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Résumé

Remote sensing is an helpful tool for crop monitoring or vegetation

growth estimation at a country or regional scale. However, satellite

images generally have to cope with a compromise between the time

frequency of observations and their resolution (i.e. pixel size). When

concerned with high temporal resolution, we have to work with in-

formation on the basis of kilometric pixels that represent aggregated

responses of multiple land cover inside each low resolution pixel. Disag-

greggation is then necessary to downscale from the square kilometer

to the local dynamic of each parcel (crop, wood, meadows,...).

We propose to address this question through the generalisation of

varying-time regression models for longitudinal data and/or functional

data by introducing local mixed effects. The estimators are built by

expanding the mixed pixels trajectories with B-splines functions and

maximizing the log-likelihood with a Backfitting-ECME algorithm. A

BLUP formula allows then to get the ”best possible” estimations of

the local temporal responses of each crop when observing mixed pixels

trajectories. We show that this model has many potential applications

in remote sensing and an interesting one consists in coupling high and

low spatial resolution images in order to perform temporal interpola-

tion of high spatial resolution images (20m), increasing the knowledge

on particular crops in very precise locations.

The disaggregation, or downscaling, and interpolation approaches
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are illustrated on remote sensing data obtained on the South-Western

of France during the year 2002.

keywords : Backfitting, BLUP, covariance function, downscaling, ECME,

functional data, mixed effects, mixed pixels, splines, unmixing, SPOT/VGT,

SPOT/HRVIR, remote sensing.

1 Introduction

Observation of the Earth with satellites has given rise to much at-

tention for several decades since satellite images allow to deduce impor-

tant information about the state and the evolution of characteristic of the

earth. Remote sensing has been used successfully (see e.g. the web sites

http ://www.noaa.gov/eos.html and http ://www.eumetsat.int/ ) in many

fields of science (meteorological patterns, deforestation, desert advances, . . .).

The satellite imagery is based on the same principle as classical digi-

tal cameras used everyday to make pictures (Richards & Jia, 2005). Each

pixel of the image corresponds to the amount of energy that each cell of

a CCD (the retina of the sensor) receives. The optical sensor (or camera)

makes images of energy reflected by the target. It is very common in remote

sensing to manipulate the notion of reflectance which is simply the energy

reflected by the target normalised by the incident energy. Measured at dif-

ferent wavelengths, reflectances provide information on the spectral response

of surfaces. Considering for example the vegetation, the greeness of conti-

nental surfaces can be monitored along time with Vegetation Indices, VIs,

based on the difference between reflectances measured in the red part of the

spectrum (where green leaves absorb a lot) and near infra red part where

leaves reflectances are much higher. Among the possible environmental ap-

plications of optical remote sensing, we have chosen to devote this study to

the crop monitoring at a regional scale, and more specifically to the esti-

mation of local crops responses along time. Such an objective requires High

Resolution information at least once a week.

Yet, among optical sensors that currently operate on low orbit (around

800km), one can distinguish 2 major families in term of spatial resolution

and time frequency of observation. The first group is composed of low and

medium spatial resolution sensors, whose pictures elementary units (pixels)

respectively represent areas ranging between 1km by 1km and 250m by

250m. This type of sensors provide users with a costless daily global cove-

rage of the earth. The other group is composed of High Resolution missions,

which deliver very accurate spatial information (a pixel representing a sur-
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face ranging from 5m×5m to 20m×20m) but sparse temporal repetition

(generally less than one image per month) and with a relatively high cost

for the users.

Thus, the only way to get temporal information is to consider time series

of low resolution images at the expense of a loss of accuracy of the (spatial)

information which is aggregated.

The spatial aggregation problem is described in Figure (1) which presents

the same area observed both with sensors at high and low spatial resolu-

tions. For example, in the visible and the near infra-red wavelengths, on-

board the 2 last spot satellites SPOT 4 and SPOT 5, a daily global coverage

of continental surfaces is made possible at kilometric resolution thanks to

the VEGETATION sensor (at the top in Figure 1). On the same platform,

the HRVIR (High Resolution) sensor provides users with regional scenes

(60km×60km) at 20m resolution but its repetitiveness of observation on a

specific region reaches hardly one available image per month (Coret et al.

2005). This means that frequent images are only made available on the ba-

sis of kilometric pixels that represent aggregated responses of multiple land

cover inside each low resolution pixel. Figure (1) shows that aggregation

induces a non negligible amount of loss of spatial information and, as a

consequence, a loss of precision on the crop development in each plot. Di-

sagreggation is then necessary to downscale from the square kilometer to

the local dynamic of each parcel (crop, wood, meadows,...). In this case, the

downscaling or disaggregation problem consists in recovering the local tra-

jectories knowing the noisy aggregated response and the proportions of land

surface of the different themes within a mixed pixel. We may expect to get

accurate enough estimations of these local behavior by taking into account

the temporal evolution of the aggregated trajectories.

Here, we address this downscalling issue on the basis of a natural sta-

tistical model relying on mixed effects for longitudinal data (Laird & Ware,

1982). This model is a direct extension to longitudinal (Diggle et al. 1994)

and functional data (Rice 2004, Ramsay & Silverman, 2005) of a previous

work by Faivre & Fischer (1997) who considered the downscaling problem

for only one image, that is to say at one date, and thus without taking

into account the temporal structure of the correlation. Our approach allows

to take implicitly into account the spatial and temporal variations of the

different responses without having to assume explicitly any kind of spatial

correlation that would lead to intractable estimation procedures.

Although parametric growth models exist for some specific crops, they

are not available for most of the themes under studies. Furthermore, these

parametric models are nonlinear and the existing estimation procedures for
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Fig. 1 – With satellite images, technical constrains oblige to choose between

repetitiveness and pixels resolution. We present, along time, a same scene

observed at two different resolution and repetitiveness. On top, the tempo-

ral evolution observed by the Low Resolution Sensor SPOT4/VGT at many

frequent dates (potentially 1 image per day). The bottom part shows sparse

time series of three high resolution images acquired by SPOT4/HRVIR

(hardly available once per month). Length of the time axis is about one

year.
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nonlinear mixed effects models are nowadays still not efficient enough to

cope with such large data sets (see e.g Déjean et al. 2002). Let us notice

that when one has at hand ”biophysical” models describing the behavior

at a local scale of quantities such as soil moisture combined with auxiliary

information such as soil water storage capacity, deterministic procedures

combining remote sensing and auxiliary information have been developed

successfully for disaggregation (see Pellenq et al., 2003 or Merlin et al. 2005).

This is not the case here and we propose a statistical nonparametric ap-

proach which appears to be rather simple and well adapted to deal with a

huge amount of data. Let us notice that an approach based on local polyno-

mials has been published recently by Wu and Liang (2004) but it does not

seem to be suitable for such large remote sensing datasets. We propose to ex-

pand the temporal trajectories with B-splines functions which are known to

provide both accurate approximations to smooth functions (Dierckx, 1993),

which is a natural assumption for phenological curves, and a parsimonious

nonparametric model. It is a direct extension of the model studied by Hoo-

ver et al. (1998) who did not introduce random effects in their varying-time

regression model. Our estimation procedure relies on maximizing the log-

likelihood function according to the coordinates in the B-splines basis by

combining a weighted backfitting procedure (Hastie & Tibshirani, 1990) for

the fixed effects and an ECME step (Mac Lachlan & Krishnan, 1997) for

the variance components. The proposed algorithm is rather effective and it

takes only a few minutes to converge with images representing area of about

4500 km2 and 35 dates of observation.

To resume, we address in this article, with the same mixed effects model

for longitudinal data, the issues of

1. Estimation of the statistical characteristics (mean and variance func-

tions) of the different themes when observing aggregated longitudinal

data with known proportions. Downscaling is performed using a BLUP

formula to get the best approximation of the individual responses.

2. Temporal interpolation of high resolution remote sensing data when

observing both low resolution with a high time frequency and high

resolution images at a few different dates (between 3 and 10).

In section 2, we present the aggregation model and give empirical justifi-

cations for such a mixed effects approach. Section 3 describes the estimation

procedure. In section 4 a brief simulation study confirms the good proper-

ties of the B-splines approximation and the optimization algorithm. Section

5 presents a real life application in the South-West of France, a region for

which we have, during year 2002, a sequence of 36 medium resolution VEGE-
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TATION images as well as 10 SPOT4/HRVIR high resolution images inside

an area of about 4500 km2. Finally, section 6 proposes a general discussion,

some extensions of this approach and what could be next investigations.

2 The aggregation model of phenological curves

Before going on, let us fix some notations. We have p low spatial reso-

lution images observed at p different instants during the season, t1 < t2 <

· · · < tp, which are not necessarily equi-spaced. Each image is composed of

n coarse resolution pixels i, i = 1, . . . , n from which we get n trajectories

associated to the mixed pixels, Xi = (Xi(t1), . . . , Xi(tp))
′. We also suppose

that the land use is known, that is to say we have the proportion πij of

surface of each theme j, j = 1, . . . , J within each pixel i.

In the visible and the near infra-red wavelengths, a natural aggregation

model (Foody & Cox, 1994) of the responses of the different themes is the

following one :

Xi(t) =

J∑

j=1

πij ρij(t) + εi,t, t ∈ {t1, t2, · · · , tp}, (1)

where ρij(t) is the reflectance curve, or “phenological curve”, or local res-

ponse for the considered theme j (e.g. crop type), within pixel i and the

noise εi,t are supposed to be independent and drawn from a Gaussian dis-

tribution with mean zero and variance σ2. Let us notice that model (1) only

describes the ”mean” response ρij(t) of plots of crop j within pixel i. Then,

it is well adapted for modeling local responses of crops since the intra-pixel

variabilities are relatively small compared to the inter (mixed) pixel variabi-

lities. This hypothesis is realistic for remote sensing when dealing with crops

and pixels whose size is about 1km2. Indeed, within such a surface, the as-

sumption of ”homogeneity” in the responses of different plots of a same crop

is often satisfied.

Unfortunately the parameters of interest ρij(t) of model (1) can not be

identified when observing the aggregated responses Xi(t). To cope with this

problem, Cardot et al. (2003) made following simplification

ρij(t) = ρj(t), t ∈ [0, T ], (2)

assuming that, for relatively small areas (around 40 km × 40km), the res-

ponse of a culture does not vary with the location i of the pixel. One major

drawback of this approach is that it does not take into account the local va-

riations of the phenological curves assuming the growth of a culture as being
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nearly identical from one location to another. Unfortunately this might not

be the case (see next section), even for regions with moderate size, since

agricultural practices (irrigation amount, sowing dates, . . .) may differ from

one farmer to another. Furthermore, factors such as soil composition or cli-

mate may also vary spatially, influencing locally the crop development and

its temporal evolution. Thus, one has to find an intermediate model between

the overparametrized model (1) and the too simple model (2).

2.1 Towards a mixed effects approach

Thanks to a regional scientific project involving the high resolution mo-

nitoring of a specific region near Toulouse (”Sud-Ouest” project, see section

5 for more details), we also have a time series of 10 dates of high resolution

images (SPOT4/HRVIR) during year 2002. This dataset allows the diagnos-

tic of variations of the responses of each vegetation type around its mean

phenological curve.

For instance, let us have a closer look at temporal responses according

to the PVI index (Tucker, 1979) of pixels composed only of ”wheat crops”

(see Figure 2). The PVI index, a linear combination of the responses in the

RED and NIR channels defined by PVI=a PIR- b RED with a = 0.62 and

b = 0.78 in this region, shows that assumption (2) is really too strong. One

cannot assume that variations of the ”wheat” pixel trajectories around its

mean phenological curve are only due to independent noises as supposed

in 2). Indeed a functional PCA (Ramsay & Silverman, 2005) exhibits a

high temporal correlation structure, meaning that the variations around the

mean function ρj(t) have a strong temporal structure and projecting the

data onto a 2-dimensional space allows to explain more than 70 % of the

whole variability.

Looking now at the two last displays in Figure (2), in which we have

drawn the densities of the principal components, one clearly sees that even if

the principal components are not exactly Gaussian they are clearly unimodal

and can be approximated, at first sight, without much error, by Gaussian

random variables. Having in mind these consideration Cardot, Faivre and

Maisongrande (2004) proposed a Gaussian mixed effects model in order to

describe the temporal behavior of mixed pixels.

Assuming the response of different crops are independent and that the

temporal correlation of crops does not depend on the location, we propose
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Fig. 2 – Functional Principal Components Analysis of the response of the

PVI of high resolution pixels observed at 10 different instants during year

2002 and containing 100 % of the theme ”Wheat”. The graphs represent a/

a sample of one hundred wheat pixels trajectories, b/ the explained variance

by the ten principal components, c/ and d/ the variation around the mean

trajectories induced by respectively the first and second eigenfunctions, e/

and f/ the density respectively of the first and second principal components.
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the following model






Xi(t) =

J∑

j=1

πij ρij(t) + εi,t, t ∈ {t1, . . . , tp},

ρij ∼ N
(
ρj ,Γj

)
, j = 1, . . . , J,

(3)

where ρj(t) is the expectation of the random function ρij(t), ρj = (ρj(t1), . . . , ρj(tp))
′,

and Γj is the covariance matrix with elements

[Γj ]ℓ,ℓ′ = cov(ρij(tℓ), ρij(tℓ′)) = γj(tℓ, tℓ′), ℓ, ℓ′ = 1, . . . p.

The noise components εi,t are supposed to be independent and Gaussian

with mean zero and variance σ2. Model (3) is a random effects varying-time

regression model.

2.2 Interpolation and prediction with the BLUP formula

Assuming model (3) is true, spatial disaggregation and temporal inter-

polation can be handled naturally with the BLUP formula (Robinson, 1991)

which is recalled now. If (U,V) is a Gaussian multivariate random variable

(U,V) ∼ N

((
µu

µv

)
,

(
Γu Γu,v

Γv,u Γv

))

the best linear unbiased prediction of the component U having observed

V = v, is given by the well known BLUP formula

IE (U|V = v) = µu + Γu,vΓ
−1

v (v − µv) . (4)

Going back to our study and assuming that Xi, πij ,ρj , Γj and σ2 are

known, we can give an answer to the first question, that is to say determine

the best estimation of the response of a crop within a mixed pixel. Taking

U = ρij(t) and V = Xi = (Xi(t1), . . . , Xi(tp))
′ we get

IE (ρij(t) | Xi) = ρj(t) + Cov(ρij(t),Xi)Var(Xi)
−1



Xi −
J∑

j=1

πijρj



(5)

where

Cov(ρij(t),Xi) = πij (γj(t, t1), . . . , γj(t, tp))

and

[Var(Xi)]ℓ,ℓ′ = σ2I{ℓ=ℓ′} +

J∑

j=1

π2

ijγj(tℓ, tℓ′) .
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If we now observe a plot with a higher resolution sensor at a few in-

tants τ1, . . . , τκ with κ << p, its temporal trajectory can be approxima-

ted (using the best linear approximation) at any other instant τ. Assu-

ming that we also observe during the same period of time (but not ne-

cessarily the same instants) the trajectory of the underlying mixed pixel

Xi = (Xi(t1), . . . , Xi(tp)) , temporal interpolation is performed by applying

the BLUP formula (4) with U = ρij(τ) and V =
(
ρij ,Xi

)′
.

Note that we can also get the conditional variance both for the interpo-

lation and disagregation approaches.

The next section explain how we can get maximum likelihood estimations

of the different parameters of interest.

3 Maximum likelihood estimators

We first propose to expand the observed aggregated trajectories with B-

splines basis. Then we can get an approximation to the likelihood function

and look for its maximum with an algorithm that combines the Backfitting

for the fixed effects and the ECME for the random components.

3.1 Splines approximation of the phenological curves and

their conditional variances

Trajectories are expanded in B-splines basis (Dierckx, 1993) in order to

have a finite and relatively small number of parameters to estimate. These

functions are known to provide parsimonious and good approximations to

”smooth functions” such as the true phenological curves. To gain in flexi-

bility, we consider two different basis for the mean phenological curves and

for the individual variations. We take a B-splines basis, B1(t), . . . , BK1
(t),

(resp. B1(t), . . . ,BK2
(t)) of order q1 (resp. q2) with k1 (resp. k2) equi-spaced

interior knots in the period of interest for the expansion of the mean phe-

nological curves (resp. the individual variations) where K1 = k1 + q1 (resp.

K2 = k2 + q2) is the dimension of the functional space spanned by the

B-splines.

Approximation to the individual responses can be written as follows

ρij(t) ≈
K1∑

k=1

θk,jBk(t) +

K2∑

s=1

δi
s,jBs(t), (6)

separating the fixed effects, θk,j , from the random effects δi
s,j which are

supposed to be centered. Going back to the mixed pixels trajectories, we get
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the formulation for the aggregated data

Xi(tν) ≈
J∑

j=1

πij

K1∑

k=1

θk,jBk(tν) +

J∑

j=1

πij

K2∑

s=1

δi
s,jBs(tν) + εi,tν , (7)

for ν = 1, . . . , p and i = 1, . . . , n. Denoting by γs,ℓ
j = Cov(δi

s,j , δ
i
ℓ,j), this can

also be written in a matrix way as follows

IE (Xi|πi) = Bθπi (8)

Var (Xi|πi) = σ2Ip +

J∑

j=1

π2

ij

K2∑

s,ℓ=1

γs,ℓ
j BsB

′
ℓ (9)

where Xi = (Xi(t1), . . . , Xi(tp)), θ is the matrix K1 × J whose elements are

[θ]k,j = θk,j , B (resp. B) is the matrix p×K1 (resp. p×K2) whose elements

are [B]ν,k = Bk(tν) (resp. [B]ν,k = Bk(tν)), Bk = (Bk(t1), . . . , Bk(tp))
′ and

Bs = (Bs(t1), . . . ,Bs(tp))
′.

Note that (9) does not assume that δi
s,j and δi

s′,j are independent for

s 6= s′ but we assume that there is no correlation between different crops.

Remark 1 Such a B-splines decomposition is still valid even if the pixels

are not exactly observed at the same instants which is the case when we have

S10 synthesis (see e.g. Duchemin & Maisongrande 2002, Maisongrande et

al. 2004). To remain valid, we only have to assume that there is at least one

time measurement between two adjacent interior knots which is generally

true if the number of knots is not too high. Then, one can consider vectors

Bk,i and Bs,i that depend on i without modifying the estimation procedure

described below.

3.2 Likelihood function

At this stage, let us introduce the following notation. Denote by Vi the

variance of the digitized trajectory Xi, defined in (9),

Vi = σ2Ip +

J∑

j=1

π2

ijBΓ̃jB
′ (10)

where Γ̃j is a matrix K2 × K2 whose elements are [Γ̃j ]s,l = γs,l
j .

The log-likelihood, equals, up to a constant

L = −
1

2

(
n∑

i=1

log |Vi| +
n∑

i=1

(Xi − Bθπi)
′
V−1

i (Xi − Bθπi)

)
(11)

and the parameters to be estimated are σ2, the K1 × J matrix θ and the J

covariance matrices Γ̃j whose sizes are K2 × K2.
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3.3 The optimisation algorithm

The estimation procedure proposed here is based on combination of the

backfitting algorithm and a kind of EM algorithm (Laird and Ware, 1982),

called ECME which is known to converge faster than the classical EM algo-

rithm (McLachlan and Krishnan, 1997). Let us also notice that one major

advantage of this approach compared to direct optimization procedures is

that the estimated covariance matrices are automatically non negative.

One reasonable approach to maximize (11) is to consider an alternating

procedure for linear mixed models and conditional variance estimation. The

steps of the algorithm are the following ones

1. Initialization : get θ̂
0

by classical least squares (see Cardot et. al.,

2003).

2. Determine an estimator of the variance components Γ̃j and σ2 with

the ECME step (see below).

3. Maximize the likelihood according to θ,
̂̃
Γj and σ̂2 being obtained

at previous step. This step is equivalent to a weighted least squares

minimization.

4. Iterate steps 2 and 3 until convergence. The algorithm is stopped when

the variations of σ̂2 are less than 0.001.

Once the algorithm has converged, we can deduce estimation of the phe-

nological curves for each instant t,

ρ̂j(t) =

K1∑

k=1

θ̂k,jBk(t) (12)

as well as the covariance functions

γ̂j(s, t) = B
′(s)
̂̃
ΓjB(t) (13)

where B(t) = (B1(t), . . . ,BK2
(t))′.

These steps are described in details in the following sections.

3.3.1 Estimating the variance components with ECME

Let us denote by δi
j = (δi

1,j , . . . , δ
i
K2,j)

′ the vector individual components.

Assuming that we have estimators (obtained during previous iteration of

the algorithm) for the individual covariance matrices, V̂i, we can deduce the

conditional expectations for the individual components δ̂
i

j = IE
(
δi

j | Xi

)
as

12



well as ε̂i = IE (εi | Xi) using the BLUP formula,

δ̂
i

j = πijΓ̃jB
′V̂−1

i



Xi −
J∑

j=1

πijBθ̂j



 , (14)

ε̂i = Yi −
J∑

j=1

πij

(
Bθ̂j + Bδ̂

i

j

)
. (15)

With these expressions we can get estimates of the variance components

n
̂̃
Γj = IE

(
n∑

i=1

δ̂
i

j(δ̂
i

j)
′ | Xi

)

=

n∑

i=1

{
δ̂

i

j(δ̂
i

j)
′ + Var

(
δi

j | Xi

)}
. (16)

The variance σ2 of the noise is estimated by

np σ̂2 = IE

(
n∑

i=1

ε′iεi | Xi,
̂̃
Γ1, . . . ,

̂̃
Γp

)

=

n∑

i=1

{
ε̂′iε̂i + tr Var (εi | Xi)

}
. (17)

Formulas for the expected conditional variances are given in McLachlan and

Krishnan (1997).

3.3.2 A backfitting algorithm for weighted least squares itera-

tions

Let us notice that the least squares criterion corresponding to step 0 and

step 3 in the previous algorithm can also be expressed in a matrix way as

follows :

min
θ

ϕ(θ) =

n∑

i=1

∥∥∥∥∥∥
Xi −

J∑

j=1

πijBθ̂j

∥∥∥∥∥∥

2

V
−1

i

, (18)

where ‖X‖2

V
−1

i

= X′V−1

i X. Then, finding the roots of the set of score equa-

tions
∂ϕ(θ)

∂θj

∣∣∣∣
θ=bθ

= 0, j = 1, . . . , J, (19)

is equivalent to solve the problem according to θ1, . . . ,θJ

J∑

j′=1

(
n∑

i=1

πijπij′B
′V−1

i B

)
θj′ =

n∑

i=1

πijB
′V−1

i Xi, j = 1, . . . , J. (20)
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Solving this system of equations can be done rather rapidly by blocks with

the backfitting algorithm (Hastie & Tibshirani, 1990).

4 A simulation study

Before applying our method to real data sets we perform a brief simula-

tion study in order to evaluate the effectiveness of the estimation procedure.

We have simulated n aggregated trajectories

Xi(t) =

J∑

j=1

πij ρij(t) + ǫi,t

with

– i = 1, . . . , n = 1000 pixels

– j = 1, . . . , J = 3 classes, πij ∼ uniform law in [0, 1] (normalised)

ρ1(t) = 5 exp(−(t − 0.5)2/0.1), γ1(s, t) = exp(−|s − t|),

ρ2(t) = 6 exp(−(t − 0.4)2/0.02), γ2(s, t) = (1 + 4(t − s)2)−2

ρ3(t) = 6 exp(−(t − 0.7)2/0.05), γ3(s, t) = (1 + 4(t − s)2)−4

– p = 40 instants sorted in ascending order, t1 ≤ . . . ≤ tp, and drawn

from a Uniform distribution in [0, 1].

– Var(ǫi,t) = σ2 = 0.05

The mean response curves ρ1, ρ2 and ρ3 can be understood as classical phe-

nological curves (not scaled in this simulation study) with a growing period

and then a decreasing one. They differ each other from the growing rates

and the instants they reach their maximum.

In the estimation procedure, we have chosen k1 = k2 = 5 interior knots

and order q1 = q2 = 3 so that K1 = K2 = 8 for the B-splines functions,

allowing for a certain flexibility without needing to estimate too many para-

meters. We also consider other basis, allowing the number of interior knots

to vary : it appeared, provided this number is not too low (less than 4)

and not too high (more than 10), the results are quite the same. The algo-

rithm, coded in R, is fast and takes less than one minute to converge with

1 + 3 × 8 + 3 × 8 × 9/2 = 133 parameters to estimate.

Disaggregation

We have drawn in Figure 3 a realisation of X and the estimated mean

response curves defined in (12). We clearly see that the B-splines expansion

give very accurate estimations to the mean behavior of the different themes.

If we study the variance components, the conclusion are quite the same. The
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Fig. 3 – An example of simulated mixed pixel trajectory (plain line) and

its noisy discretized observation (circles). True (plain line) and estimated

(dotted line) mean response curves of the three different classes.
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estimator σ̂2 = 0.048 whereas the true value is 0.05. Considering now the

loss criterion ∑p
ℓ,ℓ′ (γ̂j(tℓ, tℓ′) − γj(tℓ, tℓ′))

2

∑p
ℓ,ℓ′ γj(tℓ, tℓ′)2

to evaluate the skill of the covariance term estimation, we get an error of

about 0.06 for γ̂1, 0.04 for γ̂2, and 0.08 for γ̂3, which means that we have

obtained rather good approximations to the true covariance functions.

Let us look now, in Figure 4, at the estimation of the local responses, ρ̂ij

obtained thanks to the BLUP formula. We first notice that if the proportion

of the theme (theme 3 here with πi3 = 0.49) is sufficiently high, then there is

an important gain in considering a mixed effects model and our estimators

are able to capture rather well the variations from the mean response curve.

On the other hand, if the proportion of the theme is not high enough (theme

1, with πi3 = 0.23), that is to say its contribution to the aggregated curve Xi

is too low, then the individual curves is very similar to the mean response

of the theme and there is no real gain in considering a mixed effects model

for estimating individual trajectories.

Temporal interpolation

To study the sensitivity of the quality of interpolation to the number ℓ

of high resolution points, we consider a number ℓ of observed high resolution

images varying from ℓ = 3 to ℓ = 9, the ℓ instants being equispaced in [0, 1].

We compare 4 interpolation approaches, ordered according to an increasing

level of information,

– performing a linear interpolation of the high resolution trajectories

(method ”lin”).

– taking into account the estimated mean response curve and performing

a linear interpolation of the local variation (the residuals) around this

mean trajectory. This corresponds to a BLUP interpolation with a

predefined covariance function (method ”res”).

– applying the BLUP formula (4) which takes into account both the

mean phenological curve and the covariance function (”blup1”).

– taking into account both the high resolution and the low resolution

trajectories in the BLUP formula (”blup2”).

The error is evaluated with the mean square error of approximation at

the predicted points. Table 1 gives these errors when interpolating trajecto-

ries of crops belonging to theme 3. We first remark that the linear interpo-

lation is not effective at all when the number ℓ of measurements is too low.

The ”res” method does not perform too badly, the information brought by
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Fig. 4 – An example of simulated mixed pixel trajectory (bold line) and its

noisy discretized observation (circles). The second display presents the true

trajectory (bold line) the contribution of the three different themes (dotted

lines). The third and fourth displays present the contribution of the first

and third theme (line), whose corresponding proportions are πi1 = 0.23 and

πi3 = 0.49, the estimated weighted mean response of the theme (dotted line)

and the estimated individual component (bold dotted line).
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MSE 3 pts 5 pts 7 pts 9 pts

lin 2.65 0.57 0.26 0.038

res 0.24 0.081 0.051 0.011

blup1 0.23 0.052 0.022 0.004

blup2 0.12 0.037 0.018 0.004

Tab. 1 – Mean Square Error (MSE) of interpolation according to the number

of observed high resolution data for the four different approaches.

MSE 3 pts 5 pts 7 pts 9 pts

lin 2.65 0.56 0.26 0.038

res 0.25 0.082 0.052 0.011

blup1 0.24 0.052 0.021 0.004

blup2 0.051 0.024 0.014 0.004

Tab. 2 – Mean Square Error (MSE) of interpolation according to the num-

ber of observed high resolution data for the four different approaches when

considering mixed pixels containing more than 40 % of theme 3.

the mean phenological curve telling what are the most important variations

of the crop. Nevertheless, as the temporal information increases, the two

blup approaches get better and better, allowing to take into account smaller

variations. The blup2 approach is always better and provides good inter-

polations even for a small number of high spatial resolution data. On the

contrary, when ℓ = 9, the two blup approaches give similar errors, meaning

that coarse resolution data do not bring additional information anymore.

If we restrict now the computation of the loss criterion to the pixels

containing more than 40 % of theme 3, we can see in Table 2) that the

information brought by the aggregated trajectories still improve significantly

the prediction error made by the blup2 method, even for a small number ℓ

of high resolution data.

5 Application : the ”Sud-Ouest” project

In this section, the synthetic exercice previously described is now applied

to an actual remote sensing dataset. Thanks to the South-West Project

(http ://www.cesbio.ups-tlse.fr/us/sud ouest.html) carried on at CES-

BIO, we took advantage of the simultaneous availability of high and low
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Forest Wheat Maize Pastures

1st axis 42 % 67 % 49 % 63 %

2nd axis 23 % 22 % 24 % 21 %

3rd axis 15 % 6 % 12 % 11 %

Tab. 3 – Explained variance by the first three eigenfunctions of the estimated

covariance operators of four important ”crops” in the South-Western project.

resolution time series during year 2002. Indeed, we have at our disposal

36 VEGETATION images, i.e. one image every 10 days (S10 synthesis see

Maisongrande et al. 2004) as well as 10 high resolution images SPOT4/HRV

(Coret et al. 2005). Within this pilot site, we have selected an area with a

surface of about n =4500 km2 in the South-Western of France. We consi-

der the J = 7 most important themes in this region, which are Forest 9%,

Wheat 22%, Maize 8%, Sunflower 12%, Pastures 26%, Urban 12% and ”Re-

mainding” representing 11 % of the total surface. The land use classification

was made at CESBIO (Ducrot et al. 2004) using a classification algorithm

based on multispectral and multitemporal high resolution data.

5.1 Disaggregating VEGETATION data

We first calibrate, with the land use and the VEGETATION data, the

random effects model to get estimates of the mean temporal profiles of the

different themes (equation 12) as well as their covariance functions (equation

13) using the algorithm described previously. The estimated mean phenolo-

gical curves of the themes ”Forest”, ”Wheat”, ”Maize” and ”Pastures” are

drawn in Figure (5) where we can clearly see that the responses along time

of the different types of vegetation vary in their intensities but also in their

variabilities. For instance, the theme ”Pastures” seems to have larger varia-

tions of its variability, from one location to another, than other crops. To

study in details the largest mode of variations of these classes, we have per-

formed the spectral analysis, or functional PCA, of the estimated covariance

functions. The variance explained by the first three principal components are

given in Table 3. We can notice that mainly all the variability of these crops,

that is to say more than 80 % of the total variations, is captured by approxi-

mating the individual trajectories in a two dimensional space for ”wheat”

and ”Pastures” and a three dimensional space for the themes ”Forest” and

”Maize”.

We have also drawn in Figure (6) the first two eigenfunctions for these
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Fig. 5 – Estimated mean phenological curves (circles) with the PVI du-

ring year 2002 with VEGETATION data for the themes ”Forest”, ”Wheat”,

”Maize” and ”Pastures”. We have added ± two times the instantaneous

standard deviations in order to characterize the main instants in time of

variability (plain lines).
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MSE All pixels Surf ≥40%

lin 6.64 4.68

res 4.68 2.85

blup1 4.78 2.08

blup2 4.09 2.05

Tab. 4 – Interpolation errors of the PVI index for the SPOT4 high resolution

pixels containing ”Wheat” crops as well as those for which the ”Wheat” plots

represent more than 40 % of the total surface.

crops. This also clearly points out that the principal modes of variability

can be very different from one crop to another. This also tends to improve

the ability of the BLUP formula to discriminate between the contributions

of the different crops inside a mixed pixel.

5.2 Temporal interpolation of SPOT4/HRVIR data

In the same area, high resolution images were available at a few number

of time instants, τ1 < . . . < τ10. In order to evaluate the ability of the mixed

effects approach to get approximations to high resolution trajectories, we

have supposed that we have observed only 4 High Resolution images (at the

dates τ1, τ3, τ5, τ8) and we want to estimate the evolution for the 6 other

dates. The mean square errors of prediction, with the PVI index for the

theme ”Wheat”, are presented in Table 4.

We first notice that taking into account VEGETATION data (medium

resolution trajectories) allows us to get better temporal interpolation of

high resolution data. Indeed, the ”lin” method performs poorly compared to

the approaches incorporating VEGETATION data. The gain can be rather

important, the error being divided by two compared to the ”lin” method,

when considering pixels containing more 40 % of wheat crops. Nevetheless,

even if the methods based on the BLUP give better predictions, the main

improvement in the interpolation seems to be due to the knowledge of the

mean temporal response in the area under study.

Many factors can explain this lack of improvement and the main one

seems to be a calibration problem, meaning that the reflectances of the two

different sensors are not exactly calibrated the same way and thus the tem-

poral evolution of medium resolution pixels is not as useful as it could be for

interpolating high resolution ones. This is clearly seen in Figure 7 where we

have drawn the mean phenological curves of four different crops according
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Fig. 6 – Estimated first two eigenfunctions during year 2002 with VEGE-

TATION data for the themes ”Forest”, ”Wheat”, ”Maize” and ”Pastures”.

The first eigenfunction is drawn in plain lines whereas the second one is in

dotted lines.
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Fig. 7 – Comparison of the estimations of phenological curves according to

the resolution of the sensor, small circles for SPOT4/VEGETATION, lines

with black points for SPOT4/HRVIR.
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to the two spatial resolutions for the PVI index.

6 Concluding remarks

Downscaling reflectances of mixed pixels is an important but difficult

issue in remote sensing, allowing to deduce with physical models many useful

local information such as water demand, soil moisture, crops development,

fine land use classification, ... Unfortunately, when using satellite data, one

often has to cope with a compromise between resolution and time frequency.

The low resolution imagery is cheap and frequent but its drawback is the

aggregative character of the radiometric information it contains.

We propose here a natural approach for disaggregation based on mixed

effects models for longitudinal data able to handle huge samples with many

time measurements. We have seen in the simulation study that the propo-

sed algorithm is rather efficient, leading to accurate estimation with a fast

algorithm. We also noticed that the proposed approach appears to be a very

interesting candidate for downscaling classes whose contribution to the total

surface is not too small.

This statistical approach of desaggregation can also be helpfull. Indeed,

our model can address the combination of Low and High Resolution (in-

formation brought by both types of sensors) making thus possible studies

necessary to the dimentioning of future satellite missions that could com-

bine the two types of sensors. Space Agencies and satellite makers could for

example evaluate the number and type of sensors that will have to operate

simultaneously in order to ensure a su ?ciently frequent crop monitoring, at

a specified level of precision.

More generally, mixed effects models are widely used in medicine and

economy (Kneip et al., 2003), allowing to describe individual characteristics

with random parameters statistical models. Nowadays it is frequent to have

longitudinal data/functional data with many individuals and many time

measurements. Our approach which can also incorporate effectively the ef-

fects of a relatively large number of covariates seems to be a good candidate

for such studies.

Sensitivity to inter-resolution consistency

The simulation study clearly shows that taking into account simulta-

neously the information brought by sensors with different resolutions can

lead to considerable potential gain in temporal interpolation of High Reso-

lution data. Nevertheless, our work points out the need for an as good as
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possible HR layer versus LR layer juxtaposition when one wants to take ad-

vantage of the complementarity between the 2 types of data. The required

consistency principally depends on various factors such as : sensors interca-

libration, accuracy of each layer georeferecing, projections consistency, and

also neighbourhood effects (between adjacent pixels) which present patterns

that are resolution dependent. Although a particular attention was paid on

these different points, residual artefacts (principally geometric) might per-

sist and explain a part of the difference between the synthetic and the real

data exercise. This issue is beyond the scope of the paper but deserves fur-

ther attention. For example, we logically expect a gain of consistency when

reducing the resolution gap when considering 250 m resolution data (e.g.

MODIS sensor) instead of the kilometric pixels of SPOT/VEGETATION.

Sensitivity to spatial correlation

Besides remote sensing considerations, another point of interest is the

determination of the domain of validity of such an aggregation model when

there are spatial correlations between the temporal responses of a particular

crop.

The ideal case for the model to be valid is when there is no variation

within a mixed pixel, meaning that all the variations of the responses of dif-

ferent crops are ”inter” mixed pixel variations. On the contrary, the worst

case would be when all the variability is concentrated within coarse resolu-

tion pixels, meaning that we have a kind of ”fractal” property.

If we assume that the spatial correlation is very large for very close neigh-

bours and low for far ones, which is a realistic assumption for crops, we can

suppose that we are not too far from the ideal case. Nevertheless this needs

to be quantified and deserves further investigations. Then, one interesting

question is what would be the best spatial resolution for disaggregation when

observing mixed pixels and thus how sensors should be calibrated ?

Extension to non-linear indices

Another interesting issue is the extension to nonlinear indices such as

the NDV I index which is a non-linear combination of the responses in

the RED and Near Infra Red (Tucker, 1979). This index is widely used in

the remote sensing community because it can give a good measure of the

state of a crop and it has certain robustness properties. In order to get

local estimation of this index, one has to extend our random effect model

and consider a multivariate response disaggregation model, with outputs

RED(t) and NIR(t), and then perform a Taylor expansion of this index.
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Applying the BLUP formula to this linear approximation allows to get local

estimations of the NDV I. We are working on this topic but this is beyond

the scope of this paper.
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télédétection : comparaison de deux procédures d’estimation. J. Soc.
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formances, évolution, perspectives, Lille.

[10] Faivre, R. and Fischer A., (1997). Predicting crop reflectances using

satellite data observing mixed pixels. Journal of Agricultural, Biological

and Environmental Statistics, 2, 87-107.

[11] Foody, G.M. and Cox, D.P. (1994). Sub-pixel land cover composition

estimation using a linear mixture model and fuzzy membership functions.

International Journal of Remote Sensing, 15, 619-631.

[12] Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models.

London, Chapman & Hall.

[13] Hoover, D.R., Rice, J.A., Wu, C.O. and Yang, L.P. (1998). Nonpara-

metric smoothing estimates of time-varying coefficient models with longi-

tudinal data. Biometrika, 85, 809-822.

[14] Kneip, A., Sickles, R. and Song, W. (2003). On estimating the mixed

effects model. Preprint.

[15] Laird, N. and Ware, J. (1982). Random-Effects Models for Longitudinal

Data. Biometrics, 38, 963-974.

[16] McLachlan, G. and Krishnan, T. (1997). The EM Algorithm and Ex-

tensions. John Wiley & Sons.

[17] Maisongrande, P., B. Duchemin, G. Dedieu, (2004). VEGETA-

TION/SPOT - An Operational Mission for the Earth Monitoring : Pre-

sentation of New Standard Products. International Journal of Remote

Sensing, 25, 9-14.

[18] Merlin, O, Chehbouni, A.G.,Kerr, Y. H., Njoku, E.G., and D. Entekhabi

(2005). A Combined Modeling and Multi-Spectral/Multi-Resolution Re-

mote Sensing Approach for Disaggregation of Surface Soil Moisture : Ap-

plication to SMOS Configuration. IEEE Geoscience and Remote Sensing,

43, 2036-2050. ?

[19] Ramsay, J., Silverman, B.W. (2005). Functional Data Analysis.

Springer-Verlag, 2nd ed..

[20] Rice, J. (2004). Functional and longitudinal data analysis : Perspectives

on smoothing. Statistica Sinica, 14, 631-647.

[21] Rice, J. and Wu, C. (2001). Nonparametric mixed effects models for

unequally sampled noisy curves. Biometrics, 57, 253-259.

27



[22] Richards J.A., Jia, X. (2005). Remote Sensing Digital Image Analysis :

An Introduction. Springer-Verlag, Berlin, 4th ed..

[23] Richardson A.J. and Wiegang, C.L., (1977). Distinguishing Vegetation

from Soil Background Information. Photogrammetric Engineering and

Remote Sensing, 43, 1541-1552.

[24] Robinson, G.K. (1991). That BLUP is a good thing : The estimation

of random effects. Statistical Science, 6, 15-51.

[25] Tucker, C.J., (1979). Red and Photographic Infrared Linear Combi-

nations for Monitoring Vegetation. Remote Sensing of Environment, 8,

127-150.

[26] Wu, H., and Liang, H. (2004). Backfitting Random Varying-Coefficient

Models with Time-Dependent Smoothing Covariates. Scand. J. of Statist.,

31, 3-19.

28


