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ITERATIVE FEATURE SELECTION IN LEAST SQUARE

REGRESSION ESTIMATION

PIERRE ALQUIER

Abstract. In this paper, we focus on regression estimation in both the induc-
tive and the transductive case. We assume that we are given a set of features
(which can be a base of functions, but not necessarily). We begin by giving a
deviation inequality on the risk of an estimator in every model defined by using
a single feature. These models are too simple to be useful by themselves, but
we then show how this result motivates an iterative algorithm that performs
feature selection in order to build a suitable estimator. We prove that every
selected feature actually improves the performance of the estimator. We give
all the estimators and results at first in the inductive case, which requires the
knowledge of the distribution of the design, and then in the transductive case,
in which we do not need to know this distribution.

1. The setting of the problem

We give here notations and introduce the inductive and transductive settings.

1.1. Transductive and inductive settings. Let (X ,B) be a measure space and
let BR denote the Borel σ-algebra on R.

1.1.1. The inductive setting. In the inductive setting, we assume that P is a dis-
tribution on pairs Z = (X,Y ) taking values in (X × R,B ⊗ BR), that P is such
that:

P |Y | <∞,
and that we observe N independent pairs Zi = (Xi, Yi) for i ∈ {1, ..., N}. Our
objective is then to estimate the regression function on the basis of the observations.

Definition 1.1 (The regression function). We denote:

f : X → R
x 7→ P (Y |X = x).

1.1.2. The transductive setting. In the transductive case, we assume that P2N is
some exchangeable probability measure on the space

(

(X ×R)2N , (B ⊗ BR)⊗2N
)

.
We will write (Xi, Yi)i=1...2N = (Zi)i=1...2N a random vector distributed according
to P2N .

Definition 1.2 (Exchangeable probability distribution). Let Sk denote the set
of all permutations of {1, ..., k}. We say that P2N is exchangeable if for any
σ ∈ S2N we have: (Xσ(i), Yσ(i))i=1...2N has the same distribution under P2N that
(Xi, Yi)i=1...2N .
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We assume that we observe (Xi, Yi)i=1...N and (Xi)i=N+1...2N ; (Xi, Yi)i=1...N is
usually called the training sample and (Xi, Yi)i=N+1...2N the test sample. In this
case, we only focus on the estimation of the values (Yi)i=N+1...2N . This is why
Vapnik [12] called this kind of inference ”transductive inference”.

Note that in this setting, the pairs (Xi, Yi) are not necessarily independent, but
are indentically distributed. We will let P denote their marginal distribution, and
we can here again define the regression function f .

1.2. The model. In both settings, we are going to use the same model to estimate
the regression function. Let Θ be a vector space, and:

F : Θ×X → R
(θ, x) 7→ F (θ, x) = fθ(x)

be such that, for any x0 ∈ X , the application θ 7→ fθ(x0) is linear. We define the
model:

F = {fθ(.), θ ∈ Θ}.
Remark that we do not assume that f belongs to F .

1.3. Presentation of the results. In both settings, we give a concentration in-
equality on the risk of estimators in monodimensionnal models of the form:

{αθ, α ∈ R}
for a given θ.

This results motivates an algorithm that performs iterative feature selection in
order to perform regression estimation. We will then remark that the selection
procedure gives the guarantee that every selected feature actually improves the
current estimator.

In the inductive setting, it means that we estimate f(.) by a function f̂ ∈ F , but
the selection procedure can only be performed if the statistician knows the marginal
distribution P(X) of X under P .

In the transductive case, the estimation of YN+1, ..., Y2N can be performed by
the procedure without any prior knowledge about the marginal distribution of X
under P . We also give in this case some generalizations (like the case where the
test sample has a different size).

We then briefly show that the technique used to obtain bounds in models of
dimension 1 can also be used in more general models.

In a last section, we come back to the assertion that in our method, ”every
selected feature actually improves the current estimator” and show how this can be
interpreted as an oracle inequality.

2. Main theorem in the inductive case, and application to estimation

Hypothesis. In all this section, we assume that F and P are such that:

∀θ ∈ Θ, P exp [fθ(X)Y ] < +∞.

2.1. Notations. For any random variable T we put:

V (T ) = P
[

(T − PT )
2
]

M3(T ) = P
[

(T − PT )
3
]

,

and we define for any γ ≥ 0:

PγT (dω) =
P [exp (γT )dω]

P [exp (γT )]
.
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For any random variables T, T ′ and any γ ≥ 0 we put:

VγT (T ′) = PγT

[

(T ′ − PγTT
′)

2
]

M3
γT (T ′) = PγT

[

(T ′ − PγTT
′)

3
]

.

We give now notations that are specific to the inductive setting.

Definition 2.1. We put:

R(θ) = P
[

(Y − fθ(X))
2
]

r(θ) =
1

N

N
∑

i=1

(Yi − fθ(Xi))
2
,

and in this setting, our objective is fθ where:

θ = argmin
θ∈Θ

R(θ).

Now, we suppose that we are given a finite family of m vectors:

Θ0 = {θ1, ..., θm} ⊂ Θ.

We are going to use the family Θ0 to estimate the function f , the estimator will be
under the form:

f̂(x) =

m
∑

k=1

αkfθk
(x),

where every αk will depend on the observations Z1, ..., ZN . We can think of Θ0 as
a basis of Θ, but actually there is no other assumption about Θ0 than finiteness.

Every θk defines a monodimensional submodel of F :

{fαθk
(.), α ∈ R} = {αfθk

(.), α ∈ R} .
In a first step, we are going to work on each of these submodels individually. So let
us put, for any k ∈ {1, ...,m}:

αk = argmin
α∈RR(αθk) =

P [fθk
(X)Y ]

P [fθk
(X)2]

α̂k = argmin
α∈R r(αθk) =

1
N

∑N
i=1 fθk

(Xi)Yi

1
N

∑N

i=1 fθk
(Xi)2

Ck =
1
N

∑N

i=1 fθk
(Xi)

2

P [fθk
(X)2]

.

2.2. Main result. The following theorem gives a control of the excess risk of an
estimator in the model {fαθk

(.), α ∈ R} for each k. This estimator is not the usual
least square estimator α̂k but Ckα̂k.

Theorem 2.1. Let us put:

Wθ = fθ(X)Y − P (fθ(X)Y ) .

Then we have, for any ε > 0, with P⊗N -probability at least 1 − ε, for any k ∈
{1, ...,m}:

R(Ckα̂kθk)−R(αkθk) ≤ 2 log 2m
ε

N

V (Wθk
)

P [fθk
(X)2]

+
log3 2m

ε

N
3
2

CN (P,m, ε, θk),
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where we have:

CN (P,m, ε, θk) = Iθk





√

2 log 2m
ε

NV (Wθk
)





2 √
2

V (Wθk
)

5
2 P [fθk

(X)2]

+ Iθk





√

2 log 2m
ε

NV (Wθk
)





4

log2 2m
ε√

NV (Wθk
)
6
P [fθk

(X)2]
,

with:

Iθ (γ) =

∫ 1

0

(1− β)2M3
βγWθ

(Wθ) dβ.

The proof of the theorem is given at the end of this section, let us first show how
we can use it in order to build an estimator under the form:

f̂(.) =

m
∑

k=1

αkfθk
(.).

Actually, the method we will use requires to be able to compute explicitely the
upper bound in this theorem. Remark that, with ε and m fixed:

CN (P,m, ε, θk) −−−−−→
N→+∞

√
2
[

M3 (Wθk
)
]2

9V (Wθk
)

5
2 P [fθk

(X)2]
.

and so we can choose to consider only the first order term. Another possible choice
is to make stronger assumptions on P and Θ0 that allow to upper bound explicitely
CN (P,m, ε, θk). For example, if we assume that Y is bounded by CY and that fθk

is bounded by C′
k then Wθk

is bounded by Ck = 2CY C
′
k and we have (basically):

CN (P,m, ε, θk) ≤ 64
√

2C2
k

9V (Wθk
)

5
2 P [fθk

(X)2]
+

4096C4
k log3 2m

ε

81
√
NV (Wθk

)6 P [fθk
(X)2]

.

The main problem is actually that the first order term contains the quantity
V (Wθk

) that is not observable, and we would like to be able to replace this quantity
by its natural estimator:

V̂k =
1

N

N
∑

i=1



Yifθk
(Xi)−

1

N

N
∑

j=1

Yjfθk
(Xj)





2

.

The following theorem justifies this method.

Theorem 2.2. If we assume that there is a constant c such that:

∀k ∈ {1, ...,m}, P
[

exp
(

cW 2
θk

)

]

<∞,

we have, for any ε > 0, with P⊗N -probability at least 1− ε, for any k ∈ {1, ...,m}:

R(Ckα̂kθk)−R(αkθk) ≤ 2 log 4m
ε

N

V̂k

P [fθk
(X)2]

+
log 4m

ε

N
3
2

C′
N (P,m, ε, θk),

where we have:

V̂k =
1

N

N
∑

i=1



Yifθk
(Xi)−

1

N

N
∑

j=1

Yjfθk
(Xj)





2

,
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and:

C′
N (P,m, ε, θk) = CN

(

P,m,
ε

2
, θk

)

log2 4m

ε

+
2 log

1
2 2m

ε

P [fθk
(X)2]

[

√

2V
(

W 2
θk

)

+
log 2m

ε√
NV

(

W 2
θk

)Jθk

(
√

2 log 2m
ε

NV
(

W 2
θk

)

)]

+
2 log

1
2 4m

ε

P [fθk
(X)2]





√

2V (Wθk
) +

log2 2m
ε√

NV (Wθk
)3
Iθk





√

2 log 4m
ε

NV (Wθk
)













∣

∣

∣

∣

∣

2

N

N
∑

i=1

Yifθk
(Xi)

∣

∣

∣

∣

∣

√

2V (Wθk
) log 4m

ε

N
+

log
5
2 2m

ε

NV (Wθk
)
3 Iθk





√

2 log 4m
ε

NV (Wθk
)









and:

Jθ (γ) =

∫ 1

0

(1− β)2M3
γβW 2

θk

(

W 2
θ

)

dβ.

2.3. Application to regression estimation.

2.3.1. Interpretation of theorems 2.1 and 2.2 in terms of confidence intervals.

Definition 2.2. Let us put, for any (θ, θ′) ∈ Θ2:

dP (θ, θ′) =

√

P(X)

[

(fθ(X)− fθ′(X))2
]

=

√

P(X)

(

〈θ − θ′,Ψ(X)〉2
)

.

Let also ‖.‖P denote the norm associated with this distance, ‖θ‖P = dP (θ, 0), and
〈., .〉P the associated scalar product:

〈θ, θ′〉P = P [fθ(X)fθ′(X)] .

Because αk = arg minα∈RR(αθk) we have:

R(Ckα̂kθk)−R(αkθk) = d2
P (Ckα̂kθk, αkθk).

So the theorem can be written:

P⊗N

{

∀k ∈ {1, ...,m}, d2
P (Ckα̂kθk, αkθk) ≤ β(ε, k)

}

≥ 1− ε,

where β(ε, k) is the bound given by theorem 2.1 or more likely by theorem 2.2.
Now, note that αkθk is the orthogonal projection of:

θ = arg min
θ∈Θ

R(θ)

onto the space {αθk, α ∈ R}, with respect to the inner product 〈., .〉P :

αk = arg min
α∈R dP

(

αθk, θ
)

.

Definition 2.3. We define, for any k and ε:

CR(k, ε) =

{

θ ∈ Θ :

∣

∣

∣

∣

〈

θ − Ckα̂kθk,
θk

‖θk‖P

〉

P

∣

∣

∣

∣

≤
√

β(ε, k)

}

.

Then the theorem is equivalent to the following corollary.

Corollary 2.3. We have:

P⊗N
[

∀k ∈ {1, ...,m}, θ ∈ CR(k, ε)
]

≥ 1− ε.
In other words:

⋂

k∈{1,...,m} CR(k, ε) is a confidence region at level ε for θ.

Definition 2.4. We write Πk,ε
P the orthogonal projection into CR(k, ε) with respect

to the distance dP .
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2.3.2. The algorithm. The previous formulation of theorem 2.1 motivates the fol-
lowing iterative algorithm:

• choose θ(0) ∈ Θ, for example, θ(0) = 0;
• at step n ∈ N∗, we have: θ(0), ..., θ(n − 1). Choose k(n) ∈ {1, ...,m} (this

choice can of course be data dependent), and take:

θ(n) = Π
k(n),ε
P θ(n− 1);

• we can use the following stopping rule: ‖θ(n− 1)− θ(n)‖2P ≤ κ where
0 < κ < 1

N
.

Definition 2.5. Let n0 denote the stopping step, and:

f̂(.) = fθ(n0)(.)

the corresponding function.

2.3.3. Results and comments on the algorithm.

Theorem 2.4. We have:

P⊗N
[

∀n ∈ {1, ..., n0}, R [θ (n)] ≤ R [θ (n− 1)]− d2
P (θ(n), θ(n − 1))

]

≥ 1− ε.

Proof. This is just a consequence of the preceding corollary. Let us assume that:

∀k ∈ {1, ...,m}, R(Ckα̂kθk)−R(αkθk) ≤ β(ε, k)

Let us choose n ∈ {1, ..., n0}. We have, for a k ∈ {1, ...,m}:

θ(n) = Πk,ε
P θ(n− 1),

where Πk,ε
P is the projection into a convex set that contains θ. This implies that:

〈

θ(n) − θ(n− 1), θ − θ(n)
〉

P
≥ 0,

or:

d2
P (θ(n− 1), θ) ≥ d2

P (θ(n), θ) + d2
P (θ(n− 1), θ(n)),

that can be written:

R [θ(n− 1)]−R(θ) ≥ R [θ(n)]−R(θ) + d2
P (θ(n− 1), θ(n)).

�

Actually, the main point in the motivation of the algorithm is that, with prob-
ability at least 1 − ε, whatever the current value θ(n) ∈ Θ, whatever the feature

k ∈ {1, ...,m} (even chosen on the basis of the data), Πk,ε
P θ(n) is a better estimator

than θ(n).
So we can choose k(n) as we want in the algorithm. For example, theorem 2.4

motivates the choice:

k(n) = arg max
k

d2
P (θ(n− 1), CR(k, ε)) .

This version of the algorithm is detailed in figure 1. If looking for the exact maxi-
mum of

dP (θ(n− 1), CR(k, ε))

with respect to k is too computationnaly intensive we can use any heuristic to
choose k(n), or even skip this maximization and take:

k(1) = 1, ..., k(m) = m, k(m+ 1) = 1, ..., k(2m) = m, ...
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Figure 1. Detailed version of the feature selection algorithm.
We have ε > 0, κ > 0, N observations (X1, Y1), ..., (XN , YN ), m fea-
tures fθ1(.), ..., fθm

(.) and θ(0) = (θ1(0), ..., θm(0)) = (0, ..., 0) ∈ Rm.
Compute at first every α̂k and β(ε, k) for k ∈ {1, ...,m}. Set n← 0.

Repeat:

• set n← n+ 1;
• set best improvement← 0 and θ(n)← θ(n− 1);
• for k ∈ {1, ...,m}, compute:

vk = P
[

fθk
(X)2

]

,

γk ← α̂k −
1

vk

m
∑

j=1

θj(n)P
[

fθj
(X)fθk

(X)
]

,

δk ← vk

(

|γk| − β(ε, k)
)2

+
,

and if δk > best improvement, set:

best improvement← δk,

k(n)← k;

• if best improvement > 0:

θk(n)(n)← θk(n)(n) + sgn(γk)
(

|γk| − β(ε, k)
)

+
;

until best improvement < κ (where sgn(x) = −1 if x ≤ 0 and 1 other-
wise).

Return the estimator:

f̂(.) =

m
∑

k=1

θk(n)fθk
(.).

Such a procedure could look similar to the famous Widrow-Hoff algorithm [15]
(also known as ADALINE), which estimates the function f(.) by an estimator under
the form:

m
∑

k=1

αkfθk
(.),

and updates the αk sequentially by a gradient descent strategy. Actually, there
are two major differences: first, the gradient descent requires the calibration of a
parameter η > 0, that is avoided here, then, ADALINE is only a way to compute the
usual least square estimator, and has absolutely no guarantees against overlearning
if the family {fθ1, ..., fθm

} is too large.

Example 2.1. Let us assume that X = [0, 1] and let us put Θ = L2(P(X)). Let
(θk)k∈N∗ be an orthonormal basis of Θ and we simply take, for any x and θ:

fθ(x) = θ(x).

The choice of m should not be a problem, the algorithm avoiding itself overlearning
we can take a large value of m like m = N (see later for more details). In this
setting, the algorithm is a procedure for (soft) thresholding of coefficients. In the
particular case of a wavelets basis, see Kerkyacharian and Picard [9] or Donoho
and Johnstone [8] for a presentation of wavelets coefficient thresholding. Here, the
threshold is not necessarily the same for every coefficient. We can remark that the
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sequential projection on every k is sufficient here:

k(1) = 1, ..., k(m) = m,

after that θ(m + n) = θ(m) for every n ∈ N (because all the directions of the
different projections are orthogonals).

Actually, in the case given in the example, it is possible to prove that the estima-
tor is able to adapt itself to the regularity of the function to achieve a good mean
rate of convergence. More precisely, if we assume that the true regression function
has an (unknown) regularity β, then it is possible to choose m and ε in such a way
that the rate of convergence is:

N
−2β
2β+1 logN.

We prove this point in the last section of this paper.

2.4. An extension to the case of Support Vector Machines. Thanks to a
method due to Seeger [14], it is possible to extend this method to the case where
the set Θ0 is data dependent in the following way:

Θ0(Z1, ..., ZN , N) =

N
⋃

i=1

Θ0(Zi, N),

where for any z ∈ X ×R, the cardinal of the set Θ0(z,N) depends only on N , not
on z. We will write m′(N) this cardinal. So we have:

|Θ0(Z1, ..., ZN , N)| ≤ N |Θ0(Zi, N)| = Nm′(N).

We put:

Θ0(Zi, N) =
{

θi,1, ..., θi,m′(N)

}

.

In this case, we need some adaptations of our previous notations. We put, for
i ∈ {1, ..., N}:

ri(θ) =
1

N − 1

∑

j ∈ {1, ..., N}
j 6= i

(Yj − fθ(Xj))
2
.

For any (i, k) ∈ {1, ..., N} × {1, ...,m′(N)}, we write:

α̂i,k = argmin
α∈R ri(αθi,k) =

∑

j 6=i fθi,k
(Xj)Yj

∑

j 6=i fθi,k
(Xj)2

αi,k = argmin
α∈RR(αθi,k) =

P
[

fθi,k
(X)Y

]

P
[

fθi,k
(X)2

]

Ci,k =
1

N−1

∑

j 6=i fθi,k
(Xj)

2

P
[

fθi,k
(X)2

] .

Theorem 2.5. We have, for any ε > 0, with P⊗N -probability at least 1 − ε, for
any k ∈ {1, ...,m′(N)} and i ∈ {1, ..., N}:

R(Ci,kα̂i,kθi,k)−R(αi,kθi,k) ≤ 2 log 2Nm′(N)
ε

N − 1

V
(

Wθi,k

)

P
[

fθi,k
(X)2

]

+
log3 2Nm′(N)

ε

(N − 1)
3
2

CN−1(P,Nm
′(N), ε, θi,k).

We can use this theorem to build an estimator using the algorithm described in
the previous subsection, with obvious changes in the notations.
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Example 2.2. Let us consider the case where Θ is a Hilbert space with scalar
product 〈., .〉, and:

fθ(x) = 〈θ,Ψ(x)〉
for any θ ∈ Θ and x ∈ X , where Ψ is an application X → Θ. Let us put
Θ0[(x, y), N ] = {Ψ(x)}. In this case we have m′(N) = 1 and:

f̂(.) =

N
∑

i=1

αi,1 〈Ψ(Xi),Ψ(.)〉 .

Let us define,

K(x, x′) = 〈Ψ(x),Ψ(x′)〉 ,
the function K is called the kernel, and:

I = {1 ≤ i ≤ N : αi,1 6= 0},

that is called the set of support vectors. Then the estimate has the form of a
support vector machine (SVM):

f̂(.) =
∑

i∈I

αi,1K(Xi, .).

SVM where first introduced by Boser, Guyon and Vapnik [2] in the context of
classification, and then generalized by Vapnik [12] to the context of regression
estimation. For a general introduction to SVM, see also Cristianini and Shawe-
Taylor [7] and Catoni [5].

Example 2.3. A widely used kernel is the gaussian kernel:

Kγ(x, x′) = exp

(

−γ d
2(x, x′)

2

)

,

where d(., .) is some distance over the space X and γ > 0. But in practice, the
choice of the parameter γ is difficult. A way to solve this problem is to introduce
multiscale SVM. We simply take Θ as the set of all bounded functions X → R, and
for any x and θ:

fθ(x) = θ(x).

Now, let us put:

Θ0[(x, y), N ] = {K2(x, .),K22(X, .), ...,K2m′(N)(x, .)} .

In this case, we obtain an estimator of the form:

f̂(.) =

m′(N)
∑

k=1

∑

i∈Ik

αi,kK2k(Xi, .),

that could be called multiscale SVM. Remark that we can use this technique to
define SVM using simultaneously different kernels (not necessarily the same kernel
at different scales). For example, in order to imitate the oscillation of wavelets, we
can introduce a more sophisticated SVM estimator, based on the kernel family:

Kγ,γ′(x, x′) = exp
(

−22γ(x− x′)2
)

cos
(

2γ+γ′−1(x− x′)
)

for γ ∈ {1, ...,m1}, γ′ ∈ {1, ...,m2} (note that m′(N) = m1m2).
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2.5. Proof of the theorems. In a first time, we prove a lemma that is the basis
of proofs of theorems 2.1 and 2.5.

Lemma 2.6. We have, for any θ ∈ Θ, γ > 0 and η ≥ 0:

P exp (γWθ − η) = exp

{

γ2

2
V (Wθ) +

γ3

2

∫ 1

0

(1 − β)2M3
γβWθ

(Wθ) dβ − η
}

,

and

P exp (−γWθ − η) = exp

{

γ2

2
V (Wθ)−

γ3

2

∫ 1

0

(1 − β)2M3
γβWθ

(Wθ) dβ − η
}

.

Proof. For the first equality, we write:

logP exp (γWθ − η) = logP exp (γWθ)− η

=

∫ γ

0

PβWθ
(Wθ) dβ − η =

∫ γ

0

(γ − β)VβWθ
(Wθ) dβ − η

=
γ2

2
V (Wθ) +

∫ γ

0

(γ − β)2

2
M3

βWθ
(Wθ) dβ − η

=
γ2

2
V (Wθ) +

γ3

2

∫ 1

0

(1− β)2M3
γβWθ

(Wθ) dβ − η.

For the reverse equality, the proof is exactly the same, replacing γ by −γ. �

We can now give the proof of both theorems.

Proof of theorem 2.1. Let us choose k ∈ {1, ...,m}, for any λk > 0 and ηk ≥ 0 we
have:

P⊗N exp

{

λk

N

N
∑

i=1

[Yifθk
(Xi)− P (Y fθk

(X))]− ηk

}

=

{

P exp

[

λk

N
Wθk

− ηk

N

]}N

= exp

[

λ2
k

2N
V (Wθk

) +
λ3

k

2N2

∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ − ηk

]

by the first equality of lemma 2.6. By the same way, using the reverse inequality
we obtain:

P⊗N exp

{

λk

N

N
∑

i=1

[P (Y fθk
(X))− Yifθk

(Xi)]− ηk

}

= exp

[

λ2
k

2N
V (Wθk

)− λ3
k

2N2

∫ 1

0

(1 − β)2M3
βλk

N
Wθk

(Wθk
) dβ − ηk

]

.

So we obtain, for any k ∈ {1, ...,m}, for any λk > 0 and ηk ≥ 0:

P⊗N exp

{

λk

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)− P (Y fθk

(X))

∣

∣

∣

∣

∣

− ηk

}

≤ 2 exp

[

λ2
k

2N
V (Wθk

)− ηk

]

cosh

[

λ3
k

2N2

∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ

]

≤ 2 exp

[

λ2
k

2N
V (Wθk

)− ηk +
λ6

k

8N4

(∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ

)2
]

,
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since, for any x ∈ R, we have:

cosh(x) ≤ exp

(

x2

2

)

.

Now, let us choose ε > 0 and put:

ηk =
λ2

k

2N
V (Wθk

) +
λ6

k

8N4

(∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ

)2

− log
ε

2m
.

We obtain:

P⊗N

m
∑

k=1

exp

{

λk

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)− P (Y fθk

(X))

∣

∣

∣

∣

∣

− λ2
k

2N
V (Wθk

) +
λ6

k

8N4

(∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ

)2

+ log
ε

2m

}

≤ ε

and so:

P⊗N

[

∀k ∈ {1, ...,m},
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)− P (Y fθk

(X))

∣

∣

∣

∣

∣

≤ λk

2N
V (Wθk

) +
λ5

k

8N4

(∫ 1

0

(1− β)2M3
βλk

N
Wθk

(Wθk
) dβ

)2

+
log 2m

ε

λk

]

≥ 1− ε.

Now, we put:

λk =

√

2N log 2m
ε

V (Wθk
)
.

We obtain, with P⊗N -probability at least 1− ε, for any k ∈ {1, ...,m}:
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)− P (Y fθk

(X))

∣

∣

∣

∣

∣

≤

√

2V (Wθk
) log 2m

ε

N
+

log
5
2 2m

ε

NV (Wθk
)
3

(∫ 1

0

(1 − β)2M3
βλk

N
Wθk

(Wθk
) dβ

)2

.

For short, we take the notation of the theorem:

Iθk
(γ) =

∫ 1

0

(1− β)2M3
βγWθk

(Wθk
) .

Now, dividing both sides by:

P
[

fθk
(X)2

]

we obtain:

|α̂kCk − αk| ≤
1

P [fθk
(X)2]





√

2V (Wθk
) log 2m

ε

N
+
I2
θk

(

λk

N

)

log
5
2 2m

ε

NV (Wθk
)
3



 .

In order to conclude, just remark that:

R(α̂kCkθk)−R(αkθk) = |α̂kCk − αk|2 P
[

fθk
(X)2

]

.

�
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Proof of theorem 2.2. Remark that, for any θ ∈ Θ:

V (Wθ) = P
(

W 2
θ

)

− P (Wθ)
2
,

we will deal with each term separately. For the first term, let us remark that we
obtain the following result that is obtained exactly as lemma 2.6. For any θ ∈ Θ:

P exp
{

γ
[

P
(

W 2
θ

)

−W 2
θ

]

− η
}

= exp

{

γ2

2
V
(

W 2
θ

)

+
γ3

2

∫ 1

0

(1− β)2M3
γβW 2

θ

(

W 2
θ

)

dβ − η
}

.

Let us apply this result to every θk for k ∈ {1, ...,m}:

P⊗N exp

{

λk

[

P
(

W 2
θk

)

− 1

N

N
∑

i=1

Y 2
i fθk

(Xi)
2

]

− ηk

}

= exp

{

λ2
k

2N
V
(

W 2
θk

)

+
λ3

k

2N
Jk

(

λk

N

)

− ηk

}

,

where:

Jθ (γ) =

∫ 1

0

(1− β)2M3
γβW 2

θk

(

W 2
θ

)

dβ.

Taking:

ηk =
λ2

k

2N
V
(

W 2
θk

)

+
λ3

k

2N2
Jθk

(

λk

N

)

+ log
2m

ε

and:

λk =

√

2N log 2m
ε

V
(

W 2
θk

)

we obtain that the following inequality is satisfied with P⊗N -probability at least
1− ε

2 , for any k:

(2.1) P
(

W 2
θk

)

≤ 1

N

N
∑

i=1

Y 2
i fθk

(Xi)
2 +

√

2V
(

W 2
θk

)

log 2m
ε

N

+
log 2m

ε

NV
(

W 2
θk

)Jθk

(
√

2 log 2m
ε

NV
(

W 2
θk

)

)

=
1

N

N
∑

i=1

Y 2
i fθk

(Xi)
2 +Ak

for short. Now, we try to upper bound the second term, −P (Wθ)
2
. Remark that,

for any θ:

(

1

N

N
∑

i=1

Yifθ(Xi)

)2

− P (Wθ)
2

=

(

1

N

N
∑

i=1

Yifθ(Xi)− P (Wθ)

)(

1

N

N
∑

i=1

Yifθ(Xi) + P (Wθ)

)

≤
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθ(Xi)− P (Wθ)

∣

∣

∣

∣

∣

{

2

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθ(Xi)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθ(Xi)− P (Wθ)

∣

∣

∣

∣

∣

}

.
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Remember that in the proof of theorem 2.1 we got the upper bound, with probability
at least 1− ε

2 , for any k:

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)− P (Y fθk

(X))

∣

∣

∣

∣

∣

≤

√

2V (Wθk
) log 4m

ε

N
+

log
5
2 4m

ε

NV (Wθk
)3
Iθk





√

2 log 4m
ε

NV (Wθk
)





2

,

that gives:

(2.2) − P (Wθk
)
2 ≤ −

(

1

N

N
∑

i=1

Yifθk
(Xi)

)2

+











√

2V (Wθk
) log 4m

ε

N
+

log
5
2 4m

ε

NV (Wθk
)3
Iθk





√

2 log 4m
ε

NV (Wθk
)





2










{

2

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yifθk
(Xi)

∣

∣

∣

∣

∣

+

√

2V (Wθk
) log 4m

ε

N
+

log
5
2 4m

ε

NV (Wθk
)
3 Iθk





√

2 log 4m
ε

NV (Wθk
)





2
}

= −
(

1

N

N
∑

i=1

Yifθ(Xi)

)2

+ Bk.

for short. Let us combine inequalities 2.1 and 2.2. We obtain that, with probability
at least 1− ε, for every k we have:

V (Wθk
) = P

(

W 2
θk

)

− P (Wθk
)
2

≤ 1

N

N
∑

i=1

Y 2
i fθk

(Xi)
2 −

(

1

N

N
∑

i=1

Yifθk
(Xi)

)2

+Ak + Bk

= V̂k +Ak + Bk.

�

Proof of theorem 2.5. This proof is a variant of the proof of theorem 2.1, the
method it uses is due to Seeger [14]. Let us define, for any i ∈ {1, ..., N}:

Pi(.) = P⊗N (.|Zi) .

Let us choose (i, k) ∈ {1, ..., N} × {1, ...,m′(N)}, for any λi,k = λi,k(Zi) > 0 and
ηi,k = ηi,k(Zi) ≥ 0 we have:

Pi exp







λi,k

N − 1

∑

j 6=i

[

Yjfθi,k
(Xj)− P

(

Y fθi,k
(X)

)]

− ηi,k







≤ exp

[

λi,k

2(N − 1)
V
(

Wθi,k

)

+
λ3

i,k

2(N − 1)2

∫ 1

0

(1 − β)2M3
βλi,k
N−1 Wθi,k

(

Wθi,k

)

dβ − ηi,k

]
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by the first equality of lemma 2.6. In the same way, we obtain the reverse inequality
and, combining both results, for any (i, k) ∈ {1, ..., N} × {1, ...,m′(N)}, for any
λi,k > 0 and ηi,k ≥ 0:

Pi exp







λi,k

∣

∣

∣

∣

∣

∣

1

N − 1

∑

j 6=i

Yjfθi,k
(Xj)− P

(

Y fθi,k
(X)

)

∣

∣

∣

∣

∣

∣

− ηi,k







≤ 2 exp

[

λ2
i,k

2(N − 1)
V
(

Wθi,k

)

− ηi,k

]

cosh

[

λ3
i,k

2(N − 1)2
Ii,k

]

≤ 2 exp

[

λ2
i,k

2(N − 1)
V
(

Wθi,k

)

− ηi,k +
λ6

i,k

8(N − 1)4
I2
i,k

]

,

where:

Ii,k =

∫ 1

0

(1− β)2M3
βλi,k

N
Wθi,k

(

Wθi,k

)

dβ

for short. Now, let us choose ε > 0 and put:

ηi,k =
λ2

i,k

2(N − 1)
V
(

Wθi,k

)

+
λ6

i,k

8(N − 1)4
I2
i,k − log

ε

2Nm′(N)
.

We obtain:

P⊗N

N
∑

i=1

m′(N)
∑

k′=1

exp

{

λi,k

∣

∣

∣

∣

∣

∣

1

N − 1

∑

j 6=i

Yjfθi,k
(Xj)− P

(

Y fθi,k
(X)

)

∣

∣

∣

∣

∣

∣

−
λ2

i,k

2(N − 1)
V
(

Wθi,k

)

−
λ6

i,k

8(N − 1)4
I2
i,k + log

ε

2Nm′(N)

}

= P⊗N

N
∑

i=1

m′(N)
∑

k′=1

Pi exp

{

λi,k

∣

∣

∣

∣

∣

∣

1

N − 1

∑

j 6=i

Yjfθi,k
(Xj)− P

(

Y fθi,k
(X)

)

∣

∣

∣

∣

∣

∣

−
λ2

i,k

2(N − 1)
V
(

Wθi,k

)

−
λ6

i,k

8(N − 1)4
I2
i,k + log

ε

2Nm′(N)

}

≤ ε.

Now, we put:

λi,k =

√

√

√

√

2N log 2Nm′(N)
ε

V
(

Wθi,k

) ,

and achieve the proof exactly as for theorem 2.1. �

3. Simulations in the inductive case

3.1. Description of the example. Here, we assume that we have:

Yi = f(Xi) + ξi

for i ∈ {1, ..., N} with N = 210 = 1024, where the variables Xi ∈ [0, 1] ⊂ R are i.i.d.
from a uniform distribution U(0, 1) (and we assume that the statistician knows this
point), the ηi are i.i.d. from a gaussian distribution N (0, σ) and independant from
the Xi. The statistician observes (X1, Y1), ..., (XN , YN ) and wants to estimate the
regression function f .

We will use three estimations methods. The first one will be an SVM obtained by
the algorithm described previously, the second one a thresholded wavelets estimate
also obtained by this algorithm, and we will compare both estimators to a ”classical”
thresholded wavelet estimate, as given by Kerkyacharian and Picard [9].
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3.2. The estimators.

3.2.1. Thresholded wavelets estimators. Let us describe briefly the thresholded wavelet
estimator. Let (ϕ, ψ) be the father wavelet and the mother wavelet, and:

ψj,k(x) = 2
j
2ψ(2jx+ k)

for k ∈ {0, ..., 2j − 1} = Sj . For the sake of simplicity, let us write:

ψ−1,k(x) = ϕ(x)

for k ∈ {0} = S−1.
Here, we will use the Haar basis, with:

ϕ(x) = 1[0,1](x)

ψ(x) = 1[0, 12 ]
(x)− 1[ 1

2 ,1](x).

In the general case, we should use warped wavelets (for more details, see Kerky-
acharian and Picard [9]): we put F (x) = P (X ≤ x), and:

β̂j,k =
1

N

N
∑

i=1

Yiψj,k(F (Xi)).

Just remark that the use of this method implies some assumptions about F that
are not required by our algorithm (here again, see Kerkyacharian and Picard [9]).

In the case of the example, we will have:

β̂j,k =
1

N

N
∑

j=1

Yiψj,k(Xi).

For a given κ ≥ 0 and J ∈ N, we take:

f̃J(.) =

J
∑

j=−1

∑

k∈Sj

β̂j,k1(|β̂j,k| ≥ κtN )ψj,k(.)

where:

tN =

√

logN

N
.

Actually, we must choose J in such a way that:

2J ∼ t−1
N .

When κ = 0 we obtain a classical wavelet estimator, and when κ > 0 we obtain a
thresholded wavelet estimator, this is what we are going to do.

Here, we choose κ = 0.5 and J = 7.

3.2.2. Wavelet estimators with our algorithm. Here, we use the same family of
functions, and we apply the algorithm given in subsection 2.3. So we take:

m = 2J = 128.

We change only one thing in the method in order to obtain faster computations:
here, applying the central limit theorem, we replace the theoretical confidance in-
terval by its asymptotic gaussian approximation.

More precisely:

√
N

1
N

∑N
i=1 fθk

(Xi)Yi − P [fθk
(X)Y ]

√

1
N−1

∑N

i=1

(

fθk
(Xi)Yi − 1

N

∑N

j=1 fθk
(Xj)Yj

)2
 N (0, 1).
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Figure 2. Values of ti and ci in the fonction Blocks(.).
i 1 2 3 4 5 6 7 8 9 10 11

ci 4 −5 3 −4 5 4.2 −2.1 4.3 −3.1 2.1 −4.2

ti 0.10 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81

We put:

vk,N =

√

1
N−1

∑N

i=1

(

fθk
(Xi)Yi − 1

N

∑N

j=1 fθk
(Xj)Yj

)2

√
N

.

We obtain:

(Ckα̂k − αk)
P
[

fθk
(X)2

]

vk,N

 N (0, 1),

or:

(R(Ckα̂kθk)−R(αkθk))
P
[

fθk
(X)2

]

v2
k,N

 χ2
1,

and so we use the confidence interval for αk:
[

Ckα̂k ±
vk,N

P [fθk
(X)2]

q1− ε
2m′(N)

]

where qα is the α-quantile of N (0, 1).
Remark that the numerical results are not very different if we use the confidence

interval given by theorem 2.1.
Moreover, let us remark that the union bound are always ”pessimistic”, and that

we use a union bound argument over all the m models despite only a few of them
are effectively used in the estimator. So, we propose to actually use the individual
confidence interval for each model:

[

Ckα̂k ±
vk,N

P [fθk
(X)2]

q1− ε
2

]

instead of the theoretical union bound interval.

3.2.3. SVM estimator. Here, we use the multiscale SVM estimator described in
example 2.3 of subsection 2.4, with kernel:

Kγ(x, x′) = exp
(

−(2γx− 2γx′)2
)

= exp
(

−22γ(x − x′)2
)

and γ ∈ {1, ...,m′(N)} where m′(N) = 6.
We use the same gaussian approximation than in the previous example, and the

individuals confidence intervals.

3.3. Experiments and results. The simulations were realized with the R soft-
ware [11].

For the experiments, we use the following functions f that are some of the
functions used by Donoho and Johnstone for experiments on wavelets, for example
in [8], and by a lot of authors since then:

Doppler(t) = u
√

t(1 − t) sin
2π(1 + v)

t+ v
where u = 2 and v = 0.05

HeaviSine(t) =
1

4

[

4 sin 4πt− sgn(t− 0.3)− sgn(0.72− t)
]

Blocks(t) =
1

4

11
∑

i=1

ci1(ti,+∞)(t)

where sgn(t) is the sign of t (say −1 if t ≤ 0 and +1 otherwise). The values of the
ci and ti are given in figure 2.
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Figure 3. Results of the experiments. For each experiment, we
give the mean risk (R) and the mean excess risk (R− σ2) for each
estimator.
Function
f(.)

s.d.
σ

standard
thresholded
wavelets

thresh. wav.
with our
method

multiscale
SVM

Doppler 0.3 0.158 / 0.068 0.151 / 0.061 0.149 / 0.059
HeaviSine 0.3 0.154 / 0.064 0.138 / 0.048 0.129 / 0.039
Blocks 0.3 0.150 / 0.060 0.146 / 0.056 0.159 / 0.069
Doppler 1 1.142 / 0.142 1.114 / 0.114 1.091 / 0.091
HeaviSine 1 1.156 / 0.156 1.084 / 0.084 1.055 / 0.055
Blocks 1 1.155 / 0.155 1.105 / 0.105 1.104 / 0.104

We consider 6 experiments (for the three regression functions and two different
values for σ, 0.3 and 1). We choose ε=10%. We repeat each experiment 20 times.
We give the results in figure 3.

The result of thresholding wavelets following [9] or using our algorithm is com-
parable. However, our thresholding method gives best results, especially when the
noise level is significant. The main advantage of our method is that is is self-
contained: in the ”standard” thresholding, we have to choose the parameter κ.
Here, the choice κ = 0.5 seemed to give the better results, but this choice was
possible only because we knew the regression function in these simulations. In real
life problems, the choice of κ could be more problematic.

SVM gave best results, except in the case where f = Blocks. But the main
advantage of SVM is that it is much easier to generalize in the case where X is notR or an interval of R, but for example in the case where X = Rn with n ≥ 2. More
genarally, let us assume that X is a metric space for some distance d. We can use
SVM with the gaussian kernel ((x, x′) ∈ X 2):

Kγ(x, x′) = exp

(

−22γ d
2(x, x′)

2

)

.

4. The transductive case

Remark that in this section, we make no longer assumptions about the existence
of an exponential moment for fθ(X)Y .

4.1. Notations. Let us recall that we assume that P2N is some exchangeable prob-
ability measure on the space

(

(X ×R)2N , (B × BR)⊗2N
)

. Let (Xi, Yi)i=1...2N =
(Zi)i=1...2N denote a random vector distributed according to P2N .

Let us remark that under this condition, the marginal distribution of every Zi

is the same, we will call P this distribution. In the particular case where the
observations are i.i.d., we will have P2N = P⊗2N , but what follows still holds for
general exchangeable distributions P2N .

We assume that we observe (Xi, Yi)i=1...N and (Xi)i=N+1...2N . In this case, we
only focus on the estimation of the values (Yi)i=N+1...2N .
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Figure 4. Experiment 1, f = Doppler and σ = 0.3. Up-left: true

regression function. Down-left: SVM. Up-right: wavelet estimate with

our algorithm. Down-right: ”classical” wavelet estimate.

Figure 5. Experiment 2, f = HeaviSine and σ = 0.3.

Definition 4.1. We put, for any θ ∈ Θ:

r1(θ) =
1

N

N
∑

i=1

(Yi − fθ(Xi))
2

r2(θ) =
1

N

2N
∑

i=N+1

(Yi − fθ(Xi))
2 .
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Figure 6. Experiment 3, f = Blocks and σ = 0.3.

Our objective is:

θ2 = argmin
θ∈Θ

r2(θ),

if the minimum of r2 is not unique then we take for θ2 any element of Θ reaching
the minimum value of r2.

Let Θ0 be a finite family of vectors belonging to Θ, so that |Θ0| = m. Actually,
Θ0 is allowed to be data-dependant:

Θ0 = Θ0(X1, ..., X2N)

but we assume that the function (X1, ..., X2N ) 7→ Θ0(X1, ..., X2N ) is exchangeable
with respect to its 2N arguments, and is such that m = m(N) depends only on N ,
not on (X1, ..., X2N ).

The problem of the indexation of the elements of Θ0 is not straightforward and
we must be very careful about it. Let <Θ be a complete order on Θ, and write:

Θ0 = {θ1, ..., θm}
where

θ1 <Θ ... <Θ θm.

Remark that, in this case, every θk is an exchangeable function of (X1, ..., X2N).
In some cases, we will use other indexations. For example, in the case of SVM, we
will take m = 2N and:

Θ0 = {Ψ(X1), ...,Ψ(X2N )} .
Clearly, there is no reason for having θ1 = Ψ(X1). In such a case, if necessary we
can use another notation, for example define θ∗i = Ψ(Xi). Then we will have:

Θ0 = {θ∗1 , ..., θ∗m}

where θ∗i is not an exchangeable function of (X1, ..., X2N ).
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Now, let us write, for any k ∈ {1, ...,m}:

αk
1 = argmin

α∈R r1(αθk) =

∑N
i=1 fθk

(Xi)Yi
∑N

i=1 fθk
(Xi)2

αk
2 = argmin

α∈R r2(αθk) =

∑2N
i=N+1 fθk

(Xi)Yi
∑2N

i=N+1 fθk
(Xi)2

Ck =
1
N

∑N
i=1 fθk

(Xi)
2

1
N

∑2N

i=N+1 fθk
(Xi)2

.

4.2. Basics Results.

Theorem 4.1. We have, for any ε > 0, with P2N -probability at least 1−ε, for any
k ∈ {1, ...,m}:

r2
[

(Ckαk
1).θk

]

− r2(αk
2 .θk) ≤ 4

[

1
N

∑2N

i=1 fθk
(Xi)

2Y 2
i

1
N

∑2N
i=N+1 fθk

(Xi)2

]

log 2m
ε

N
.

Remark 4.1. Here again, it is possible to make some hypothesis in order to make
the right-hand side of the theorem observable. In particular, if we assume that:

∃B ∈ R+, P (|Y | ≤ B) = 1,

then we can get a looser observable upper bound:

P2N

{

∀k ∈ {1, ...,m}, r2
[

(Ckαk
1).θk

]

− r2(αk
2 .θk)

≤ 4

[

B2 +
1
N

∑N
i=1 fθk

(Xi)
2Y 2

i

1
N

∑2N

i=N+1 fθk
(Xi)2

]

log 2m
ε

N

}

≥ 1− ε.

If we don’t want to make this assumption, we can use the following variant, that
gives a first-order approximation for the bound.

Theorem 4.2. For any ε > 0, with P2N -probability at least 1 − ε, for any k ∈
{1, ...,m}:

r2
[

(Ckαk
1).θk

]

− r2(αk
2 .θk)

≤ 8 log 4m
ε

N





1
N

∑N
i=1 fθk

(Xi)
2Y 2

i

1
N

∑2N
i=N+1 fθk

(Xi)2
+

√

1
N

∑2N
i=1 fθk

(Xi)4Y 4
i log 2m

ε

2N



 .

Remark 4.2. Let us assume that Y is such that we know two constants bY and BY

such that:

P exp (bY Y ) ≤ BY <∞.
Then we have, with probability at least 1− ε:

sup
i∈{1,...,2N}

Yi ≤
1

bY
log

2NBY

ε
.

So the bound of the theorem leads to a looser observable bound:

r2
[

(Ckαk
1).θk

]

− r2(αk
2 .θk)

≤ 8 log 8m
ε

N





1
N

∑N

i=1 fθk
(Xi)

2Y 2
i

1
N

∑2N
i=N+1 fθk

(Xi)2
+

√

1
N

∑2N

i=1 fθk
(Xi)4 log 4m

ε
log4 4NBY

ε

2Nb4Y



 .

A proof of this assertion is given in the next section.
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The proofs of both theorems are given in the next section: however, we are going
to see at first how to apply this result.

Let us compare the first order term of this theorem to the analogous term in the
inductive case (theorems 2.1 and 2.2). The factor of the variance term is 8 instead
of 2 in the inductive case. A factor 2 is to be lost because we have here the variance
of a sample of size 2N instead of N in the inductive case. But another factor 2
is lost here. Moreover, in the inductive case, we had the real variance of Y f(X)
instead of the moment of order 2 here.

In the next subsection, we give several improvements of these bounds, that allows
to recover a real variance, and to recover the factor 2. We also give a version that
allows to deal with a test sample of different size, this being a generalization of
theorem 4.1 more than of its improved variants.

4.3. Improvements and generalization of the bound. The proof of all the
theorems of this subsection is given in the next section.

4.3.1. Relative bounds. We introduce some new notations.

Definition 4.2. We write:

∀θ ∈ Θ, r1,2(θ) = r1(θ) + r2(θ)

and, in the case of a model k ∈ {1, ...,m}:

αk
1,2 = argmin

α∈R r1,2(αθk).

The we have the following theorem.

Theorem 4.3. We have, for any ε > 0, with P2N -probability at least 1−ε, for any
k ∈ {1, ...,m}:

r2(Ckαk
1θk)− r2(αk

2θk)) ≤ 4







1
N

∑2N

i=1

[

fθk
(Xi)Yi − αk

1,2fθk
(Xi)

2
]2

1
N

∑2N

i=N+1 fθk
(Xi)2







log 2m
ε

N
.

It is moreover possible to modify the upper bound to make it observable. We
obtain that with P2N -probability at least 1− ε, for any k ∈ {1, ...,m}:

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk)

≤ 16 log 4m
ε

N

[

1

N

N
∑

i=1

(

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
)2

]

+O
(

[

log m
ε

N

]
3
2

)

.

So we can see that this theorem is an improvement on theorem 4.1 when some
features fθk

(.) are well correlated with Y . But we loose another factor 2 by making
the first-order term of the bound observable.

4.3.2. Improvement of the variance term.

Theorem 4.4. We have, for any ε > 0, with P2N -probability at least 1−ε, for any
k ∈ {1, ...,m}:

r2(Ckαk
1θk)− r2(αk

2θk)) ≤
[

1

1− 2 log 2m
ε

N

]

2 log 2m
ε

N

V1(θk) + V2(θk)
1
N

∑2N

i=N+1 fθk
(Xi)2

,
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where:

V1(θk) =
1

N

N
∑

i=1



Yifθk
(Xi)−

1

N

N
∑

j=1

Yjfθk
(Xj)





2

,

V2(θk) =
1

N

2N
∑

i=N+1



Yifθk
(Xi)−

1

N

2N
∑

j=N+1

Yjfθk
(Xj)





2

.

It is moreover possible to give an observable upper bound: we obtain that with P2N -
probability at least 1− ε, for any k ∈ {1, ...,m}:

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk) ≤

[

1

1− 2 log 4m
ε

N

]

4 log 4m
ε

N

V1(θk)
1
N

∑2N

i=N+1 fθk
(Xi)2

+

[

1

1− 2 log 4m
ε

N

]

2
(

2 +
√

2
)

(

log 6m
ε

N

)

3
2

√

1
N

∑2N

i=1 fθk
(Xi)4Y 4

i

1
N

∑2N
i=N+1 fθk

(Xi)2
.

Here again, we can make the bound fully observable under an exponential mo-
ment assumption about Y .

4.3.3. Test sample of different size. In the context of classification, Catoni [6] gave
a method in order to be able to deal with the case where the test sample is of size
(k + 1)N where k is an integer greater than 0. More precisely, we assume that
P(k+1)N is an exchangeable probability distribution on (X ×R)(k+1)N and that we
observe:

(X1, Y1), ..., (XN , YN ) and XN+1, ..., X(k+1)N .

In the case where k > 1, the variance term will be better than in the case where
k = 1. This method can be used in the setting of regression too.

Definition 4.3. From now, we will use the notation, when k 6= 1:

r1(θ) =
1

N

N
∑

i=1

(Yi − fθ(Xi))
2

r2(θ) =
1

kN

(k+1)N
∑

i=N+1

(Yi − fθ(Xi))
2 .

We still consider a family:

Θ0(X1, ..., X(k+1)N ) = {θ1, ..., θm}
that is data-dependent in an exchangeable way, with the same indexation conven-
tion than in the case where k = 1. Now, let us write, for any h ∈ {1, ...,m}:

αh
1 = arg min

α∈R r1(αθh) =

∑N

i=1 fθh
(Xi)Yi

∑N
i=1 fθh

(Xi)2

αh
2 = arg min

α∈R r2(αθh) =

∑(k+1)N
i=N+1 fθh

(Xi)Yi

∑(k+1)N
i=N+1 fθh

(Xi)2

Ch =
1
N

∑N

i=1 fθh
(Xi)

2

1
kN

∑(k+1)N
i=N+1 fθh

(Xi)2
.

Let us finally put:

P =
1

(k + 1)N

(k+1)N
∑

i=1

δZi
,
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and, for any θ ∈ Θ: Vθ = P

{

[(

fθ(X)Y
)

−P
(

fθ(X)Y
)]2
}

.

Then we have the following theorem.

Theorem 4.5. Let us assume that we have constants Bh and βh such that, for any
h ∈ {1, ...,m}:

P exp (βh |fθh
(Xi)Yi|) ≤ Bh.

For any ε > 0, with P(k+1)N probability at least 1−ε we have, for any h ∈ {1, ...,m}:

r2
(

Chαh
1θh

)

− r2
(

αh
2θh

)

≤
(

1 + 1
k

)2

1
kN

∑(k+1)N
i=N+1 fθh

(Xi)2

[

2Vθh
log 4m

ε

N

+
16
(

log 4m
ε

)
3
2

(

log 4(k+1)mNBh

ε

)3

3β3
hN

3
2V 1

2

θh

+
64
(

log 4m
ε

)2
(

log 4(k+1)mNBh

ε

)6

9β6
hN

2V2
θh

]

.

Here again, it is possible to replace the variance term by its natural estimator:V̂θh
=

1

N

N
∑

i=1



fθ(Xi)Yi −
1

N

N
∑

j=1

fθ(Xj)Yj





2

.

4.4. Application to regression estimation. We give here the interpretation of
the preceding theorems in terms of confidence; this motivates an algorithm similar
to the one described in the inductive case.

Definition 4.4. We take, for any (θ, θ′) ∈ Θ2:

d2(θ, θ
′) =

√

√

√

√

1

kN

(k+1)N
∑

i=N+1

[fθ(Xi)− fθ′(Xi)]
2 =

√

√

√

√

1

kN

(k+1)N
∑

i=N+1

〈θ − θ′,Ψ(Xi)〉2.

Let also ‖θ‖2 = d2(θ, 0) and:

〈θ, θ′〉2 =
1

(k + 1)N

(k+1)N
∑

i=N+1

fθ(Xi)fθ′(Xi).

We define, for any h ∈ {1, ...,m} and ε:

CR(h, ε) =
{

θ ∈ Θ :
∣

∣

〈

θ − Chαh
1θh, θh

〉

2

∣

∣ ≤
√

β(ε, h)
}

,

where β(ε, h) is the upper bound in theorem 4.1 (or in the other theorems given
previously).

For the same reasons as in the inductive case, these theorems implies the follow-
ing result.

Corollary 4.6. We have:

P2N

[

∀h ∈ {1, ...,m}, θ2 ∈ CR(h, ε)
]

≥ 1− ε.

Definition 4.5. We call Πh,ε
2 the orthogonal projection into CR(h, ε) with respect

to the distance d2.

We propose the following algorithm:

• choose θ(0) ∈ Θ (for example 0);
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Figure 7. Detailed version of the feature selection algorithm in
the transductive case.

We have ε > 0, κ > 0, N observations (X1, Y1), ..., (XN , YN )
and also XN+1, ..., X(k+1)N , m features fθ1(.), ..., fθm

(.) and θ(0) =

(θ1(0), ..., θm(0)) = (0, ..., 0) ∈ Rm. In a first time, compute every αh
1

and β(ε, h) for h ∈ {1, ...,m}. Set n← 0.

Repeat:

• set n← n+ 1;
• set best improvement← 0 and θ(n) = θ(n− 1);
• for h ∈ {1, ...,m}, compute:

vh =
1

kN

(k+1)N
∑

i=N+1

fθh
(Xi)

2,

γh ← αh
1 −

1

vh

m
∑

j=1

θj(n)
1

kN

(k+1)N
∑

i=N+1

fθj
(Xi)fθh

(Xi),

δh ← vh

(

|γh| − β(ε, h)
)2

+
,

and if δh > best improvement, set:

best improvement← δh,

h(n)← h;

• if best improvement > 0:

θh(n)(n)← θh(n)(n) + sgn(γh)
(

|γh| − β(ε, h)
)

+
;

until best improvement < κ.

Return the estimation:
[

ỸN+1, ..., Ỹ(k+1)N

]

=
[

f̂(XN+1), ..., f̂(X(k+1)N )
]

where:

f̂(.) =
m
∑

h=1

θh(n)fθh
(.).

• at step n ∈ N∗, we have: θ(0), ..., θ(n− 1). Choose h(n), for example:

h(n) = arg max
h∈{1,...,m}

d2(θ(n− 1), CR(h, ε)),

and take:

θ(n) = Π
h(n),ε
2 θ(n− 1);

• we can use the following stopping rule: ‖θ(n− 1)− θ(n)‖22 ≤ κ where 0 <
κ < 1

N
.

Definition 4.6. We write n0 the stopping step, and:

f̂(.) = fθ(n0)(.)

the corresponding function.

Here again we give a detailed version of the algorithm, see figure 7. Remark that
as in the inductive case, we are allowed to use whatever heuristic to choose k(n) if
we want to avoid the maximization.
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Theorem 4.7. We have:

P2N

[

∀n ∈ {1, ..., n0}, r2 [θ (n)] ≤ r2 [θ (n− 1)]− d2
2 [θ(n), θ(n− 1)]

]

≥ 1− ε

The proof of this theorem is exactly the same as the proof of theorem 2.4.

Example 4.1 (Estimation of wavelet coefficients). Let us consider the case where
Θ0 does not depend on the observations. We can, for example, choose a basis of Θ,
or a basis of a subspace of Θ. We obtain an estimator of the form:

f̂(x) =

m
∑

h=1

αhfθh
(x).

In the case when (fθk
)k is a wavelet basis, then we obtain here again a procedure

for thresholding wavelets coefficients.

Example 4.2 (SVM and multiscale SVM). Let us choose Θ as the set of all
functions X → R, fθ(x) = θ(x), a family of kernels K1, ...,Km′(N) for a m′(N) ≥ 1
and:

Θ0 = {Kh(Xi, .), h ∈ {1, ...,m′(N)}, i ∈ {1, ..., (k + 1)N}} .
In this case we have m = (k + 1)Nm′(N). We obtain an estimator of the form:

f̂(x) =

m′(N)
∑

h=1

2N
∑

j=1

αj,hKh(Xj , x).

Let us put:

Ih =
{

j ∈ {1, ..., 2N}, αj,h 6= 0
}

.

We have:

f̂(x) =

m′(N)
∑

h=1

∑

j∈Ih

αj,hKh(Xi, x),

that is a Support Vector Machine with different kernels estimate; like in example
2.3, the kernels Kh can be the same kernel taken at different scales.

Example 4.3 (Kernel PCA Kernel Projection Machine). Let us take Θ as a Hilbert
space, with scalar product 〈., .〉, let us take a function Ψ : X → Θ and consider the
kernel:

K(x, x′) = 〈Ψ(x),Ψ(x′)〉 .
Let us consider a principal component analysis (PCA) of the family:

{

Ψ(X1), ...,Ψ(X(k+1)N )
}

by performing a diagonalization of the matrix:

(K (Xi, Xj))1≤i,j≤(k+1)N .

This method is known as Kernel PCA, see for example Schlkopf, Smola and Mller
[13]. We obtain eigenvalues:

λ1 ≥ ... ≥ λ(k+1)N

and associated eigenvectors e1, ..., e(k+1)N , associated to elements of Θ:

Ψ1 =

(k+1)N
∑

i=1

e1i Ψ(Xi), ...,Ψ(k+1)N =

(k+1)N
∑

i=1

e
(k+1)N
i Ψ(Xi)

that are exchangeable functions of the observations. Using the family:

Θ0 =
{

Ψ1, ...,Ψ(k+1)N

}
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we obtain an algorithm that selects which eigenvectors are going to be used in the
regression estimation. This is very close to the Kernel Projection Machine (KPM)
described by Blanchard, Massart, Vert and Zwald [1] in the context of classification.

5. Proof of the theorems in the transductive case

5.1. Proof of theorems 4.1 and 4.2. Here again, the first thing to do is to prove
a general deviation inequality. This one is a variant of the one given by Catoni [5].
We go back to the notations oh theorem 4.1 and 4.2, with test sample of size N .

Definition 5.1. Let G denote the set of all functions:

g : (X ×R)2N ×R2 → R
(Z1, ..., Z2N , u, u

′) 7→ g (Z1, ..., Z2N , u, u
′) = g(u, u′)

for the sake of simplicity, such that g is exchangeable with respect to its 2N first
arguments.

Lemma 5.1. For any exchangeable probability distribution P on (Z1, ..., Z2N), for
any measurable function η : (X × R)2N → R that is exchangeable with respect to
its 2 × 2N arguments, for any measurable function λ : (X × R)2N → R∗

+ that is
exchangeable with respect to its 2× 2N arguments, for any θ ∈ Θ and any g ∈ G:

P exp

(

λ

N

N
∑

i=1

{

g
[

fθ(Xi+N ), Yi+N

]

− g
[

fθ(Xi), Yi

]}

− λ2

cgN2

2N
∑

i=1

g
[

fθ(Xi), Yi

]2

− η
)

≤ P exp (−η)

and the reverse inequality:

P exp

(

λ

N

N
∑

i=1

{

g
[

fθ(Xi), Yi

]

− g
[

fθ(Xi+N ), Yi+N

]}

− λ2

cgN2

2N
∑

i=1

g
[

fθ(Xi), Yi

]2

− η
)

≤ P exp (−η) ,

where we write:

η = η ((X1, Y1), ..., (X2N , Y2N ))

λ = λ ((X1, Y1), ..., (X2N , Y2N ))

for short, and:

cg =







2 if g is nonnegative,

1 otherwise.
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Proof. In order to prove the first inequality, we write:

P exp

(

λ

N

N
∑

i=1

{

g
[

fθ(Xi+N ), Yi+N

]

−g
[

fθ(Xi), Yi

]}

− λ2

N2

2N
∑

i=1

g
[

fθ(Xi), Yi

]2

− η
)

= P exp

(

N
∑

i=1

log cosh

{

λ

N
g
[

fθ(Xi+N ), Yi+N

]

− λ

N
g
[

fθ(Xi), Yi

]

}

− λ2

N2

2N
∑

i=1

g
[

fθ(Xi), Yi

]2

− η
)

.

This last step is true because P is exchangeable. We conclude by using the inequal-
ity:

∀x ∈ R, log coshx ≤ x2

2
.

We obtain:

log cosh

{

λ

N
g
[

fθ(Xi+N ), Yi+N

]

− λ

N
g
[

fθ(Xi), Yi

]

}

≤ λ2

2N2

{

g
[

fθ(Xi+N ), Yi+N

]

− g
[

fθ(Xi), Yi

]}2

≤ λ2

cgN2
g
[

fθ(Xi), Yi

]2

.

The proof for the reverse inequality is exactly the same. �

We can now give the proof of the theorems.

Proof of theorem 4.1. From now we assume that the hypothesis of theorem 4.1 are
satisfied. Let us choose ε′ > 0 and apply lemma 5.1 with η = − log ε′, and g
such that g(u, u′) = uu′. We obtain: for any exchangeable distribution P , for any
measurable function λ : (X ×R)2N → R∗

+ that is exchangeable with respect to its
2× 2N arguments, for any θ ∈ Θ:

P exp

(

λ

N

N
∑

i=1

[

fθ(Xi+N )Yi+N − fθ(Xi)Yi

]

− λ2

N2

2N
∑

i=1

fθ(Xi)
2Y 2

i + log ε′

)

≤ ε′

and the reverse inequality:

P exp

(

λ

N

N
∑

i=1

[

fθ(Xi)Yi − fθ(Xi+N )Yi+N

]

− λ2

N2

2N
∑

i=1

fθ(Xi)
2Y 2

i + log ε′

)

≤ ε′.

Let us denote:

f(θ, ε′, λ) = λ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

fθ(Xi+N )Yi+N − fθ(Xi)Yi

]

− λ2

N2

2N
∑

i=1

fθ(Xi)
2Y 2

i

∣

∣

∣

∣

∣

+ log ε′.

The previous inequalities imply that: for any exchangeableP , for any measurable
function λ : (X × R)2N → R∗

+ that is exchangeable with respect to its 2 × 2N
arguments, for any θ ∈ Θ:

(5.1) P exp f((Z1, ..., Z2N ), θ, ε′, λ) ≤ 2ε′.

Now, let us introduce a new conditional probability measure:

P =
1

(2N)!

∑

σ∈S2N

δ(Xσi
,Yσi

)i∈{1,...,2N}
.
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Remark that P2N being exchangeable, we have, for any bounded function h :

(X ×R)
2N → R,

P2Nh = P2N

(

Ph
)

.

The measure P is exchangeable, so we can apply equation 5.1. For any values of
Z1, ..., Z2N we have:

∀θ ∈ Θ, P exp f((Z1, ..., Z2N), θ, ε′, λ) ≤ 2ε′.

In particular, we can choose θ = θ(Z1, ..., Z2N ) as an exchangeable function of
(Z1, ..., Z2N ), because we will have:

1

(2N)!

∑

σ∈S2N

exp f(Zσ(1), ..., Zσ(2N)), θ(Zσ(1), ..., Zσ(2N))), ε
′, λ)

=
1

(2N)!

∑

σ∈S2N

exp f(Zσ(1), ..., Zσ(2N)), θ(Z1, ..., Z2N )), ε′, λ) ≤ ε′.

Here, we choose as functions θ the members of Θ0: θ1, ..., θm (remember that we
choose this indexation in such a way that for any k, θk is an exchangeable function
of (Z1, ..., Z2N )). We have, for any λ1, ..., λm that are m exchangeable functions of
(Z1, ..., Z2N ):

P2N

[

∃k ∈ {1, ...,m}, f((Z1, ..., Z2N ), θk, ε
′, λk) > 0

]

= P2N

[

m
⋃

k=1

{f((Z1, ..., Z2N ), θk, ε
′, λk) > 0}

]

≤ P2N

[

m
∑

k=1

1 (f((Z1, ..., Z2N), θk, ε
′, λk) > 0)

]

= P2NP

[

m
∑

k=1

1 (f((Z1, ..., Z2N ), θk, ε
′, λk) > 0)

]

= P2N

m
∑

k=1

P
[1 (f((Z1, ..., Z2N ), θk, ε

′, λk) > 0)
]

≤ P2N

m
∑

k=1

P exp f((Z1, ..., Z2N), θk, ε
′, λk).

Now let us apply inequality 5.1, we obtain:

P2N

[

∃k ∈ {1, ...,m}, f((Z1, ..., Z2N ), θk, ε
′, λk) > 0

]

≤ P2N

m
∑

k=1

2ε′ = 2ε′m = ε

if we choose:

ε′ =
ε

2m
.

From now, we assume that the event:
{

∀k ∈ {1, ...,m}, f
(

(Z1, ..., Z2N ), θk,
ε

2m
,λk

)

≤ 0
}

is satisfied. It can be written, for any k ∈ {1, ...,m}:
∣

∣

∣

∣

∣

1

N

N
∑

i=1

[

fθk
(Xi+N )Yi+N − fθk

(Xi)Yi

]

∣

∣

∣

∣

∣

≤ λk

N2

2N
∑

i=1

fθk
(Xi)

2Y 2
i +

log 2m
ε

λk

.
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Let us divide both inequalities by:

1

N

2N
∑

i=N+1

fθk
(Xi)

2.

We obtain, for any k ∈ {1, ...,m}:

∣

∣αk
2 − Ckαk

1

∣

∣ ≤
λk

N2

∑2N

i=1 fθk
(Xi)

2Y 2
i +

log 2m
ε

λk

1
N

∑2N
i=N+1 fθk

(Xi)2
.

It is now time to choose the functions λk. We try to optimize the right-hand
side with respect to λk, and obtain a minimal value for:

λk =

√

N log 2m
ε

1
N

∑2N
i=1 fθk

(Xi)2Y 2
i

.

This choice is admissible because it is exchangeable with respect to (Z1, ..., Z2N ).
So we have, for any k ∈ {1, ...,m}:

∣

∣Ckαk
1 − αk

2

∣

∣ ≤ 2

√

1
N2

∑2N
i=1 [fθk

(Xi)2Y 2
i ] log 2m

ε

1
N

∑2N
i=N+1 fθk

(Xi)2
.

Finally, remark that:

∣

∣Ckαk
1 − αk

2

∣

∣ =

√

√

√

√

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk)

1
N

∑2N

i=N+1 fθk
(Xi)2

,

that leads to the conclusion that for any k ∈ {1, ...,m}:

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk) ≤ 22

1
N2

∑2N
i=1

[

fθk
(Xi)

2Y 2
i

]

log 2m
ε

1
N

∑2N
i=N+1 fθk

(Xi)2
.

This ends the proof. �

Proof of theorem 4.2. We write:

1

N

2N
∑

i=1

fθk
(Xi)

2Y 2
i =

1

N

N
∑

i=1

fθk
(Xi)

2Y 2
i +

1

N

2N
∑

i=N+1

fθk
(Xi)

2Y 2
i

and try to upper bound the second term. We apply lemma 5.1, but this time
with g such that g(u) = (uu′)2 that is nonnegative, and obtain, for any ε, for any
(exchangeables) θ and λ:

1

N

2N
∑

i=N+1

fθk
(Xi)

2Y 2
i ≤

1

N

N
∑

i=1

fθk
(Xi)

2Y 2
i +

λ

2N

1

N

2N
∑

i=1

fθk
(Xi)

4Y 4
i +

log ε

λ
.

We choose:

λ =

√

2N log ε
1
N

∑2N
i=1 fθk

(Xi)4Y 4
i

,

we apply this result to every θ ∈ Θ0, and combine it with theorem 4.1 by a union
bound argument to obtain the result. �
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5.2. Proof of theorem 4.3. First of all, we give the following obvious variant of
lemma 5.1:

Lemma 5.2. For any exchangeable probability distribution P on (Z1, ..., Z2N), for
any measurable function η : (X × R)2N → R that is exchangeable with respect to
its 2 × 2N arguments, for any measurable function λ : (X × R)2N → R∗

+ that is
exchangeable with respect to its 2× 2N arguments, for any θ ∈ Θ:

P exp

(

λ

N

N
∑

i=1

{

[

fθ(Xi+N )Yi+N − α(θ)fθ(Xi+N )2
]

−
[

fθ(Xi)Yi − α(θ)fθ(Xi)
2
]

}

− λ2

N2

2N
∑

i=1

[

fθ(Xi)Yi − α(θ)fθ(Xi)
2
]2

− η
)

≤ P exp (−η)

and the reverse inequality, where:

α(θ) = arg min
α∈R r1,2(αθ).

Proof. This is actually just an applicatin of lemma 5.1, we just need to remark that
α(θ) is an exchangeable function of (Z1, ..., Z2N ), and so we can take in lemma 5.1:

g(u, u′) = uu′ − u2α(θ),

that means that:

g [fθ(Xi), Yi] = fθ(Xi)Yi − α(θ)fθ(Xi)
2.

�

Proof of theorem 4.3. Proceeding exactly in the same way as in the proof of theorem
4.1, we obtain the following inequality with probability at least 1− ε:

(5.2) r2(Ckαk
1θk)− r2(αk

2θk)) ≤ 4







1
N

∑2N

i=1

[

fθk
(Xi)Yi − αk

1,2fθk
(Xi)

2
]2

1
N

∑2N
i=N+1 fθk

(Xi)2







log 2m
ε

N
.

This proves the theorem. �

Before giving the proof of the next theorem, let us see how we can make the first
order term observable in this theorem. For example, we can write:

[

fθk
(Xi)Yi − αk

1,2fθk
(Xi)

2
]2

=
[

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
]2

+
[

αk
1 − αk

1,2

]2

fθk
(Xi)

4

+ 2
[

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
][

αk
1 − αk

1,2

]

fθk
(Xi)

2.

Remark that it is obvious that:

|αk
1 − αk

1,2| ≤ |αk
1 − αk

2 |,
and so:
[

fθk
(Xi)Yi − αk

1,2fθk
(Xi)

2
]2

≤
[

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
]2

+
[

αk
1 − αk

2

]2

fθk
(Xi)

4

+ 2
∣

∣

∣fθk
(Xi)Yi − αk

1fθk
(Xi)

2
∣

∣

∣

∣

∣

∣αk
1 − αk

2

∣

∣

∣fθk
(Xi)

2.

Now, just write:

αk
1 − αk

2 =
(

1− Ck
)

αk
1 −

(

Ckαk
1 − αk

2

)
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and so we get:

[

fθk
(Xi)Yi − αk

1,2fθk
(Xi)

2
]2

≤
[

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
]2

+
[

Ckαk
1 − αk

2

]2

fθk
(Xi)

4

+ 2
∣

∣

∣Ckαk
1 − αk

2

∣

∣

∣

∣

∣

∣(1 − Ck)αk
1

∣

∣

∣fθk
(Xi)

4 +
(

1− Ck
)2 (

αk
1

)2
fθk

(Xi)
4

+ 2
∣

∣

∣fθk
(Xi)Yi − αk

1fθk
(Xi)

2
∣

∣

∣

∣

∣

∣Ckαk
1 − αk

2

∣

∣

∣fθk
(Xi)

2

+ 2
∣

∣

∣fθk
(Xi)Yi − αk

1fθk
(Xi)

2
∣

∣

∣

∣

∣

∣(Ck − 1)αk
1

∣

∣

∣fθk
(Xi)

2.

So finally, equation 5.2 left us with a second degree inequality with respect to
∣

∣Ckαk
1 − αk

2

∣

∣ or r2(Ckαk
1θk) − r2(αk

2θk)) that we can solve to obtain the following
result: with probability at least 1− ε, as soon as we have:

[

1

N

2N
∑

i=N+1

fθk
(Xi)

2

]2

>

[

1

N

2N
∑

i=1

fθk
(Xi)

4

]

4 log 2m
ε

N
,

which is always true for large enough N , the quantity
∣

∣Ckαk
1 − αk

2

∣

∣ belongs to the
interval:













2 log 2m
ε

N

b±
√

b2 + a

(

N
log 2m

ε

[

1
N

∑2N

i=N+1 fθk
(Xi)2

]2

− 4
N

∑2N

i=1 fθk
(Xi)4

)

[

1
N

∑2N
i=N+1 fθk

(Xi)2
]2

− 4 log 2m
ε

N

[

1
N

∑2N
i=1 fθk

(Xi)4
]













with the following notations:

a =
1

N

2N
∑

i=1

[

∣

∣fθk
(Xi)Yi − αk

1fθk
(Xi)

2
∣

∣+
∣

∣α1
k(1 − Ck)

∣

∣ fθk
(Xi)

2
]2

,

b =
1

N

2N
∑

i=1

2fθk
(Xi)

2
[

∣

∣α1
k(1 − Ck)

∣

∣ fθk
(Xi)

2 +
∣

∣fθk
(Xi)Yi − αk

1fθk
(Xi)

2
∣

∣

]

.

Remark that only one of the bounds of the interval is positive. So we obtain the
following result: with P2N -probability at least 1− ε, as soon as:

[

1

N

2N
∑

i=N+1

fθk
(Xi)

2

]2

>

[

1

N

2N
∑

i=1

fθk
(Xi)

4

]

4 log 2m
ε

N

we have:

∀k ∈ {1, ...,m}, r2
[

(Ckαk
1)θk

]

− r2(αk
2θk) ≤ 4 log2 2m

ε

N2

[

1

N

2N
∑

i=1

fθk
(Xi)

2

]













b+

√

b2 + a

(

N
log 2m

ε

[

1
N

∑2N

i=N+1 fθk
(Xi)2

]2

− 4
N

∑2N

i=1 fθk
(Xi)4

)

[

1
N

∑2N

i=N+1 fθk
(Xi)2

]2

− 4 log 2m
ε

N

[

1
N

∑2N

i=1 fθk
(Xi)4

]













2

.
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We can notice that this bound may be written:

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk) ≤ 8a log 2m

ε

N
+O

(

[

log m
ε

N

]
3
2

)

=
8 log 2m

ε

N

[

1

N

2N
∑

i=1

(

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
)2

]

+O
(

[

log m
ε

N

]
3
2

)

.

The next step would be now to replace the bound by an observable quantity, by
getting a bound like:

1

N

2N
∑

i=1

(

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
)2

≤ 2

N

N
∑

i=1

(

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
)2

+O
(

log m
ε

N

)

with high probability. This can be done very simply, using lemma 5.1 with this
time:

g(u, u′) =
(

uu′ − u2α(θ)
)2
.

We obtain the bound:

r2
[

(Ckαk
1)θk

]

− r2(αk
2θk)

≤ 16 log 4m
ε

N

[

1

N

N
∑

i=1

(

fθk
(Xi)Yi − αk

1fθk
(Xi)

2
)2

]

+O
(

[

log m
ε

N

]
3
2

)

.

5.3. Proof of theorem 4.4. The proof is exactly similar, we just use a new variant
of lemma 5.1, that is based on an idea introduced by Catoni [6] in the context of
classification.

Definition 5.2. Let us write:

Tθ(Zi) = fθ(Xi)Yi

for short. We also introduce a conditional probability measure:

P(2) =
1

N !

∑

σ∈SN

δ(Z1,...,ZN ,ZN+σ(1),...,ZN+σ(N)).

Remark that, because P is exchangeable, we have, for any function h:

Ph = P
[

P(2)h
]

.

Lemma 5.3. For any exchangeable probability distribution P on (Z1, ..., Z2N), for
any measurable function η : (X × R)2N → R that is exchangeable with respect to
its 2 × 2N arguments, for any measurable function λ : (X ×R)2N → R∗

+ which is
such that, for any i ∈ {1, ..., 2N}:

λ(Z1, ..., Z2N ) = λ(Z1, ..., Zi−1, Zi+N , Zi+1, ..., Zi+N−1, Zi, Zi+N+1, ..., Z2N ),

for any θ ∈ Θ:

P exp

{

P(2)λ

N

N
∑

i=1

[Tθ(Zi)− Tθ(Zi+N )]

− P(2)

[

λ2

2N2

1

N

N
∑

i=1

[Tθ(Zi)− Tθ(Zi+N )]
2

]

− η
}

≤ P exp (−η)

and the reverse inequality.
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Proof. Let Lhs denote the left-hand side of lemma 5.3. For short, let us put:

s(θ) =
1

N

N
∑

i=1

[

fθ(Xi+N )Yi+N − fθ(Xi)Yi

]2

=
1

N

N
∑

i=1

[Tθ(Zi)− Tθ(Zi+N )]2 .

Then we have:

Lhs = P2N expP (2)

(

λ

N

N
∑

i=1

[

Tθ(Zi)− Tθ(Zi+N )
]

− λ2

2N
s(θ)− η

)

≤ P2NP
(2) exp

(

λ

N

N
∑

i=1

[

Tθ(Zi)− Tθ(Zi+N )
]

− λ2

2N
s(θ)− η

)

,

by Jensen’s conditional inequality. Now, we can conclude as in lemma 5.1:

Lhs = P2N exp

(

N
∑

i=1

log cosh

{

λ

N

[

Tθ(Zi)− Tθ(Zi+N )

]}

− λ2

2N
s(θ) − η

)

≤ P2N exp

(

λ2

2N2

N
∑

i=1

[

Tθ(Zi)− Tθ(Zi+N )

]2

− λ2

2N
s(θ)− η

)

= P2N exp
(

−η
)

.

�

Proof of theorem 4.4. We apply both inequalities of lemma 5.3 to every θk, k ∈
{1, ...,m}, and we take:

λ =

√

2N log 2m
ε

s(θ)
.

We obtain, for any k ∈ {1, ...,m}:

P exp

{

P(2)λ

N

N
∑

i=1

[Tθ(Zi)− Tθ(Zi+N )]− log
2m

ε
− η
}

≤ ε.

Or, with probability at least 1− ε, for any k:

1

N

N
∑

i=1

[Tθ(Zi)− Tθ(Zi+N )] ≤

√

2 log 2m
ε

N

[

P(2)
(

s(θ)−
1
2

)]−1

,

so:
[

1

N

N
∑

i=1

Tθ(Zi)−
1

N

2N
∑

i=N+1

Tθ(Zi)

]2

≤ 2 log 2m
ε

N
P(2)s(θ).

We end the first part of the proof by noting that:

P(2)s(θ) = V1(θ) + V2(θ) +

[

1

N

N
∑

i=1

Tθ(Zi)−
1

N

2N
∑

i=N+1

Tθ(Zi)

]2

.

Now, let us see how we can obtain the second part of the theorem. Note that:

V2(θ) =
1

N

2N
∑

i=N+1

Tθ(Zi)
2 −

(

1

N

2N
∑

i=N+1

Tθ(Zi)

)2

.

We upper bound the first term by using lemma 5.1 with g(fθ(Xi), Yi) = fθ(Xi)
2Y 2

i =
Tθ(Zi)

2, so with probability at least 1− ε, for any k:

1

N

2N
∑

i=N+1

Tθ(Zi)
2 ≤ 1

N

N
∑

i=1

Tθ(Zi)
2 +

√

2 log m
ε

1
N

∑2N
i=1 Tθ(Zi)4

N
.
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For the second order term, we use both inequalities of lemma 5.1 with g(fθ(Xi), Yi) =
fθ(Xi)Yi = Tθ(Zi), so with probability at least 1− ε, for any k::

(

1

N

N
∑

i=1

Tθ(Zi)

)2

−
(

1

N

2N
∑

i=N+1

Tθ(Zi)

)2

≤
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Tθ(Zi)−
1

N

2N
∑

i=N+1

Tθ(Zi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

N

2N
∑

i=1

Tθ(Zi)

∣

∣

∣

∣

∣

≤ 2

√

1
N

∑2N

i=1 Tθ(Zi)2 log 2m
ε

N

1

N

2N
∑

i=1

|Tθ(Zi)| .

Putting all pieces together (and replacing ε by ε/3) ends the proof. �

5.4. Proof of theorem 4.5.

Proof of theorem 4.5. We introduce the following conditional probability measures,
for any i ∈ {1, ..., N}:Pi =

1

(k + 1)!

∑

σ∈Sk+1

δ(Z1,...,Zi−1,ZN(σ(1)−1)+i,Zi+1,...,

ZN+i−1,ZN(σ(2)−1)+i,ZN+i+1,...,...,ZkN+i−1,ZN(σ(k+1)−1)+i,ZkN+i+1,...,Z(k+1)N ).

and: P =
N
⊗

i=1

Pi

and, finaly, remember that:

P =
1

(k + 1)N

(k+1)N
∑

i=1

δZi
.

Note that, by exchangeability, for any nonnegative function

h : (X ×R)(k+1)N → R
we have, for any i ∈ {1, ..., N}:

P(k+1)NPih(Z1, ..., Z2N ) = P(k+1)Nh(Z1, ..., Z2N ).

Lemma 5.4. Let χ be a function R → R. For any exchangeable functions λ,
η : (X ×R)(k+1)N → R+ and θ : (X ×R)(k+1)N → Θ we have:P exp







λ





1

kN

(k+1)N
∑

i=N+1

χ
[

fθ(Xi)Yi

]

− 1

N

N
∑

i=1

χ
[

fθ(Xi)Yi

]



− η







≤ exp (−η) exp

{

λ2(1 + k)2

2Nk2
P

{

[

χ
(

fθ(X)Y
)

−Pχ
(

fθ(X)Y
)]2
}

+
λ3(1 + k)3

6N2k3

[

sup
i∈{1,...,(k+1)N}

χ (fθ(Xi)Yi)− inf
i∈{1,...,(k+1)N}

χ (fθ(Xi)Yi)

]3}

,

where we put λ = λ(Z1, ..., Z(k+1)N ), θ = θ(Z1, ..., Z(k+1)N ) and η = η(Z1, ..., Z(k+1)N )
for short. We have the reverse inequality as well.

Before giving the proof, let us introduce the following useful notations.
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Definition 5.3. We put, for any θ ∈ Θ, for any function χ:

χθ
i = χ (Yifθ(Xi)) ,

and:

χθ = χ (Y fθ(X))

that means that:

Pχθ =
1

(k + 1)N

(k+1)N
∑

i=1

χθ
i .

We also put:

Sχ(θ) = sup
i∈{1,...,(k+1)N}

χθ
i − inf

i∈{1,...,(k+1)N}
χθ

i .

Proof of the lemma. Remark that, for any exchangeable functions λ, η : (X ×R)(k+1)N → R+ and θ : (X ×R)kN → Θ we have:P exp







λ





1

kN

(k+1)N
∑

i=N+1

g
[

fθ(Xi)Yi

]

− 1

N

N
∑

i=1

g
[

fθ(Xi)Yi

]



− η







= exp (−η)
N
∏

i=1

Pi exp







λ

kN

k
∑

j=1

χθ
i+jN −

λ

N
χθ

i







= exp (−η)
N
∏

i=1

exp







λ

kN

k
∑

j=0

χθ
i+jN







N
∏

i=1

Pi exp

{

−λ(1 + k)

kN
χθ

i

}

where we put λ = λ(Z1, ..., ZkN ), θ = θ(Z1, ..., ZkN ) and η = η(Z1, ..., ZkN ) for
short.

Now, we have:

log
N
∏

i=1

Pi exp

{

−λ(1 + k)

kN
χθ

i

}

=
N
∑

i=1

logPi exp

{

−λ(1 + k)

kN
χθ

i

}

,

and, for any i ∈ {1, ..., N}:

logPi exp

{

−λ(1 + k)

Nk
χθ

i

}

= −λ(1 + k)

Nk
Piχ

θ
i +

λ2(1 + k)2

2N2k2
Pi

[

(

χθ
i − Piχ

θ
i

)2
]

−
∫

λ(1+k)
Nk

0

1

2

(

λ(1 + k)

Nk
− β

)2
1Pi exp
[

−βχθ
i

]Pi





(

χθ
i −

Pi

{

χθ
i exp

[

−βχθ
i

]}Pi exp
[

−βχθ
i

]

)3

exp
(

−βχθ
i

)



 dβ.

Note that, for any β ≥ 0:

1Pi exp
[

−βχθ
i

]Pi





(

χθ
i −

Pi

{

χθ
i exp

[

−βχθ
i

]}Pi exp
[

−βχθ
i

]

)3

exp
(

−βχθ
i

)





≤
[

sup
j∈{1,...,k}

χθ
i+(j−1)N − inf

j∈{1,...,k}
χθ

i+(j−1)N

]3

,
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and so:

log

N
∏

i=1

Pi exp

{

−λ(1 + k)

Nk
χθ

i

}

≤ − 1

N

N
∑

i=1

λ(1 + k)

k
Piχ

θ
i

+
1

N

N
∑

i=1

λ2(1 + k)2

2Nk2
Pi

[

(

χθ
i − Piχ

θ
i

)2
]

+
λ3(1 + k)3

6N2k3

[

sup
i∈{1,...,(k+1)N}

χθ
i − inf

i∈{1,...,(k+1)N}
χθ

i

]3

.

Note that: Piχ
θ
i =

1

k + 1

k
∑

j=0

χθ
i+jN

and so:

1

N

N
∑

i=1

Piχ
θ
i =

1

(k + 1)N

(k+1)N
∑

i=1

χθ
i = Pχθ;

remark also that:

1

N

N
∑

i=1

Pi

[

(

χθ
i − Piχ

θ
i

)2
]

≤ 1

(k + 1)N

(k+1)N
∑

i=1



χθ
i −





1

(k + 1)N

(k+1)N
∑

j=1

χθ
j









2

= P
[

(

χθ −Pχθ
)2
]

,

we obtain:P exp







λ





1

kN

(k+1)N
∑

i=N+1

fθ(Xi)Yi −
1

N

N
∑

i=1

fθ(Xi)Yi



− η







= exp (−η) exp

{

λ2(1 + k)2

2Nk2
P
[

(

χθ −Pχθ
)2
]

+
λ3(1 + k)3

6N2k3

[

sup
i∈{1,...,(k+1)N}

χθ
i − inf

i∈{1,...,(k+1)N}
χθ

i

]3}

.

The proof of the reverse inequality is exactly the same. �

Let us choose here again χ such that χ(u) = u, namely: χ = id. By the use
of a union bound argument on elements of Θ0 we obtain, for any ε > 0, for any
exchangeable function λ : (X ×R)(k+1)N → R+, with probability at least 1− ε, for
any h ∈ {1, ...,m}:

1

kN

(k+1)N
∑

i=N+1

fθh
(Xi)Yi −

1

N

N
∑

i=1

fθh
(Xi)Yi

≤ λ
(

1 + 1
k

)2

2N
P
[

(

χθh −Pχθh
)2
]

+
λ2
(

1 + 1
k

)3

6N2
Sid(θh)3 +

log m
ε

λ
.

Let us choose, for any h ∈ {1, ...,m}:

λ =

√

√

√

√

2N log m
ε

(

1 + 1
k

)2
P
[

(χθh −Pχθh)
2
] ,
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the bound becomes:

1

kN

(k+1)N
∑

i=N+1

fθh
(Xi)Yi −

1

N

N
∑

i=1

fθh
(Xi)Yi

≤
(

1 +
1

k

)









2

√

√

√

√

P
[

(χθh −Pχθh)
2
]

log m
ε

2N
+

Sid(θh)3 log m
ε

3NP
[

(χθh −Pχθh)
2
]









.

We use the reverse inequality exactly in the same way, we then combine both
inequality by a union bound argument and obtain the following result. For any
ε > 0, with P(k+1)N probability at least 1− ε we have, for any h ∈ {1, ...,m}:

(5.3) r2
(

Chαh
1θh

)

− r2
(

αh
2θh

)

≤
(

1 + 1
k

)2

1
kN

∑(k+1)N
i=N+1 fθh

(Xi)2

[

2Vθh
log 2m

ε

N

+
2
(

log 2m
ε

)
3
2 Sid(θh)3

3N
3
2V 1

2

θh

+

(

log 2m
ε

)2 Sid(θh)6

9N2V2
θh

]

,

remember that: Vθ = P

{

[(

fθ(X)Y
)

−P
(

fθ(X)Y
)]2
}

.

We now give a new lemma.

Lemma 5.5. Let us assume that P is such that, for any h ∈ {1, ...,m}:

∃βh > 0, ∃Bh ≥ 0, P exp (βh |fθh
(X)Y |) ≤ Bh.

This if for example the case if fθh
(Xi)Yi is subgaussian, with any βh > 0 and

Bh = 2 exp

{

β2
h

2
P
[

(fθh
(X)Y )2

]

}

.

Then we have, for any ε ≥ 0:

P(k+1)N

{

sup
1≤i≤(k+1)N

fθh
(Xi)Yi ≤

1

βh

log
(k + 1)NBh

ε

}

≥ 1− ε.

Proof of the lemma. We have:

P(k+1)N

(

sup
1≤i≤(k+1)N

fθh
(Xi)Yi ≥ s

)

= P(k+1)N (∃i ∈ {1, ..., (k + 1)N}, fθh
(Xi)Yi ≥ s)

=

(k+1)N
∑

i=1

P1fθh
(Xi)Yi≥s

≤ (k + 1)NP exp (βh |fθh
(Xi)Yi − s|) ≤ (k + 1)NBh exp (−βhs) .

Now, let use choose:

s =
1

βh

log
(k + 1)NBh

ε
,

and we obtain the lemma. �
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As a consequence, using a union bound argument, we have, for any ε ≥ 0, with
probability at least 1− ε, for any h ∈ {1, ...,m}:

Sid(θh) = sup
i∈{1,...,(k+1)N}

fθh
(Xi)Yi − inf

i∈{1,...,(k+1)N}
fθh

(Xi)Yi

≤ 2

βh

log
2(k + 1)mNBh

ε
.

By pluggin the lemma into equation 5.3 we obtain the theorem. �

6. Simulations in the transductive case

6.1. Description of the example. Here, we assume that we have:

Yi = f(Xi) + ξi

for i ∈ {1, ..., 2N} with N = 210 = 1024, where the variables Xi ∈ [0, 1] ⊂ R
are i.i.d. from a uniform distribution U(0, 1) (here we DO NOT assume that the
statistician knows this point), the ηi are i.i.d. from a gaussian distribution N (0, σ)
and independant from the Xi. The statistician observes (X1, Y1), ..., (XN , YN ) and
XN+1, ..., X2N and wants to estimate YN+1, ..., Y2N .

We will here again use three estimations methods: an inductive method, that
does not take advantage of the knowledge of XN+1, ..., X2N , and two transductive
methods. For the inductive method, we take the tresholded wavelet estimator that
we used in the experiments in the inductive case. For the transductive method, we
use here again a wavelet estimator and a (multiscale) SVM.

6.2. The estimators.

6.2.1. Thresholded wavelets estimators. In this case, as we assume that we don’t
know the distribution P(X), we have to estimate it and use a warped wavelet esti-
mator. We take:

FN (x) =
1

N

N
∑

i=1

1(Xi ≤ x),

and:

β̂j,k =
1

N

N
∑

j=1

Yiψj,k(FN (Xi)),

f̃J(.) =

J
∑

j=−1

∑

k∈Sj

β̂j,k1(|β̂j,k| ≥ κtN )ψj,k(FN (.)).

Here again, we choose κ = 0.5 and J = 7.

6.2.2. Wavelet estimators with our algorithm. Here, we use the same family of
functions, and we apply the transductive method described previously. Here again,
we use gaussian approximations for the confidence intervals (but we double their
length in order to take into account the variance of both samples).

6.2.3. SVM estimator. The transductive SVM estimator is taken with kernel:

Kγ(x, x′) = exp
(

−22γ(x− x′)2
)

and γ ∈ {1, ...,m′(N)} where m′(N) = 6. We use the same gaussian approximation
than in the previous example.

6.3. Experiments and results. We consider the same functions than in the in-
ductive case. We choose ε=10%. We repeat each experiment 20 times. We give
the results in figure 8.
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Figure 8. Results of the experiments. For each experiment, we
give the mean risk r2.
Function
f(.)

s.d.
σ

”inductive”
thresholded
wavelets

transductive
thresh. wav.
with our
method

transductive
multiscale
SVM

Doppler 0.3 0.234 0.174 0.165
HeaviSine 0.3 0.134 0.156 0.134
Blocks 0.3 0.187 0.171 0.177
Doppler 1 1.179 1.152 1.120
HeaviSine 1 1.092 1.110 1.065
Blocks 1 1.153 1.144 1.129

7. Bound on a multidimensionnal model

7.1. Theorem and algorithm. In this subsection, we try to generalize the algo-
rithm described in section 4 to the case where there are multidimensional models.
The idea is that, for example, if Θ0 = {θ1, θ2, θ3}, we could try not only to make
projections on:

{αθi, α ∈ R} for i ∈ {1, 2, 3}
but also on a bidimensional space like:

{

αθ1 + βθ2, (α, β) ∈ R2
}

.

More precisely, let us give the following definitions. First of all, we assume that we
are in the case where k = 1, so the test sample and the learning sample have size
N . We always assume that:

Θ0(Z1, ..., Z2N ) = {θ1, ..., θm}
is such that every θk is an exchangeable function of (Z1, ..., Z2N ).

Definition 7.1. For every d ≥ 0, 0 < j1 < ... < jd < m+ 1 and S = (θj1 , ..., θjd
) ∈

Θd
0 we put:

fS(x) =
(

fθj1
(x), ..., fθjd

(x)
)

.

For convenience, let us put, for any α = (α1, ..., αd) ∈ Rd:

αS′ =

d
∑

k=1

αkθjk

Remark that we have:

αfS(.)′ = fαS′(.) : X → R;

let us put:

CS
1,2 =

1

N

2N
∑

i=1

fS(Xi)
′fS(Xi)

CS
1 =

1

N

N
∑

i=1

fS(Xi)
′fS(Xi)

MS =
1

2
CS

1,2

(

CS
1

)−1
,
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and finally:

αS
1,2 = arg min

α∈Rd
r1,2 (αS′) =

1

N

2N
∑

i=1

YifS(Xi)
(

CS
1,2

)−1

αS
1 = arg min

α∈Rd
r1 (αS′) =

1

N

N
∑

i=1

YifS(Xi)
(

CS
1

)−1
.

For any matrix M we will let ρ(M) denote the biggest eigenvalue of M .

Here, αS
1,2 is our objective but we can only observe αS

1 , and the matrixMS .

Remark 7.1. Note the change in the objective. In this subsection, we try to mini-
mize r1,2 and not r2.

Theorem 7.1. Let d ≥ 0, let S ∈ Θd. Let us put:

BS
1,2 =

1

N

2N
∑

i=1

Y 2
i C

− 1
2

1,2 fS(Xi)
′fS(Xi)C−

1
2

1,2 .

For any ε > 0, we have, with P2N -probability at least 1− ε:

r1,2

(

MSαS
1 S′
)

− r1,2

(

αS
1,2S′

)

≤ 4ρ
(

BS
1,2

)

N

(

d log(2) + 2 log
1

ε

)

.

Note that BS
1,2 is not observable, except in the case of classification where we

have Yi ∈ {−1,+1} and so Y 2
i = 1, which implies that BS

1,2 = I and so:

ρ
(

BS
1,2

)

= 1.

In the general case we have the following corollary.

Corollary 7.2. Let d ≥ 0, let S ∈ Θd. Let us put:

BS
1 =

1

N

N
∑

i=1

Y 2
i C

− 1
2

1,2 fS(Xi)
′fS(Xi)C−

1
2

1,2 ,

that is observable, and:

DS
1,2 =

1

N

2N
∑

i=1

Y 4
i

(

λ1,2C
− 1

2
1,2 fS(Xi)

′fS(Xi)C
− 1

2
1,2 λ

′
1,2

)2

,

where:

ρ (B1,2) = sup
‖λ‖=1

λB1,2λ
′ = λ1,2B1,2λ

′
1,2.

For any ε > 0, we have with P2N -probability at least 1− ε:

r1,2

(

MSαS
1 S′
)

− r1,2

(

αS
1,2S′

)

≤ 8ρ
(

BS
1

)

N

(

d log(2) + 2 log
2

ε

)

+
4
[

DS
1,2 + log 2

ε

]

N
3
2

.

We can now give a new algorithm to perform regression estimation, that is a
variant of the one given in section 4. Before all, we have to choose k dimensions
d1, ..., dk and k models

S1 ∈ Θd1 , ...,Sk ∈ Θdk .

We apply theorem 7.1 to all the models simultaneously by a union bound argument
and we obtain k confidence regions:

CR1, ..., CRk
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and the corresponding projections:

Π1, ...,Πk.

We then use the following algorithm:

• choose θ(0) = 0;
• at step n ∈ N∗, define:

k′(n) = arg max
k′

d1,2 (θ(n− 1),Πk′θ(n− 1))

and

θ(n) = Πk′(n)θ(n− 1);

• stop when d1,2 (θ(n), θ(n − 1)) ≤ κ.
Example 7.1. By taking k = m, d1 = ... = dm = 1 and Si = θi for all i, we obtain
exactly the projection algorithm described in section 4.

Example 7.2. Let us take k = m, di = i for any i and Si = (θ1, ..., θi): we are
in the case of nested submodels, and we obtain a procedure similar to Lepski’s
method, at least as it is described by Birg [3].

7.2. Proofs. For convenience, we assume that S is chosen once and for all, and so
we will let B1,2 stand for BS

1,2, C1,2 for CS1,2, and D1,2 for DS
1,2. We keep the notation

fS(.) to avoid confusion with the true regression function f(.).

Proof of theorem 7.1. Let us state the following variant of lemma 5.1, obtained
exactly in the same way. For any measurable function η : (X ×R)2N → R that is
exchangeable with respect to its 2 × 2N arguments, for any measurable function
γ : (X × R)2N → R+ that is exchangeable with respect to its 2 × 2N arguments,
for any λ ∈ Rd:

P2N exp

(

γ

〈

C−
1
2

1,2

N

N
∑

i=1

{

fS(Xi)Yi − fS(Xi+N )Yi+N

}

, λ

〉

− ‖λ‖2 − η
)

≤ P2N exp

(

γ2

N

1

N

2N
∑

i=1

〈

C−
1
2

1,2 fS(Xi)Yi, λ
〉2

− ‖λ‖2 − η
)

,

that can be written:

P2N exp

(

γAλ′ − λIλ′ − η
)

≤ P2N exp

(

γ2

N
λB1,2λ

′ − λIλ′ − η
)

where:

A =
C−

1
2

1,2

N

N
∑

i=1

{

Ψ(Xi)Yi −Ψ(Xi+N )Yi+N

}

.

So we have:
∫Rd

P2N exp

(

γAλ′ − λIλ′ − η
)

dλ ≤
∫Rd

P2N exp

(

γ2

N
λB1,2λ

′ − λIλ′ − η
)

dλ.

Using Fubini’s theorem we obtain:

P2N

∫Rd

exp

(

γAλ′ − λIλ′ − η
)

dλ ≤ P2N

∫Rd

exp

(

λ

(

γ2

N
B1,2 − I

)

λ′ − η
)

dλ.

Now, let us assume that γ is small enough for the matrix

I − γ2

N
B1,2
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to be definite positive. Actually this means that:

N

γ2
> ρ (B1,2)

or:

γ <

√

N

ρ (B1,2)
.

Then we get:

P2N

[

π
d
2 exp

(

γ2

4
AA′ − η

)]

≤ P2N









π
d
2 exp(−η)

√

det
(

I − γ2

N
B1,2

)









,

or:

P2N

[

exp

(

γ2

4
AA′ − η

)]

≤ P2N

[

exp

(

−η − 1

2
log det

(

I − γ2

N
B1,2

))]

.

Let us put:

η = −1

2
log det

(

I − γ2

N
B1,2

)

+ log
1

ε
,

we get:

P2N

[

exp

(

γ2

4
AA′ +

1

2
log det

(

I − γ2

N
B1,2

)

− log
1

ε

)]

≤ ε.

This implies that:

P2N









AA′ ≤ 4

γ2
log

1

ε

√

det
(

I − γ2

N
B
)









≥ 1− ε.

Finally, note that:

AA′ = r1,2

(

MSαS
1 S′
)

− r1,2

(

αS
1,2S′

)

.

We obtain the following result. For any ε > 0, for any measurable function γ :
(X ×R)2N → R+ that is exchangeable with respect to its 2× 2N arguments:

P2N









r1,2

(

MSαS
1 S′
)

− r1,2

(

αS
1,2S′

)

≤ 4

γ2
log

1

ε

√

det
(

I − γ2

N
B1,2

)









≥ 1− ε.

In particular if we choose:

γ =

√

N

2ρ (B1,2)

then we obtain the theorem. �

Proof of corollary 7.2. In a first time, let us introduce the following obvious nota-
tion:

BS
2 = B2 =

1

N

2N
∑

i=N+1

Y 2
i C

− 1
2

1,2 fS(Xi)
′fS(Xi)C−

1
2

1,2 .

Now, we state a new variant of lemma 5.1: For any measurable function η : (X ×R)2N → R that is exchangeable with respect to its 2 × 2N arguments, for any
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measurable function λ : (X ×R)2N → Rd that is exchangeable with respect to its
2× 2N arguments:

P2N exp

(

λB2λ
′ − λB1λ

′ − η
)

≤ P2N exp

(

1

N2

2N
∑

i=1

Y 4
i

(

λC
− 1

2
1,2 fS(Xi)

′fS(Xi)C
− 1

2
1,2 λ

′
)2

− η
)

.

Now, taking:

λ = N
1
4 λ1,2

and:

η = log
1

ε
we obtain:

P2N

[

λ1,2B2λ
′
1,2 ≤ λ1,2B1λ

′
1,2 +

D1,2 + log 1
ε√

N

]

≥ 1− ε.

So, with probability at least 1− ε:

ρ (B1,2) = λ1,2B1,2λ
′
1,2 = λ1,2B1λ

′
1,2 + λ1,2B2λ

′
1,2

≤ 2λ1,2B1λ
′
1,2 +

D1,2 + log 1
ε√

N

≤ 2 sup
‖λ‖=1

λB1λ
′ +

D1,2 + log 1
ε√

N
= 2ρ (B1) +

D1,2 + log 1
ε√

N
.

The last step is to combine this inequality with theorem 7.1 by a union bound
argument. �

8. Interpretation of theorem 2.4 as an oracle inequality

We conclude this paper by going back to the inductive case. We first give a
weak variant of theorem 2.1, in order to obtain an easily observable bound. We
then use theorem 2.4 as an oracle inequality to show that the obtained estimator
is adaptative, which means that if we assume that the true regression function f
has an unknown regularity β, then the estimator is able to reach the right speed of

convergence N
−2β
2β+1 up to a logN factor.

8.1. A weak version of theorem 2.1. Let us assume that X = [0, 1] and let us
put Θ = L2(P(X)). Let (θk)k∈N∗ be an orthonormal basis of Θ, and we simply take,
for any x and θ:

fθ(x) = θ(x),

that m is chosen and we still have:

Θ0 = (θ1, ..., θm).

Moreover, let us assume that P is such that Yi = f(Xi)+ηi where ηi is independant
of Xi and has an unknown distribution, with of course Pη = 0 and P (η2) =≤ σ2 <
∞ with a known σ. We do not assume stronger hypothesis about η.

Theorem 8.1. We have, for any ε > 0, with P⊗N -probability at least 1 − ε, for
any k ∈ {1, ...,m}:

R(Ckα̂kθk)−R(αkθk) ≤ 4
[

1 + log 2m
ε

]

N

[

1

N

N
∑

i=1

fθk
(Xi)

2Y 2
i +B2 + σ2

]

.
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The proof is given at the end of the section. Note that this theorem is more
general than theorem 2.1 in the following way: we do not require the existence of
exponential moments for the noise ηi. But, at least for large values of N , the bound
is less tight.

8.2. Rate of convergence of the obtained estimator. Now, let us put:

θm = arg min
θ∈Span(Θ0)

R(θ)

(that depends effectively on m by Θ0 = {θ1, ..., θm}), and let us assume that f
satisfies the two following conditions: it is regular, namely there is an unknown
β ≥ 1 and a C ≥ 0 such that:

∥

∥fθm
− f

∥

∥

2

P
≤ Cm−2β ,

and that we have a constant B <∞ such that:

sup
x∈X

f(x) ≤ B

with B known to the statistician. It follows that:

‖f‖2P ≤ B2.

If follows that every set, for k ∈ {1, ...,m}:

Fk =







∞
∑

j=1

αjθj : α2
k ≤ B2







⋂

Θ

is a convex set that contains f and so that the orthogonal projection: ΠF ,m
P =

ΠFm

P ...ΠF1

P (where ΠFk

P denotes the orthogonal projection on Fk) can only improve
an estimator:

∀θ,
∥

∥

∥Π
F ,m
P θ − f

∥

∥

∥

2

P
≤ ‖θ − f‖2P .

Actually, note that this projection just consists in thresholding very large coeffi-
cients to a limited value. This modification is necessary in what follows, but this
is just a technical remark: most of the time, our estimator won’t be modified by

ΠF ,m
P for any m.
Remember also that in this context, the estimator given in definition 2.5 is just:

f̂(x) = f
θ̂
(x),

with:

θ̂ = Πm,ε
P ...Π1,ε

P 0.

Theorem 8.2. Let us assume that Θ = L2(P(X)), X = [0, 1] and (θk)k∈N∗ is an
orthonormal basis of Θ. Let us assume that we are in the idealized regression model:

Y = f(X) + η,

where Pη = 0, P (η2) ≤ σ2 < ∞ and η and X are independant, and σ is known.
Let us assume that f ∈ Θ is such that there is an unknown β ≥ 1 and an unknown
C ≥ 0 such that:

∥

∥fθm
− f

∥

∥

2

P
≤ Cm−2β ,

and that we have a constant B <∞ such that:

sup
x∈X

f(x) ≤ B
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with B known to the statistician. Then our estimator f̂ (given in definition 2.5 with
n0 = m here, build using the bound β(ε, k) given in theorem 8.1), with ε = N−2

and m = N , is such that, for any N ≥ 2,

P⊗N

[

∥

∥

∥Π
F ,N
P f̂ − f

∥

∥

∥

2

P

]

≤ C′(C,B, σ)N
−2β
2β+1 logN,

where we have:

C′(C,B, σ) = 2C + 50B2 + 44σ2.

Remark that this theorem shows that the estimator is able to achieve the good
rate of convergence, up to a logN factor, with an unknown β.

We can remark too that the given C′(C,B, σ) isn’t the best possible. It is easy
to improve C′, but this is pointless here. The reason is that theorem 8.2 has only
an asymptotic interest. In order to have good results for a given N , we have to use
theorem 2.2 that gives numerically better results than its weaker version, theorem
8.1. The reason why we use the weaker version here is that it is more easy in this
context to study asymptotics properties.

8.3. Proof of the theorems: theorem 2.4 used as an oracle inequality.

Proof of theorem 8.1. Actually, the proof is quite straightforward: instead of using
the techniques given in the section devoted to the inductive case, we use a result
valid in the transductive case and integrate it with respect to the test sample. There
are several ways to perform this integration (see for example Catoni [5]), here we
choose to apply a result obtained by Panchenko [10] that gives a particularly simple
result here.

Lemma 8.3 (Panchenko [10], corollary 1). Let us assume that we have i.i.d. vari-
ables T1, ..., TN (with distribution P and values in R) and an independant copy
T ′ = (T ′

1, ..., T
′
N) of T = (T1, ..., TN ). Let ξj(T, T

′) for j ∈ {1, 2, 3} be three mea-
surables functions taking values in R, and ξ3 ≥ 0. Let us assume that we know two
constants A ≥ 1 and a > 0 such that, for any u > 0:

P⊗2N
[

ξ1(T, T
′) ≥ ξ2(T, T ′) +

√

ξ3(T, T ′)u
]

≤ A exp(−au).

Then, for any u > 0:

P⊗2N

{

P⊗2N [ξ1(T, T
′)|T ]

≥ P⊗2N [ξ2(T, T
′)|T ] +

√

P⊗2N [ξ3(T, T ′)|T ]u

}

≤ A exp(1− au).

Now, a simple application of the first inequality of lemma 5.1 (given in the
transductive section) with ε > 0, any k ∈ {1, ...,m}, g = id, η = 1 + log 2m

ε
and:

λk =

√

Nη
1
N

∑2N
i=1 fθk

(Xi)2Y 2
i

leads us to the following bound, for any k:

P⊗2N exp





√

Nη
1
N

∑N
i=1 [fθk

(Xi)Yi − fθk
(Xi+N )Yi+N ]

√

1
N

∑2N
i=1 fθk

(Xi)2Y 2
i

− 2η



 ≤ exp(−η),
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or:

P⊗2N





1

N

N
∑

i=1

[fθk
(Xi)Yi − fθk

(Xi+N )Yi+N ] ≥

√

√

√

√

4η

N2

2N
∑

i=1

fθk
(Xi)2Y 2

i





≤ exp(−η) =
ε

2k exp(1)
.

We now apply Panchenko lemma with:

Ti = fθk
(Xi)Yi, T ′

i = fθk
(Xi+N )Yi+N

ξ1(T, T
′) =

1

N

N
∑

i=1

Ti, ξ2(T, T
′) =

1

N

N
∑

i=1

T ′
i ,

ξ3(T, T
′) =

2

N2

2N
∑

i=1

fθk
(Xi)

2Y 2
i ≥ 0,

and A = a = 1. We obtain:

P⊗2N

[

1

N

N
∑

i=1

[fθk
(Xi)Yi − P [fθk

(X)Y ]]

≥

√

√

√

√

4η

N2

N
∑

i=1

[fθk
(Xi)2Y 2

i + P [fθk
(X)2Y 2]]

]

≤ exp(1− η) =
ε

2k
.

Remark finally that:

P
[

fθk
(X)2Y 2

]

≤ P
[

fθk
(X)2

]

(B2 + σ2),

and by the orthonormality property of the basis (θk)k≥1:

P
[

fθk
(X)2

]

= 1.

We proceed exactly in the same way with the reverse inequalities for any k and
combine the obtained 2m inequalities to obtain the result:

P⊗N

{

∃k ∈ {1, ...,m}, 1

N

N
∑

i=1

∣

∣

∣

∣

fθk
(Xi)Yi − P [fθk

(X)Y ]

∣

∣

∣

∣

≥

√

√

√

√

4 + 4 log 2m
ε

N2

N
∑

i=1

[fθk
(Xi)2Y 2

i +B2 + σ2]

}

= P⊗2N

{

∃k ∈ {1, ...,m}, 1

N

N
∑

i=1

∣

∣

∣

∣

fθk
(Xi)Yi − P [fθk

(X)Y ]

∣

∣

∣

∣

≥

√

√

√

√

4 + 4 log 2m
ε

N2

N
∑

i=1

[fθk
(Xi)2Y 2

i +B2 + σ2]

}

≤ ε

that ends the proof. �

Proof of theorem 8.2. Let us begin the proof with a general m and ε, the reason of
the choice m = N and ε = N−2 will become clear. Let us also call E(ε) the event
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satisfied with probability at least 1− ε in theorem 8.1. We have:

P⊗N

[

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

= P⊗N

[1E(ε)

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

+ P⊗N

[

(

1− 1E(ε)

)

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

.

First of all, it is obvious that:

P⊗N

[

(

1− 1E(ε)

)

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

≤ 2P⊗N

[

(

1− 1E(ε)

)

(

∥

∥

∥Π
F ,m
P f̂

∥

∥

∥

2

P
+ ‖f‖2P

)

]

≤ 2ε
(

B2m+B2
)

= 2ε(m+ 1)B2.

For the other term, just remark that:
∥

∥

∥Π
F ,N
P f̂ − f

∥

∥

∥

2

P
=
∥

∥

∥Π
F ,m
P Πm,ε

P ...Π1,ε
P 0− f

∥

∥

∥

2

P
≤
∥

∥

∥Π
F ,m
P Πm′,ε

P ...Π1,ε
P 0− f

∥

∥

∥

2

P

=
∥

∥

∥Π
F ,m′

P Πm′,ε
P ...Π1,ε

P 0− f
∥

∥

∥

2

P

≤
m′
∑

k=1

4
[

1 + log 2m
ε

]

N

[

1

N

N
∑

i=1

fθk
(Xi)

2Y 2
i +B2 + σ2

]

+
∥

∥θm′ − f
∥

∥

2

P
.

This is where theorem 2.4 has been used as an oracle inequality: the estimator that
we have, with m ≥ m′, is better than the one with the ”good choice” m′. We have
too:

P⊗N

[1E(ε)

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

≤ P⊗N

[

m′
∑

k=1

4
[

1 + log 2m
ε

]

N

[

1

N

N
∑

i=1

fθk
(Xi)

2Y 2
i +B2 + σ2

]]

+ (m′)−2βC

≤ m′ 8
[

1 + log 2m
ε

]

N

[

B2 + σ2
]

So finally, we obtain, for any m′ ≤ m:

P⊗N

[

∥

∥

∥Π
F ,m
P f̂ − f

∥

∥

∥

2

P

]

≤ m′ 8
[

1 + log 2m
ε

]

N

[

B2 + σ2
]

+ (m′)−2βC + 2ε(m+ 1)B2.

The choice of:
m′ = N

1
2β+1

leads to a first term of order N
−2β
2β+1 log m

ε
and a second term of order N

−2β
2β+1 . The

choice of m = N and ε = N−2 gives a first term of order N
−2β
2β+1 logN while keeping

the second term at order N
−2β
2β+1 and the last term at order N−1. This proves the

theorem. �



48 P. ALQUIER

References

[1] G. Blanchard, P. Massart, R. Vert and L. Zwald, Kernel Projection Machine: a New Tool
for Pattern Recognition, Proceedings of NIPS 2004.

[2] B. E. Boser, I. M. Guyon and V. N. Vapnik, A training algorithm for optimal margin
classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Com-

putational Learning Theory, pages 144-152. ACM Press, 1992.
[3] L. Birg, An alternative point of view on Lepski’s method. In State of the Art in Probability

and Statistics, 113-133, Leiden, 1999.
[4] O. Catoni, Statistical learning theory and stochastic optimization, Lecture notes, Saint-

Flour summer school on Probability Theory, 2001, Springer, to appear.
[5] O. Catoni, A PAC-Bayesian approach to adaptative classification, preprint Laboratoire de

Probabilits et Modles Alatoires 2003.
[6] O. Catoni, Improved Vapnik Cervonenkis bounds, preprint Laboratoire de Probabilits et

Modles Alatoires 2005.
[7] N. Cristianini and J. Shawe Taylor, An introduction to Support Vector Machines and other

kernel based learning methods, Cambridge University Press, 2000.
[8] D. L. Donoho and I. M. Johnstone, Ideal Spatial Adaptation by Wavelets, Biometrika, Vol.

81, No. 3 (Aug., 1994), 425-455.
[9] G. Kerkyacharian and D. Picard, Regression in random desgin and warped wavelets,

preprint Laboratoire de Probabilits et Modles alatoires 2003

[10] D. Panchenko, Symmetrization Approach to Concentration Inequalities for Empirical Pro-
cesses, The Annals Of Probability, Vol. 31, No. 4 (2003), 2068-2081.

[11] R Development Core Team, R: A Language And Environment For Statistical Computing,
R Foundation For Statistical Computing, Vienna, Austria, 2004. URL http://www.R-
project.org.

[12] V. N. Vapnik, The nature of statistical learning theory, Springer Verlag, 1998.
[13] B. Schlkopf, A. J. Smola and K.-R. Mller, Nonlinear component analysis as a kernel eigen-

value problem, Neural Computation, 10:1299:1319, 1998.
[14] M. Seeger, PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification,

Journal of Machine Learning Research 3 (2002), 233–269.
[15] B. Widrow and M. Hoff, Adaptative swicthing circuits, IRE WESCON Convention Record,

4:96-104, 1960.



ITERATIVE FEATURE SELECTION IN LEAST SQUARE REGRESSION ESTIMATION 49

Laboratoire de Probabilits et Modles Alatoires, Universit Paris 6, and Laboratoire

de Statistique, CREST, 3, avenue Pierre Larousse, 92240 Malakoff, France.

URL: http://www.crest.fr/pageperso/alquier/alquier.htm
E-mail address: alquier@ensae.fr


