable
languages into the language of such a game. After that we proceed to the core
of the proof and explain how to transform such special cutenation game into a
commutation game in which the language associated with any element of A is
recursively encoded into the language associated to the commutation game of a
rational language.

3 Encoding Post Tag Systems

In order to encode every co-recursively enumerable language into the language
associated to a commutation game, the family of cutenation games is first re-
stricted to games with special properties that will allow further reductions; then
Post tag systems are encoded into games verifying these particular properties.

3.1 Restraining Cutenation Games

The following special kinds of cutenation games will be used in the proof. The
main reason to enforce these properties is to enable the latter encoding of both
A and B into L, R, VA and VB .

Unfairness. A cutenation game is unfair if the player A has no constraint.
More formally, a cutenation game (A,B, L,R, VA, VB) over the alphabet Σ is
unfair if VB = Σ?.

Rootedness. A cutenation game is rooted if the player A can catenate non-
empty words on the left (respectively on the right) from at most one position
called the left root (respectively the right root). More formally, a cutenation
game (A,B, L,R, VA, VB) is rooted if there exists a left root aL ∈ A such that
for all (a, b, x) ∈ L if x 6= ε then a = aL and there exists a right root aR ∈ A
such that for all (a, b, x) ∈ R if x 6= ε then a = aR.

Oscillation. A cutenation game is oscillating if the player A is enforced to
oscillate at each round between l-moves and r-moves. More formally, a cutenation
game (A,B, L,R, VA, VB) is oscillating if the set A can be split into two disjoint
sets AL and AR such that for all (a, b, x) ∈ L necessarily a ∈ AL and for all
(a, b, x) ∈ R necessarily a ∈ AR.

Separation. A cutenation game is separated if positions can be viewed as a
product of a left and right position modified independently by l-moves and r-
moves. More formally, a cutenation game (A,B, L,R, VA, VB) is separated if there
exists two sets SL and SR such that A∪B ⊆ SL×SR and both L and R satisfies
the following requirements. For all move ((s, t), (s′, t′), x) ∈ L only the left part
is modified so t = t′. Moreover, for all t′′ ∈ SR such that (s, t′′) ∈ A necessarily

6 E. Jeandel and N. Ollinger

(s′, t′′) ∈ B and the move ((s, t′′), (s′, t′′), x) must be in L. Symmetrically, For all
move ((s, t), (s′, t′), x) ∈ R only the right part is modified so s = s′. Moreover,
for all s′′ ∈ SL such that (s′′, t) ∈ A necessarily (s′′, t′) ∈ B and the move
((s′′, t), (s′′, t′), x) must be in R.

Orientation. A cutenation game is oriented if it is both separated and oscillat-
ing and if its left and right positions can be ordered into minimal and maximal
positions, a move changing the corresponding position from minimal to maxi-
mal. More formally, a cutenation game (A,B, L,R, VA, VB) is oriented if it is
both separated and oscillating and if the set SL, respectively SR, can be split
into two disjoint sets S−L and S+

L , respectively S−R and S+
R , such that the set AL

subsets S−L × S+
R , the set AR subsets S+

L × S−R , and the set B subsets S+
L × S+

R .

Lemma 2. Let (A,B, L,R, VA, VB) be an oscillating cutenation game. Let νL,
respectively νR, be the application mapping an element of A∪B to its associated
connected component in the bipartite graph (A,B, L), respectively (A,B, R). If
the mapping ν : x 7→ (νR(x), νL(x)) is injective then the given oscillating cutena-
tion game can be considered, up to the isomorphism ν, as a separated oscillating
cutenation game where SL = νR(A ∪B) and SR = νL(A ∪B).

Proof. Let (A,B, L,R, VA, VB) be an oscillating cutenation game satisfying the
hypothesis. Let (a, b, x) be in L and let both (s, t) = ν(a) and (s′, t′) = ν(b).
By definition of νL, as a and b are connected by L then νL(a) = νL(b) thus
t = t′. Moreover, as the game is oscillating a ∈ AL. Let t′′ ∈ SR be such that
(s, t′′) = ν(a′) for some a′ ∈ A. By definition of νR this means that a and a′

are connected by R. As a ∈ AL it implies that a = a′. A symmetrical reasoning
applies to R. Therefore, the game is, up to isomorphism ν, separated. �

Lemma 3. Let (A,B, L,R, VA, VB) be a separated oscillating cutenation game
obtained by lemma 2. Such a game is oriented.

Proof. Let (A,B, L,R, VA, VB) be a spearated oscillating cutenation game ob-
tained by lemma 2. Let S+

L be defined has {s : ∃t ∈ SR, (s, t) ∈ B} and S−L =
SL \ S+

L . Symmetrically, let S+
R be defined has {t : ∃s ∈ SL, (s, t) ∈ B} and

S−R = SR \ S+
R . By construction B subsets S+

L × S+
R . Let (s, t) be in AL. As

the cutenation game is connected there is at least one move in L involving (s, t)
thus t ∈ S+

R . Assume that s ∈ S+
L . This means that there exists some t′ ∈ S+

R

such that (s, t′) ∈ B. By definition of νR necessarily (s, t) and (s, t′) are con-
nected by R. As the game is oscillating it implies that t = t′ but A and B are
disjoint. Therefore s must be in S−L . Symmetrically, the same holds for AR. �

3.2 Post Tag Systems

A Post tag system P is a triple (Σ, k, ϕ) where Σ is a finite alphabet, k the step
of the system and ϕ is a mapping from Σk to Σ?. A configuration of the system
is a word u from Σ?. For all u in Σ? and i in Σk, the configuration iu evolves
into the configuration uϕ(i). The computation stops when no further evolution

Playing with Conway’s Problem 7

is possible. The language LP associated to the Post tag system is the set of words
for which the evolution eventually stops. Post tag systems recursively encode any
recursively enumerable language into their languages. For more details about tag
systems and their computational power, the reader might consult Minsky [10].

Proposition 1. Let P be a Post tag system over the alphabet Σ. An unfair
rooted oriented cutenation game (A,B, L,R, VA, Σ

?) over the same alphabet ex-
ists such that, for some distinguished element a ∈ A, both language L(a) and
Σ? \ LP are equal.

Proof. Let P be a Post tag system (Σ, k, ϕ) where Σ is an alphabet of size n.
The tag system will be encoded as a cutenation game (A,B, L,R, VA, Σ

?) where

A = {α, η} ∪
⋃

i∈Σk {βi, γi, δi, ζi} ,
B = {a} ∪

⋃
i∈Σk {bi, ci,di}

and the relations L and R are depicted on Fig. 2.

bi

γi

ci

δi

di

η

a

α

βi ζi

ϕ(i) i

Fig. 2. the rooted oriented cutenation game of a Post System

The constraints VA are defined as follows: VA(α) = Σ?, VA(η) = Σ?, and for
all i in Σk:

VA(γi) = iΣ?ϕ(i),
VA(βi) =

(
Σk \ {i}

)
Σ?ϕ(i),

VA(δi) = iΣ?ϕ(i),
VA(ζi) = Σ? \ iΣ?ϕ(i).

This game is unfair and rooted, the roots being α and η. Moreover it is oscillating
and fulfills the requirements of lemma 2 thus by lemma 3 it is oriented. It remains
to prove that L(α) equals Σ? \ LP.

Let x be a word in LP. A winning strategy for the player A starting from the
A-configuration (α, x) is to follow the computation steps of the Post tag system.
If a transition of the tag system exists starting from x then x can be rewritten
as iy with i ∈ Σk. Going through the states bi, ci, di and a, the player A will

8 E. Jeandel and N. Ollinger

force the player B to go to the A-configuation (α, yϕ(i)). If no transition of the
tag system exists starting from x this means that |x| is less than k, the player
A moves to bi for any i ∈ Σk. The player B has no valid move. The player A
wins. Therefore, the player A has a winning strategy starting from (α, x) with
x ∈ LP.

Let x be a word in Σ? \ LP. A winning strategy for the player B starting
from the A-configuration (α, x) works as follows. In this game the player B has
no choice so his strategy is to play when he can. The only possibility for the
player B to have no valid move is to play from some position bi obtained from
a position α with a word of size less than k. Observe that the only possible
sequences of moves going from a configuration (α, y) to a configuration (α, z)
imply that in the tag system there is a valid sequence of transitions either from
z to y or from y to z. Thus as in the tag system x has an infinite sequence of
valid transitions the position (α, x) is winning for the player B. Therefore, the
player B has a winning strategy starting from (α, x) with x ∈ Σ? \ LP. �

4 Removing states

In order to transform unfair rooted oriented cutenation games into commutation
game, the first step is to transform the state sets A and B into singletons and
to ensure that L = R. This is done by choosing a proper encoding of every
configuration ((s, t), x) into a proper word 〈s, x, t〉.

4.1 Encoding states

Let (A,B, L,R, VA, VB) be an unfair rooted oriented cutenation game. We en-
code each configuration ((s, t), x) into a proper word 〈s, x, t〉 using the following
encoding.

Let m be the size of S−L and Γ−
L be an alphabet of m− 1 ordered new letters

{α1, . . . , αm−1}. Let ρ map S−L into {0, 1, . . . ,m− 1} so that the left root is
mapped into 0. Let ϕ−L map s ∈ S−L into the word αρ(s) · · ·α2α1 of size ρ(s). The
encoding ϕL(s) of a state s ∈ SL is equal to ϕ−L (s) when s ∈ S−L . Let n be the
size of S+

L and Γ+
L be an alphabet of n ordered new letters {β1, . . . , βn}. Let σ

map S+
L into {1, . . . , n}. Let ϕ+

L map s ∈ S+
L into the word βσ(s)αm−1 · · ·α1 of

size m. The encoding ϕL(s) of a state s ∈ SL is equal to ϕ+
L(s) when s ∈ S+

L . For
each pair of states (s, s′) ∈ S−L × S+

L define φL(s, s′) as ϕ+
L(s′)ϕ−L (s)−1, which is

βσ(s′)αm−1 · · ·αρ(s)+1. Notice that φL(s, s′) ∈ Γ+
L

(
Γ−

L

)?
.

Symmetrically, let m′ be the size of S−R and Γ−
R be an alphabet of m′ −

1 ordered new letters {γ1, . . . , γm′−1}. Let ρ′ map S−R into {0, 1, . . . ,m′ − 1}
so that the right root is mapped into 0. Let ϕ−R map t ∈ S−R into the word
γ1γ2 · · · γρ′(t) of size ρ′(t). The encoding ϕR(t) of a state t ∈ SR is equal to
ϕ−R(t) when t ∈ S−R . Let n′ be the size of S+

R and Γ+
R be an alphabet of n′

ordered new letters {δ1, . . . , δn′}. Let σ′ map S+
R into {1, . . . , n′}. Let ϕ+

R map

Playing with Conway’s Problem 9

t ∈ S+
R into the word γ1 · · · γm′−1δσ′(t) of size m′. The encoding ϕR(t) of a state

t ∈ SR is equal to ϕ+
R(t) when t ∈ S+

R . For each pair of states (t, t′) ∈ S−R × S+
R

define φR(t, t′) as ϕ−R(t)−1ϕ+
R(t′), which is γρ′(t)+1 · · · γm′−1δσ′(t′). Notice that

φR(t, t′) ∈
(
Γ−

R

)?
Γ+

R .

Let τL and τR be the two morphisms from Σ? to (Σ ∪ {o})?, where o is a
new letter, defined for each letter a ∈ Σ by τL(a) = oa and τR(a) = ao. For each
word x ∈ Σ? define τ(x) as τL(x)o, which is equal to oτR(x).

A configuration ((s, t), x) ∈ (SL × SR)×Σ? of the game will be encoded by
the word ϕL(s)τ(x)ϕR(t) denoted as 〈s, x, t〉. The set L will be encoded using
the mapping ψL defined by ψL((s, t), (s′, t), x) = φL(s, s′)τL(x). Symmetrically,
The set R will be encoded using the mapping ψR defined by ψR((s, t), (s, t′), y) =
τR(y)φR(t, t′).

Proposition 2. Let (A,B, L,R, VA, Σ
?) be an unfair rooted oriented cutena-

tion game. Let V ′
A and V ′

B be respectively the sets {〈s, x, t〉 : x ∈ VA((s, t))} and
Sub(

{
〈s, x, t〉 : x ∈ Σ?, (s, t) ∈ S+

L × S+
R

}
). Let ((s, t), x) be a configuration of the

game. There exists a valid move from the configuration 〈s, x, t〉 to a configura-
tion w in the cutenation game ({a} , {b} , ψL(L), ψR(R), V ′

A, V
′
B) if and only if

w = 〈s′, y, t′〉 for some s′, y, t′ and the move from ((s, t), x) to ((s′, t′), y) is
valid in the first game.

Proof. Let (A,B, L,R, VA, Σ
?) be an unfair rooted oriented cutenation game.

Let ((s, t), x) be a configuration of the game.

Let ((s′, t′), y) be a configuration of the game such that a move from ((s, t), x)
to ((s′, t′), y) is valid. Let w = 〈s′, y, t′〉. If the move is a l-move for the player
A then t = t′ and ((s, t), (s′, t), z) ∈ L where y = zx and thus φL(s, s′)τL(z) ∈
ψL(L). To prove that this move is a valid l-move in the new game, it is sufficient to
show that φL(s, s′)τL(z) 〈s, x, t〉 = 〈s′, y, t′〉. If (s, t) is the left root then ϕL(s) =
ε and φ(s, s′) = ϕL(s′) thus φL(s, s′)τL(z) 〈s, x, t〉 = ϕL(s′)τ(zx)ϕR(t). If (s, t)
is not the left root then z = ε and φL(s, s′)τL(z) 〈s, x, t〉 = ϕL(s′)τ(x)ϕR(t) as
φL(s, s′)ϕL(s) = ϕL(s′). Therefore, if the move is valid l-move for the player A
in the original game then it is a valid l-move for the player A in the new game.
The three other cases works on the same principle (don’t forget to check with
VA in the case of a move for the player B).

Let w be a word such that there is a valid move for the player A in the new
game from 〈s, x, t〉 to w where (s, t) ∈ A. If it is a l-move there exists some s′,
s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and w = φL(s′, s′′)τL(z) 〈s, x, t〉.
As w ∈ V ′

B and both s′′ ∈ S+
L and t ∈ S+

R then w = 〈s′′, y, t〉 for some y ∈
Σ?. This implies that s = s′ and y = zx. To prove that there is a valid l-
move in the original game for the player A from the configuration ((s, t), x)
to the configuration ((s′′, t), zx) it is sufficient to show that (s′′, t) ∈ B and
((s, t), (s′′, t), z) ∈ L. As φL(s, s′′)τL(z) ∈ ψL(L) there exists some t′ such that
((s, t′), (s′′, t′), z) ∈ L. As the original game is separated and both (s, t) ∈ A and
(s, t′) ∈ A then (s′′, t) ∈ B and ((s, t), (s′′, t), z) ∈ L. The case of a r-move for
the player A works symmetrically.

10 E. Jeandel and N. Ollinger

Let w be a word such that there is a valid move for the player B in the new
game from 〈s, x, t〉 to w where (s, t) ∈ B. If it is a l-move then there exists some
s′, s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and φL(s′, s′′)τL(z)w = 〈s, x, t〉.
As w ∈ V ′

A and both s ∈ S+
L and t ∈ S+

R then s′′ = s and w = 〈s′, y, t〉 for
some (s′, t) ∈ A and y ∈ VA((s′, t)) such that zy = x. To prove that there
is a valid l-move in the original game for the player B from the configuration
((s, t), zy) to the configuration ((s′, t), y) it is sufficient to show that (s′, t) ∈ AL

and ((s′, t), (s, t), z) ∈ L. As φL(s′, s)τL(z) ∈ ψL(L) there exists some t′ such that
((s′, t′), (s, t′), z) ∈ L. As the original game is separated and both (s′, t) ∈ A and
(s′, t′) ∈ A then ((s′, t), (s, t), z) ∈ L. The case of a r-move for the player B works
symmetrically. �

4.2 Enforcing symmetry

In a commutation game both sets of left moves L and right moves R are equal.
If the sets VA and VB bring enough constraints to the game both L and R can
be replaced by L ∪R to enforce this symmetry.

Proposition 3. Let ({a} , {b} , L,R, VA, VB) be a cutenation game. Let X be the
language L∪R. If the four sets RVA∩VB, VAL∩VB, R−1VB∩VA, and VBL

−1∩VA

are empty then the valid moves, both the player A and the player B, are the same
in the given game and in the cutenation game ({a} , {b} , X,X, VA, VB).

Proof. Every move in the original game is allowed in the new game. Conversely,
let x `A,l y be a valid left move for the player A in the new game. There exists
z ∈ X such that y = zx so y ∈ XVA ∩ VB . As RVA ∩ VB is empty, then z ∈ L
and the move is also valid in the original game. The three remaining cases are
similar using the three other empty sets (use VAL∩VB for `A,r, use R−1VB∩VA

for `B,l, and use VBL
−1 ∩ VA for `B,r). �

The construction to enforce symmetry can be applied directly after encoding
the states as the new encoding verifies the required hypothesis.

Lemma 4. Let (A,B, L,R, VA, Σ
?) be some unfair rooted oriented cutenation

game. Let V ′
A and V ′

B be defined has in proposition 2. Let X be the set ψL(L) ∪
ψR(R). The valid moves for both the player A and the player B are the same in
both games ({a} , {b} , ψL(L), ψR(R), V ′

A, V
′
B) and ({a} , {b} , X,X, V ′

A, V
′
B).

Proof. By proposition 3 it is sufficient to show that the four sets ψR(R)V ′
A∩V ′

B ,
V ′

AψL(L) ∩ V ′
B , ψR(R)−1V ′

B ∩ V ′
A, and V ′

BψL(L)−1 ∩ V ′
A are empty.

ψR(R)V ′
A does not intersect V ′

B because every word of ψR(R)V ′
A contains an

occurence of a letter in Γ+
R before a letter o and this is never the case in V ′

B . A
symmetrical proof works for V ′

AψL(L) ∩ V ′
B .

ψR(R)−1V ′
B does not intersect V ′

A because ψR(R)−1V ′
B only contains the

empty word which is not in V ′
A. The same holds for V ′

BψL(L)−1. �

Playing with Conway’s Problem 11

5 Removing constraints

In order to conclude the construction the constraints sets VA and VB must be
removed. This part is the core of the proof. The construction proceeds in two
steps : first we remove VA through checking, then we remove VB through flooding.

5.1 Checking

To remove VA means to remove constraints on the positions at the end of a move
from the player B. To ensure that the set of winning strategies of the player B
does not grow, the idea is to allow the player A to challenge the player B if he
plays outside of VA by checking the validity of the move.

Proposition 4. Let ({a} , {b} , X,X, VA, VB) be a cutenation game over the al-
phabet Σ with associated language L. Let X ′ and V ′

B be respectively the lan-
guages X∪cV ?

A∪V ?
Ac and VB∪cVB∪VBc. Let

(
{a} , {b} , X ′, X ′, (Σ ∪ {c})?

, V ′
B

)
be the cutenation game over the alphabet Σ ∪ {c} with associated language L′

where c is a new letter not in Σ. If the four sets X−1X−1VB, VBX
−1X−1,((

X−1 (VAX ∩ VB)
)
\ VA

)
∩V ?

A, and
(
((XVA ∩ VB)X)−1 \ VA

)
∩V ?

A are empty

and both inclusions X−1VB ⊆ VB and VBX
−1 ⊆ VB hold then L is equal to L′.

Proof. We prove that the player B has a winning strategy in the original game
if and only if the player B has a winning strategies in the new game.

If the player B had a winning strategy in the original game starting from a
given position then he keeps playing according to its original strategy as long as
the player A keeps using moves that were valid in the original game. If the player
A uses a new move from a position x ∈ VA then there are two possibilities:

– either he catenates a word of X leading to a new position in V ′
B \VB ; this is

impossible as all the new valid positions must contain the new letter c which
does not appear in X;

– or he catenates a word of X ′ \ X containing the new letter c leading to a
new valid position y which must be either in cVB or in VBc; as x ∈ VA and
as X ′ \X = cV ?

A ∪ V ?
Ac, necessarily y ∈ cV ?

A ∪ V ?
Ac and thus y ∈ X ′.

A winning strategy for the player B starting from a position in X ′ is simply to
cut x completely thus accessing to the empty word position. The empty word
position is winning for the player B: when the player A catenates a word x the
player B just cuts x coming back to the empty word. Therefore, the player B
still has a winning strategy in the new game.

If the player A had a winning strategy in the original game starting from a
given position then he keeps playing according to its original strategy as long as
the player B keeps using moves that were valid in the original game. If the player
B uses a new move from a position x ∈ VB then there are two possibilities:

– either he cuts a word of X ′ \X containing the new letter c; this is impossible
as the new letter c does not appear in VB ;

12 E. Jeandel and N. Ollinger

– or he cuts a word of X leading to a new valid position in Σ? \ VA, more
precisely in

((
X−1 (VAX ∩ VB)

)
∪

(
(XVA ∩ VB)X−1

))
\ VA.

A winning strategy for the player A starting from a position y in the language(
X−1 (VAX ∩ VB)

)
\ VA is simply to catenates the word c on the right leading

to the valid position yc in VBc. As y 6∈ V ?
A and X−1X−1VB = ∅ the player B

has not valid move starting from yc, thus the player A wins. By a symmetri-
cal argument, the player A has a winning strategy starting from a position in(
(XVA ∩ VB)X−1

)
\ VA. Therefore, the player A still has a winning strategy in

the game. �

5.2 Flooding

To remove VB means to remove constraints on the positions at the end of a move
from the player A. To ensure that the set of winning strategies of the player A
does not grow, the idea is to ensure that every position outside of VB admits
a winning strategy for the player B by flooding the language with every word
outside of VB .

Proposition 5. Let ({a} , {b} , X,X,Σ?, VB) be a cutenation game over the al-
phabet Σ with associated language L. If VB is closed by subword then the cen-
tralizer C(X ∪Σ? \ VB) is equal to L.

Proof. We prove that the player B has a winning strategy in the game if and only
if the player B has a winning strategies in the commutation game of X∪Σ?\VB .

If the player A had a winning strategy in the original game starting from a
given position then he keeps playing according to its original strategy. As VB

is closed by subword, starting from a word in VB the player B cannot use a
transition in Σ? \ VB to cut: the player B has exactly the same possible moves
as in the original game. Therefore, the player A still has a winning strategy in
the new game.

If the player B had a winning strategy in the original game starting from a
given position then he keeps playing according to its original strategy as long as
the player A keeps using moves that were valid in the original game. If the player
A use a new move then, as VB is closed by subword, just after this move the new
position is a word in Σ? \VB . A winning strategy for the player B starting from
a word x in Σ? \ VB is simply to cut x completely thus accessing to the empty
word position. The empty word position is winning for the player B: when the
player A catenates a word x the player B just cuts x coming back to the empty
word. Therefore, the player B still has a winning strategy in the new game. �

To combine both checking and flooding to remove the constraints on a game
it is sufficent to ensure that the original constraints VB are closed by subword.

Lemma 5. Let ({a} , {b} , X,X, VA, VB) be a cutenation game over the alphabet
Σ with associated language L satisfying the hypothesis of the checking proposi-
tion. If the language VB is closed by subword then L is equal to the centralizer
C (X ∪ cV ?

A ∪ V ?
Ac ∪ (Σ? ∪ {c}) \ (VB ∪ cVB ∪ VBc)).

Playing with Conway’s Problem 13

Proof. If VB is closed by subword, so is V ′
B = VB ∪ cVB ∪ VBc. �

6 Gluing all together

We can now prove the main result of this article by combining the three parts
of the construction together.

Theorem 1. There exists a rational language X the centralizer C(X) of which
is complete for co-recursively enumerable languages.

Proof. Let P be a Post tag sytem with a language complete for recursively enu-
merable languages. Let (A,B, L,R, VA, Σ

?) be the unfair rooted oriented cutena-
tion game obtained by proposition 1 and such that for some a ∈ A the equation
L(a) = Σ? \LP holds. Let ({a} , {b} , X,X, V ′

A, V
′
B) be the cutenation game over

the alphabet Σ′ obtained by proposition 2 and lemma 4 such that the equation
L∩〈s,Σ?, t〉 = 〈s,Σ? \ LP, t〉 holds for some (s, t) ∈ A. To combine this cutena-
tion game with lemma 5, as V ′

B is closed by subword it is sufficient to show that
the hypothesis of proposition 4 are satisfied. More precisely it is sufficient to show
that the four setsX−1X−1V ′

B , V ′
BX

−1X−1,
((
X−1 (V ′

AX ∩ V ′
B)

)
\ V ′

A

)
∩V ′?

A , and((
(XV ′

A ∩ V ′
B)X−1

)
\ V ′

A

)
∩ V ′?

A are empty and both inclusions X−1V ′
B ⊆ V ′

B

and V ′
BX

−1 ⊆ V ′
B hold. Both inclusions hold because V ′

B is closed by subword.

The set X−1X−1V ′
B is empty because first R−1V ′

B only contains the empty
word and X does not contain the empty word, secondly because L−1V ′

B contains
the empty word and words which begins with a letter in Γ−

L and words in X
never begins with such a letter. Symmetrically, the set V ′

BX
−1X−1 is empty.

The set
((
X−1 (V ′

AX ∩ V ′
B)

)
\ V ′

A

)
∩ V ′?

A is empty because the only words in
the language X−1 (V ′

AX ∩ V ′
B) are of the kind 〈s, x, t〉 for some s ∈ S−L , x ∈ Σ?

and t ∈ S+
R while the only words of V ′?

A which are of the shape 〈s′, y, t′〉 for
some s′ ∈ SL, t′ ∈ SR and y ∈ Σ? are either in V ′

A either in V ′
AV

′
A but in V ′

AV
′
A

necessarily s′ ∈ S+
L and t′ ∈ S+

R . Therefore the set is empty. Symmetrically, the
set

((
(XV ′

A ∩ V ′
B)X−1

)
\ V ′

A

)
∩ V ′?

A is empty.

Therefore, the lemma 5 can be applied and Σ? \LP can be recursively com-
puted from the centralizer of ther rational set X ∪ cV ′?

A ∪ V ′?
A c ∪ (Σ′? ∪ {c}) \

(V ′
B ∪ cV ′

B ∪ V ′
Bc). As a consequence, the centralizer of this rational language is

complete for co-recursively enumerable languages. �

References

[1] C. Choffrut, J. Karhumäki, and N. Ollinger, The commutation of finite sets: a
challenging problem, Theoret. Comput. Sci., 273(2002), 69–79.

[2] J. H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971.

[3] T. Harju, O. Ibarra, J. Karhumäki, and A. Salomaa, Decision questions in semi-
linearity and commutation, J. Comput. Syst. Sci., 65(2002), 278–294.

14 E. Jeandel and N. Ollinger

[4] J. Karhumäki, Challenges of commutation: an advertisement, in Proc. of FCT
2001 , volume 2138 of LNCS , pages 15–23, Springer, 2001.

[5] J. Karhumäki, M. Latteux, and I. Petre, The commutation with codes and ternary
sets of words, in Proc. of STACS 2003 , volume 2607 of LNCS , pages 74–84,
Springer, 2003.

[6] J. Karhumäki and I. Petre, Conway’s problem for three-word sets, Theoret. Com-
put. Sci., 289(2002), 705–725.

[7] J. Karhumäki and I. Petre, Two problems on commutation of languages, in
G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Computer
Science, World Scientific, 2004.

[8] M. Kunc, Regular solutions of language inequalities and well quasi-orders, in Proc.
of ICALP 2004 , LNCS, Springer, 2004.

[9] M. Kunc, The power of commuting with finite sets of words, in Proc. of STACS
2005 , Springer, 2005.

[10] M. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, 1967.
[11] A. Okhotin, Decision problems for language equations with boolean operations,

in Proc. of ICALP 2003 , LNCS, Springer, 2003.
[12] I. Petre, Commutation Problems on Sets of Words and Formal Power Series,

Ph.D. thesis, University of Turku, 2002.
[13] B. Ratoandramanana, Codes et motifs, RAIRO Theor. Informat., 23(1989), 425–

444.
[14] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior ,

Princeton University Press, 1944.

