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Abstract

In this paper we introduce and study a weakened form of logarithmic Sobolev inequalities
in connection with various others functional inequalities (weak Poincaré inequalities, general
Beckner inequalities...). We also discuss the quantitative behaviour of relative entropy along a
symmetric diffusion semi-group. In particular, we exhibit an example where Poincaré inequality
can not be used for deriving entropic convergence whence weak logarithmic Sobolev inequality
ensures the result.

Mathematics Subject Classification 2000: 26D10, 60E15.
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1 Introduction

Since the beginning of the nineties, functional inequalities (Poincaré, logarithmic (or F-) Sobolev,
Beckner’s like, transportation) turned to be a powerful tool for studying various problems in Proba-
bility theory and in Statistics: uniform ergodic theory, concentration of measure, empirical processes,
statistical mechanics, particle systems for non linear p.d.e.’s, stochastic analysis on path spaces, rate
of convergence of p.d.e....

Among such functional inequalities, Poincaré inequality and its generalizations (weak and super
Poincaré) deserved particular interest, as they are the most efficient tool for the study of isoperime-
try, concentration of measure and IL? long time behaviour (see e.g. [RW01], Wan00, [Wan03, BCR054,
B d). However (except the usual Poincaré inequality) they are not easily tensorizable nor per-
turbation stable. That is why super-Poincaré inequalities have to be compared with (generalized)
Beckner’s inequalities or with additive ¢-Sobolev inequalities (see [Wan05, BCR05d, BCRO5H)).
But for some aspects, generalized Poincaré inequalities are insufficient. Indeed L? controls are not
well suited in various situations (statistical mechanics, non linear p.d.e), where entropic controls
are more natural. It is thus interesting to look at generalizations of Gross logarithmic Sobolev
inequality. In this paper we shall investigate weak logarithmic Sobolev inequalities (the “super”
logarithmic Sobolev inequalities have already been investigated by Davies and Simon, or Roéckner
and Wang).

In order to better understand the previous introduction and what can be expected, let us introduce
some definitions and recall some known facts. In all the paper i denotes an absolutely continuous
probability measure on a given riemannian manifold M. We also assume that p is symmetric for a
“nice” diffusion semi-group P; (that is, associated to a non explosive diffusion process).

Let C}(M) the set of bounded and derivable functions on M.




Definition 1.1 We say that the measure p satisfies a weak Poincaré inequality, WPIL, if there
exists a non-increasing function By p : (0,4+00) — RY, such that for all s > 0 and any f € Cg(M),

Var,(f) == / f2dp — ( / fdu>2 < Bwp(s) / V£ Pdpi + 5 Osc?(f), (WPI)

where Osc(f) =sup f —inf f.

Weak Poincaré inequalities have been introduced by Rockner and Wang in [RWOT]. If Swp is
bounded, we recover the (classical) Poincaré inequality, while if Sy p(s) — oo as s — 0 we obtain a
weaker inequality.

Actually, as shown in [RWO0]]] any Boltzman measure (du = e~V dx) on R™ with a locally bounded
potential V' satisfies some WPI (the result extends to any manifold with Ricci curvature bounded

from below by a possibly negative constant, according to Theorem 3.1 in [RWOI]] and the local
Poincaré inequality shown by Buser [Bus82] in this framework). WPI furnishes an isoperimetric
inequality, hence (sub-exponential) concentration of measure (see [RWO01], BCR05d]). It also allows
to describe non exponential decay of the L? norm of the semi group, i.e. WPI is linked to inequalities

like

Vt >0, Var,(Pf) < £(t)Osc*(f),

for some adapting function £ (relations between [y p and £ will be recalled later). Recall that an
uniform decay of the Variance, is equivalent to its exponential decay which is equivalent to the usual
Poincaré inequality.

If we replace the variance by the entropy the latter argument is still true. Indeed (at least for
bounded below curvature) an uniform decay of Ent,(P,h) is equivalent to its exponential decay
which is equivalent to the logarithmic Sobolev inequality. In order to describe non exponential
decays, it is thus natural to introduce the following definition:

Definition 1.2 We say that the measure p satisfies a weak logarithmic Sobolev inequality, WLSI,
if there exists a non-increasing function By : (0,4+00) — R, such that for all s > 0 and any

fecy(M),

2
Ent,, /f2log< }f2d >du Bwr(s /|Vf| dp + s Osc?(f). (WLSI)

Remark that WPI is translation invariant. Hence it is enough to check it for non negative functions
f and for such functions we get Var,(f) < Ent,, ( I 2). Hence WLSI is stronger than WPI (we shall
prove a more interesting result), and we can expect that WLSI (with a non bounded Sy 1) allows
to describe all the sub-gaussian measures, in particular all super-exponential (and sub-gaussian
measures) for which a strong form of Poincaré inequality holds.

Remark 1.3 We may always choose By p(s) = 0 for s > 1. It is not immediate that a similar
property holds for Bwi. However recall Rothaus inequality

Entu(fz) < Entu<(f) ) + 2Var,(f),

where f = f— [ fdu. If 1 = Osc(f) then one has ||f|, <1 and we obtain Entu((f)2) < 1/e.
Thus, by homogeneity,
Ent,(f*) < (2+ 1/e) Osc?(f).

Hence for WPI and WLSI what is important is the behaviour of 5 near 0 (we may always choose
B as a constant for s = sq >0 with 0 < s, <2+ 1/€2).



In order to understand the picture and to compare all these inequalities we shall call upon another
class of inequalities, namely measure-capacity inequalities introduced by Barthe and Roberto [BR0J]

and then extensively used in [[Che0d, BCR0O5H, BCR054, BCR05d]. Recall that, given measurable
sets A C Q, the capacity Cap,(A, ), is defined as

Cap,(A, Q) = inf{/ IV Pdp; 14 < f < IQ},

where the infimum is taken over all locally Lipschitz functions on M. If now A satisfies u(A) < 1/2
we note

C’ap“(A) ;= inf {Cap,u(A7 Q)7 AC Qv :u(Q) < 1/2} (1)
A measure-capacity inequality is an inequality of the form
(A)
——— < Cap,(A), 2
F(ucay) = o .

for some function . They are in a sense universal, since they only involve the energy (Dirichlet form)
and the measure. Furthermore, a remarkable feature is that most of known inequalities involving
various functionals (variance, p-variance, F' functions of F-Sobolev inequalities, entropy etc...) can
be compared (in a non sharp form) with some measure-capacity inequalities.

We shall thus start by characterizing WLSI via measure-capacity inequalities. Then we will study
the one dimensional case, in the spirit of Muckenhoupt or Bobkov-Goétze criteria for Poincaré or
logarithmic Sobolev inequalities (see e.g. [[ABCT0(] chapter 6). We shall then discuss in details
the relationship between WLSI and the generalized Poincaré inequalities. Finally we shall discuss
various properties and consequences of WLSI. In the final sections, we study in details the decay
of entropy for large time. In particular we show that for a u reversible gradient diffusion process,
very mild conditions on the initial law are sufficient to ensure an entropic decay of type e’
when p satisfies interpolating inequalities between Poincaré and Gross introduced by Latala and
Oleszkiewicz [LO0(], those conditions preventing estimation via Poincaré inequalities. We also give
the elements to compute this decay under general WLSI. The particular case of the double sided
exponential measure is detailed.

Let us finally remark that the limitation to finite dimensional space is only instrumental and the
main results would be readily extendable to infinite dimensional space with capacity defined to
suitable Dirichlet forms (assuming for example the existence of a carré du champ operator).

2 Weak logarithmic Sobolev inequalities

2.1 Characterization via capacity-measure condition

We start this section by characterizing WLSI in terms of measure-capacity inequalities.

Theorem 2.1 Assume that the measure p satisfies a WLSI with function Owr, then for every
A C M such that p(A) < 1/2,

w(A)log (1 + m> -5
BwL(s)

Vs >0, < Capu(A).

Proof

< Let A C Q with u(Q) < 1/2 and let f be a locally Lipschitz function satisfying 14 < f < Ig.
The variational definition of the entropy implies

Ent,(f2) > [ fadu,



for all g such that [ efdu < 1. Apply this inequality with

log <1 + ﬁ) on A
9=930 on Q\A
—00 on ¢

which satisfies [e9du < 1. It yields Ent,, (f2) > u(A)log (1 + be))

Therefore by the weak logarithmic Sobolev inequality and the definition of the capacity we obtain

()10 (1+ 30 ) < B (5)Capn(4,9) +5.

Taking the infimum over sets Q0 with measure at most 1/2 and containing A we obtain

wu(A)log <1 + WIAO) -5
Bwr(s)

Vs > 0, < Capu(A).

Theorem 2.2 Let 3 : (0,+00) — RT be non-increasing function such that for every A C M with
w(A) < 1/2 one has

ves w(A)log <1 + ﬁj‘)) -5 < Capu(A) -
s> 0, < Ca )
5(s) b
Then the measure p satisfies a WLSI with the function By (s) = 163(3s/14), for s > 0.
Proof
< Let f € C{(M) we will prove that
Vs >0, Ent,(f?) <165(s) / |V f|?dp 4 145/3 Osc?(f). (4)

Let m be a median of f under p and let Q. = {f > m}, Q_ = {f < m}. Then, using the argument

of Lemma 5 in [BRO0J], we obtain
Entu(f2) < sup {/Fﬁhd,u; h >0, /ehd,u <e+ 1}

+sup{/FEhd,u; h>0, /ehd,u§62+1}, (5)

where Fy = (f —m)Iq, and F_ = (f —m)Iqg_.

We will study the first term in the right hand side, the second one will be treated by the same
method.

There are two cases depending on the value of s. Let s; := %log (1 + 262), and assume that
s € (0,s1).

The function x +— xlog(1 + €?/x) is increasing on (0,00), and realize a bijection between (0, 1/2]
and (0, s1]. We get that the function

¢ = () log <1 i me;w)’

where Qp = {F} > ¢}, is non-decreasing on (0, 00) and realize a surjection on (0, s1). Then for any
s € (0, s1) there exists at least ¢ > 0 such that

o2
1(20) log <1 + m) =s. (6)



Pick some p € (0,1) and introduce for any k € N, Q = {F? > cpk}. The sequence (€y), is
increasing so that, for every function h > 0,

/ F2hdy = / Fihdp+) / F2hdp.
Qo k>0 Qk\Qkfl
For the first term we get
/ F2hdp < Osc?(f) / hdp,
Qo

Qo
then Lemma 6 of [BR0OJ] implies that

2
Sup{ hdu; h >0, /ehdugez—i—l} = 1(Qp) log <1+ ¢ >
Q0 1(€20)

So that, using the definition of ¢ (equality (f)) we get

sup{/ Ff_hd,u; h >0, /ehd,u < e? —|—1} < 5 0sc?(f).
Qo

For the second term we have for all k > 0, due to the fact that ¢pF < F?r < cpF1on Qp\Q_1,

/ Fihd,u < cpk_l/ hd.
Qk\Qk,1 Qk\Qkfl

Then we obtain using again Lemma 6 of [BR0J], for any k& > 0,

o2
sup F2hdu; h >0, /ehd,u <e?4+1p <ep u(Qs\ Q1) log <1 + 7>
{/\ * () W)

Using now inequality () we get

2

k—1 ‘
o= (wonou yog (140

_ S/ epk+l
gr =minq 1, b P - >
/Cpk _ /Cpk-l-l N

so that we have Io, < g < In, recall that p(€Q4) = 1/2. This implies, using the definition of
Capy(Q\Qk-1) (inequality (@),

)) < 1 B(5) Capp(Q\ Q1) + scp* .

Let set for any k > 0,

1

k—1 2
cp” Cap, (U \ Q1) < / VEFL|“du.
M( k\ g 1) p(l \/7/))2 Q1 \2% ’ ‘

Note that the constant ¢ satisfies ¢ < HF+||2O < Osc?(f). We can now finish the proof in the case
S € (0, 81),

Sup{/F?rhd,u; h >0, /ehd,u < e? —|—1} < Sup{/ F_%hd,u; h >0, /ehd,u} +
Qo

Zsup{/ F_%hd,u; h >0, /ehd,u}
Qpe11\ Q%

k>0
< sOsc(f) 4 sept L +
56 Y o [ (VR
= (1= VP)? Jorn\an
B(s) 2 2—p 2



Using inequality (§) and the previous inequality for F_ we get

B(s) 2—p
Vs € (0,s1), Entu(f2) < m/]Vf]2du+2sl — pOsc2(f), (7)

for all p € (0,1). Choosing p = 1/4 furnishes inequality () for any s € (0, s1).
Assume now that s > s1, then take ¢ = 0 and we get

() log <1 + %;00 < s,

and the same argument used for s € (0, s1) implies
Vs >s1, Ent,(f?) <2s0sc?(f). (8)

Then inequality (§) and the previous result implies inequality (f) for any s > 0.
Note that we do not obtain the optimal function By 1 (s) for s large, but, as explained in Remark [L.3,
this is not important for the WLSI. >

Remark 2.3 The following two inequalities hold

1(A) log (1 + W@) —5 . 1(A) log (1 + Whﬂ

< sup =
A
ﬁWL(# log <1 + m» >0 Pw(s) Bwr <M(A) log <1 + m))
and
A e2
A) 62 -
5WL MT IOg (1 + N(A)>>
62 62
o w(A)log <1 + M) -5 B w(A)log <1 + M) -
s>0 ﬁWL(s ﬁWL (M(A) log (1 + ﬁ))
The proof of these inequalities is the same as in ||B 4, Theorem 1]. The lower bounds of

these inequalities correspond to a specific choice, s = #log (1 + WlA)) for the first one and

2 n(A)
fact that

s = HA) log (1 + £ > for the second one. For the upper bound of the first inequality we use the

w(A)log (1 + Wlxﬂ) —s wu(A)log (1 + m)
sup < sup ,
s>0 Bwr(s) 0<s<pu(A) log (145457 Bwr(s)

and the non-increasing property of B gives the result. The method holds for the second inequality.

2.2 An Hardy like criterion on R

Proposition 2.4 Let u be a probability measure on R. Assume that p is absolutely continuous
with respect to the Lebesgue measure and denote by p, its density. Let m be a median of j and
Bwr : (0,00) — RY be non-increasing. Let C be the optimal constant such that for all f € C}(R),

Vs >0, Ent,(f?) < C’ﬁWL(s)/|Vf|2d,u—|-805c2(f).



Then max(b_,bs) < C < max(B_, By), where

by = sup log (1 N W) ©1
w>m ﬁm(@ log (1 + W)) m Pu

u((—oovr]) 1
x pu7

[z, +0))
2

b_ := sup
o ﬁWL(”“ > og (14 ey ooxn))
164 ([z, +00)) log 1+ﬁ x
By := sup ( plle ))) i, (10)

w>m By (4 ([, +00)) log (14 zsay ) ) I P

164((~00, 2]) log (1 + w2y ) /’”i
¢ Pu

B_ = sup

z<m gWL<%u((— z]) log (1 + m))

Proof

< The proof of the lower bound on C is exactly the same as in [BCR054, Theorem 3] using
Theorem P.1 and Remark P.3.

For the upper bound denote Fy = (f — f(m))1}, 100y and F_ = (f — f(m))L(_so m)- Then

Ent,(f?) < Ent,(F}) + Ent, (F?).

We work separately with the two terms and we explain the arguments for Ent,, (FJQF) only. We follow

the method of proof in [BCR05d, Theorem 3].
Using inequality ([L0) we get

5WL<1:),—4M([x,+oo))log (1 + m)) e

Yr > m,

This means that
2
164([x, +00)) log (1 + m)
ByBwr (%u([w, +00)) log (1 + m))

Vo > m, < Capy([z, +00), [m, +00)),

recall that Cap([z, +00), [m,+00)) = 1/([* pu)
If A C [m,+o00) then Cap,(A,[m,+00)) = Cap,([inf A, +00), [m, +00)), the function

16tlog (1+ )
BWL<%tlog (1 + %))

t—

is increasing on (0, 00), we get

1644(A) log (1 + %)
By Bwr (Su(A)log (1+ 555

VA C [m, +OO), < Cap,u(A7 [mv +OO))

Using now inequality (f) one has for all A C [m, +00),

(A log (1+ 55 ) = s
sup ¢ 16 T < Capu(A, [m, +00)),

s>0



and then by the same argument as in Theorem P.2 one has

Ent, (F?) < B+ﬁWL(s)/|VF+|2d,u+sOsc(f)2.

It follows that C' < B,. The same argument gives also C' < B_ and the proposition is proved. >

Corollary 2.5 ([BCRO54]) Let ® be a function on R such that dug(z) := e ®@dz, x € R is a
probability measure and let € € (0,1).

Assume that there exists an interval I = (xg,x1) containing a median m of p such that |®| is
bounded on I, and ® is twice differentiable outside I with for any x & I,

'(z) #0, |§//;S;)2| <1-—¢and
A'®(z) < O(z) + log | (z)| < AD(), (11)

for some constants A, A’ > 0.
Let 3 be a non-increasing function on (0,00). Assume that there exists ¢ > 0 such that for all x & I

it holds
() < (Ae_q)(x)<1>(x)>

| ()]
Then pe satisfies a WLSI with function C3 for some constant C > 0.

Proof
<1 Corollary 2.4 of [BCRO5d] gives for z > 1,

—®(z) _
e < 2—¢

plla, +00)) < T <

pu(l; +00)).

Then using Proposition P-4 and inequality ([[I]) we get the result. >

Example 2.6 Let us give two examples:

e For a > 0, the measure dmq(t) = a1 + [t|)~17%dt/2, t € R satisfies the WLSI with the
function

(lOg 1/8)1-1-2/(1

Vs > 07 ﬁWL(S) =C 2/a 5
S

for some constant C' > 0.

o Let o € (0,2) and defined the probability measure dun(t) = Zoe %dt, t € R, (Zy is a
normalization constant). Then p, satisfies the WLSI with the function

Vs >0, Bwr(s)=C(logl/s)? /e

for some C > 0.

Contrary to the WPI, one can study the case a € [1,2]. In particular for a = 2 we get that
Bwr is bounded, i.e. we recover (with a non sharp constant) the classical logarithmic Sobolev
inequality for the gaussian measure.



3 Weak Logarithmic Sobolev inequalities and generalized Poincaré
inequalities

3.1 Link with weak Poincaré inequalities and classical Poincaré inequality

Barthe, Cattiaux and Roberto investigated in [BCR05d] the measure-capacity criterion for WPI.
Their results read as follows: WPI with a function Gy p implies a measure-capacity inequality with
y(u) = 4Bwp(u/4) (see inequality (])) while a measure-capacity inequality with non-increasing
function 7 implies WPI with Sy p = 127 (we may assume that y(u) = v(1/2) for u > 1/2).
Comparing with Theorem .1 and Theorem P.4, we can state

Proposition 3.1 Assume that a probability measure p satisfies a WLSI with function Bwr then
w satisfies a WPI with function By p defined by

4 5] 1
Vs >0, Bwp(s)= 2 ﬁWlLog;z(loi(i;' 25)). (12)
2s

Conversely, a WPI with function By p implies a WLSI with function Bwr, defined by,

Vs € (0,80), Pwr(s)=Bwp <cm> log (1/s), 1)
Vs >so, Pwe(s) = Bwp <clog(8%> log (1/s0),

for some universal constants c,c,sq > 0.
Finally assume that p satisfies a WLSI with function Bwr, then it verifies a classical Poincaré
inequality if and only if there exist c1,co > 0 such that for s small enough,

Bwr(s) < cplog(ca/s).

Proof
<1 For the first statement, first note that By p is non-increasing. Then Theorem P.1] and Remark P.J
imply that for all A such that u(A) <1/2,

# 10g (1+ 517 )

(50 (14 )

This means that for all A such that u(A) < 1/2,

< Capu(A)'

1214(A)
Bw p((A))

where [y p is defined by ([[2), the result holds using Theorem 2.2 of [BCRO54].
To prove the second statement we use the same argument (replacing Theorem P.1] by Theorem P.9)

and the fact that there exist constants A, A’, sy > 0 such that

, S 1 s
— < <A—
og(175) =¥ ) = A zey
where (s) = s log(1 + €2/s). Then p satisfies a WLSI with function Sy defined by ([3). Note
that Oy is non-increasing.

Finally, the last two results prove that Sy r(s) < c¢1log(ce/s) for s enough is equivalent to the
classical Poincaré inequality. >

< Capu(A)7

Vs € (0,s09), A (14)



Remark 3.2 o [t is interesting to remark that when considering the usual derivation “Loga-
rithmic Sobolev inequality implies Poincaré inequality” by means of test function 1 + eg and
e — 0, we get a worse result: a weak logarithmic Sobolev inequality with function (B implies a
weak Poincaré inequality with the same function 3, whereas the result of Proposition [B.1 gives
a better result.

e As a byproduct, we get that any Boltzman’s measure (with a locally bounded potential) satisfies

some WLSI if Ricci(M ) is bounded from below (see [RW01]).

e Finally the above proof shows that we obtain the best function (up to multiplicative constants)
for WPI or WLSI as soon as we have the best function for the other. In particular we recover
the good functions for the examples P.4.

3.2 Link with super Poincaré inequalities
Let us recall the definition of the super Poincaré inequality introduced by Wang in [Wan0(].

Definition 3.3 We say that the measure i satisfies a super Poincaré inequality, SPI, if there exists
a non-increasing function Bsp : [1,+00) — R, such that for all s > 1 and any smooth functions f,

[ n < ssels) [ (95Pdn+ s ( / !f!du>2- (SPT)

Note that as for WLSI in Remark [[.3, for the SPI what is important is the behaviour of 3
near oo (we may always choose Osp(s) = Bsp(l) for 1 < s < s, where s; is a constant). As for
Proposition B.J] we can now relate WLSI and SPI.

Proposition 3.4 Suppose that p satisfies a WLSI with function Bywr. Assume that By verifies
that x — Bwr, (%) Jlog(xz/2) is non-increasing on (2,00).

Then u satisfies a SPI with function Bsp given by

vVt > 2 t 2ﬁWL <10g$/2)> 15
= 4€, Bsp(t) = Wu (15)
Bsp being constant on [1,2e).
Proof
< If p satisfes a WLSI then one obtains by Theorem P.1 and Remark P-3;
A 1og (14 L
5 og (1 + 3
( . ) < Cap,(A), (16)

ous(s 1+ 51

for any A € M, with u(A) < 1/2. Finally the function ¢ — ¢ Gy, (%)/bg(tﬂ) is clearly non
decreasing for ¢ > 2e, then Corollary 6 of [BCRO5(] gives the result. >

Note that the last proposition is not entirely satisfactory. We hope that WLSI is equivalent to SPI
via a measure-capacity measure criterion.



3.3 Link with general Beckner inequalities

Definition 3.5 Let T : [0,1] — R*, be a non-decreasing function, satisfying in addition x
T(z)/z is non-increasing on (0, 1].
We say that a measure p satisfies a general Beckner inequality, GBI, with function T if for all
smooth function f,
2
S frdp — ([ 1fPdp)

sup < / Vfdp. GBI
pe(1,2) T(2 - p) ‘ ’ ( )

Note that our hypotheses imply that
Va € [0,1], Tz <T(x)<T(1).

The two extremal cases correspond respectively to the Poincaré inequality (7" is constant, T'(x) =
T'(1)) and the logarithmic Sobolev inequality (T'(x) = T'(1)x). The intermediate cases T'(z) = x*
for 0 < a < 1, have been introduced and studied in [LOO0({], while a study of general T is partly
done in [BCRO5H]. Also note that (up to multiplicative constants) the interesting part of T' is its
behaviour near 0, that is we can always define T near the origin and then take it equal to a large
enough constant.

In [BCRO5H| Theorem 10 and Lemma 9, it is shown that (up to a multiplicative constant) GBI is
equivalent to a measure-capacity, inequality (B), with the function

1
Y(u) =T <m> ) (17)

for u > 0 small enough. More precisely a GBI implies a measure-capacity inequality with the
function 67y defined on ([[7). Conversely a measure-capacity inequality with the function v implies
a GBI with the function 207. We thus obtain:

Proposition 3.6 Assume that p satisfies a WLSI with function By . Let

1
vi € (0,1), T@)ztﬁWL<ZE;g). (18)
Assume that T is non-decreasing on (0,t,] for some tq € (0,1]. Then the measure p satisfies a GBI
with function 20T .

Conversely assume that p satisfies a GBI with function T, then p satisfies a WLSI with function

Bwr given by .
ui(s) = T (€' ) 1os(1/s). (19)

for s > 0 small enough and some constants C,C".

Proof
<1 Assume that p satisfies a WLSI with function By . Using Theorem P.1] and Remark P.3 one
has inequality ([L6). Using the fact that

1 1 1
1 log (14+—)>Zlog(14+ =),
Va € (0,1], 0g<+2x> 20g<+$>

one obtains that inequality () implies that the function T' defined on ([I§) satisfies a measure-
capacity inequality. The function z +— T'(x)/x is non-increasing and due to the fact that T is
non-decreasing by hypothesis, then Theorem 10 and Lemma 9 of [BCRO5H] prove that p satisfies a
GBI of function 7.

To prove the second statement we need also Theorem 10 and Lemma 9 of [BCRO5H], Theorem P.J
and inequality ([4).



Example 3.7 Note that if the function T defined on ([L§) is non-decreasing near 0 then one can
prove that Bwir(s) < cilog(ca/s) for s small enough and some constants ci,co > 0. Then by
Proposition [B.1, p satisfies a Poincaré inequality. The last proposition can be applied only for
measures satisfying a Poincaré inequality.

3.4 Link with another weak logarithmic Sobolev inequality

The next inequality is useful to control the decay in entropy of the semigroup. It will by used in
Theorem [£.9 in the next section.

Theorem 3.8 If i satisfies a WLSI with function Bwr, then p satisfies for any smooth function
f any u > 0 small enough,

Ent,, (1) < Bsw(u) / IV #2dp + v/3u (Var,(f2)? | (20)

(NI

with

Kud
5SWL(U) = 168w <W>

for some universal constant kK > 0 and u > 0 small enough.

Proof
< According to Theorem R.1 and Remark P.J we know that for every A C M such that u(A) < 1/2,

#log (1—1-%) N %log (1—1—%)
5WL<@log <1+m>> : ﬁWL( (A)log <1+H(A)>>

for k = log(1 + 2¢?)/log(2) using klog(l + y/2) > log(1 + €?y) for y > 2 and that Sy is non-
increasing. Hence we are in the situation of Theorem P.2 with 8 = 2k By L.
Note that we may assume that f is non-negative.

Capu(A) >

We shall use the notations in the proof of Theorem P.J, in particular Qo = {F? > ¢} for some
positive ¢, but we will choose another ¢ than in the referred proof.
Indeed the first quantity we have to control is fQ Ff_hdu which is less than

()" ([ i)

Xo = sup{ R2dp; h >0, /ehd,u <1+ 62}
Qo

We thus have to bound

= sup{ [ RPdp; h >0, / edp < e + p(Q0)}
Qo QO

(see [BROJ] Lemma 6 for the latter equality). But ¢(z) = (1 + log®(2)) Iy>e + 2z I,< is concave
on R, . It follows that

(S

WV

WV




so that
2

Xo < () <2+10g2 (1+ M&O))) = ().

For s <1 we thus choose ¢ such that

¢(/‘L(QO)) = 8a7
for some a > 0, this choice being possible since 1 is increasing on [0,1/2], the maximal possible s

being greater than 1.
We can mimic now the proof of Theorem .3 and obtain

1
2
sup{/Fihdu;h}O,/ehdu§e2+1} < Vs </F4du> +Slcp (21)

pﬁL/wm dy.

It remains to estimate c. Note that there exists an universal constant @ such that ~!(z)
6 x/log?(1 + %) . It follows

WV

N

a 2 F4d
% < /L(QO) < fF-l-d/j’ < (f + /j’) ,
log“(1+ %) c c

so that choosing a = 2/3 and p = 1/4 we finally obtain

1 4
Sup{/Ff_hd,u;h}O,/ehdu§e2+1} < 53 <1—|—@log 1—1—2—/3> </F4d,u> (22)

4 100w.(s) [ IVFLPdu.

The same inequality for F_ and the elementary /a + Vb < V/2Va+ b yield, since there exists an
universal constant 6 such that the inverse function of s — v/2s3 (1 + ?;i@ log?(1 + s;%)) is greater
than u — 6" u*/(log®(1/u)) for u > 0 small enough,

Bnt, (/) §165WL< ou e ) [ | <f—m>4du)%. (23)

1+ log®

Since we have assumed that f is non-negative, a median of f2 is m?, and (f —m)* < (f> —m
Finally, if M denotes the mean of f2,

/ ((£2 = M) — (m? — M))* dp = Var,(f2) + (m? — M)?
and since m? — M is a median of 2 — M, provided m? — M >0

Var, (1) > [ (17 = M Lps apsmeaadu > 3 (m? ~ M2
while if m2 — M <0

Var,(f?) = /(f2 — M) 1p2_premz_prdp > = (m* — M)?.

We thus finally obtain

N —
N

[ =y < 3V, (7
and the proof is completed. >
One may of course derive other weak logarithmic Sobolev inequalities by this method, such inequali-

ties as well as further applications will be treated elsewhere. We will apply this theorem in Section
for studying the decay to the equilibrium of the semigroup.



4 Convergence of the associated semigroup

In this section we shall study entropic convergence for the semi-group. Let h be a bounded density
of function with respect to the measure y. The two results of this section connect the decay of the
entropy with the infinite norm of h. More precisely, using the WLSI we will compute the function
C(t, ||h],,) such that for all ¢ > 0,

Entu(Pth) S C(t7 HhHoo)

Note that we have C(t, ||h| ) — 0 when ¢ goes to co.
The first result connects the decay of the entropy with the oscillation of h:
Proposition 4.1 If p satisfies @ WLSI with function By, then for any h > 0 with [ hdp = 1,

for t large enough,
Ent,(Ph) < (24 e 4 &) &.(t) Osc? (V) (24)

where &-(t) is given by, for r small enough,
1 r
-1 _ - -
&) = —5Bwe(r)log (2).
Conversely, if there exists & decreasing such that, for any h > 0 with [ hdp =1 we get
Vt >0,  Ent,(Pih) < £(t) Osc?(Vh),
then p satisfies a WLSI with function By (t) = ™1 (t) where ¥(t) = 2/2£(t). In particular if
E(t) < cem™ | u satisfies a Poincaré inequality.

Proof
< Denote I(t) = Ent,(Peh). I'(t) = — 5 | Wff,:t:Rd,u, thus the weak logarithmic Sobolev inequality
yields

2 2r s2(/Ph
ﬁWL(T)I(t)JrﬁWL(T)O (VEeh)

I't)
Using Gronwall’s lemma yields

Ent,(Pih) < igg {r sup Osc?(y/Psh) + e_2t/BWL(T)EntH(h)} .
r s€[0,t]

Use now Osc?(yv/Pih) < Osc?*(vh) and Ent,(h) < (2 + 1/e) Osc?(Vh) we proved in Remark [L.d.
Then we choose r such that r = g e=2t/Awr(r),

Let us prove the second statement. Denote f = v/h. According to [Cat0d] (2.5) with a; = —1 and
a9 = 2 it holds

Ent“(h)§t/|Vf|2d,u+2log/fPthdu. (25)

But
/fPthdu _ /f(1+(Pth—1)) d
v+ [ [ fdn) e = 1) a

1 + Osc(f) /\Pth— 1ldu

IN

IN

IN

1 + Osc(f)/2Ent,(Ph)
1 + /26(t) Osc?(f),

IN



where we used successively [ fdu <1, Pinsker inequality and the hypothesis. It remains to use
log(1 + a) < a to get the first result. The particular case follows from Proposition B.1. >

The previous result is the exact analogue of Theorem 2.1 in [RWO01]] for WPI. The converse statement
(Theorem 2.3 in [RWO])]) is remarkable in the following sense: it implies in particular that any
exponential decay (Var,(Pyf) < ce " U(f — [ fdu)) for any ¥ such that ¥(af) = a*¥(f) (in
particular U(f) = Osc?(f)) implies a (true) Poincaré inequality. This result is of course very much
stronger than the usual one involving a L? bound. Its proof lies on the fact that ¢ — log( [ (P f)?du)
is convex. This convexity property (even without the log) fails in general for the relative entropy
(Bakry-Emery renowned criterion was introduced for ensuring such a property). Actually a similar
statement for the entropy is false.

Not that the previous result is only partly satisfactory for the convergence of the entropy. Indeed
recall that for a density of probability A, the following holds

Var,(Vh) < Ent,(h) < Var,(h)
so that a weak Poincaré inequality implies for ¢ > 0
Ent, (Pyh) < €77 (1) (1 + £)Osc(h),
where (€P)~1(r) = —Bwp(r)log(r/e), whereas our WLSI implies
Ent, (Pih) < VE9(t) (2 + ¢! + £)Osc?(Vh)

so that even for very small time, the WLSI can be of no use for particular bounded density h
(namely if (2 + e~ +£)Osc?(Vh) > (1 +¢)Osc(h)). This fact is a little bit disappointing as when
a true logarithmic Sobolv holds it is well known that for small time the LSI always furnishes lower
bounds than Poincaré inequality (and justifies the use of LSI for this kind of evaluation).

In order to correct this unsatisfactory point, at least when a Poincaré inequality holds, and always
for bounded density h, we will make use of the other weak logarithmic Sobolev inequality stated
in Theorem B.§. Indeed, another way to control entropy decay was introduced in [CG0H, Theorem
1.13]. It was proved there that a Poincaré inequality (with constant Cp) is equivalent to a restricted
logarithmic Sobolev inequality

Vh|?
VA 4,

Entu(h)§0(1+10g(”h”oo))/ .

for all bounded density of probability h, where C' only depends on Cp. It follows that

Ent,(Pih) < ¢~ O0Fe0i=) Ent,(h)

for such an h.

We shall describe below one result in this direction for WLSI, using Theorem B.§ and Poincaré
inequality.

Proposition 4.2 Let u be a probability measure satisfying a WLSI with function Bwy and a
Poincaré inequality with constant Cp. Let Bswi be the function defined in Theorem [3.§. Then
for all f € CH(M),

But, () £ ACri| £ 1) [ 1V1Fdn

where

ACP, flle) = inf {Bowr () +uy/3CR|fI% },
u€(0,s0]

»S0



and (0, so] is the set where Bsywy, is defined. As a consequence, for allt > 0,

1
Ent,, (Peh) < e~/ ACP M%) Bnt, ()

for any bounded density of probability h.

Proof
<1 Due to homogeneity we may assume that [ |V f |2d,u = 1 (if it is O the result is obvious). But
since  satisfies a Poincaré inequality

Var,(f2) < 4Cp / PV 2du < 4Cp || 12 o

so that Ent,, (P f?) < Bswr(u) +2u || f [|% v/3Cp, by Theorem B.§. >

Note now that the previous entropic decay is always better for small time. Indeed if

t < .
A(Cp, || b ||&) = Cp

CPACP | h]%) <Vam<h>
% Entu(h)>

then the entropic decay obtained by Proposition [L.9 is better than the estimate obtained with
Poincaré inequality.

Example 4.3 Let o € [1,2] and dpua(t) = Zoe " dt, t € R where Z, is a normalization constant.
2a0—2

Using Ezample [2- and Proposition [3.9 one obtains that ji, satisfies a GBI with T'(x) = Cx™
for z € (0,1). Then one can find C(a),C’(a) > 0 such that for all bounded density of probability f,

Ent, () < Cle) (1+10e® (| £ 1)) [ IV1Fda.
As a consequence, for allt >0,
Ent,(Pih) < et/ C'(@) (141071 ([Ih]]o0)) Ent,(h),

for any bounded density of probability h.

It seems very unlikely that one can derive such a result from a direct use of Proposition f.1. As
noticed in [[CG0Y], these restricted logarithmic Sobolev inequalities (restricted to the (P stable) L
balls) can be used to obtain modified (or restricted) transportation inequalities. We recall below a
result taken from section 4.2 in [[CGO]. If v = hp is a probability measure, it can be shown

+o0o
Wi(v, 1) < n(0)Ent,(h) + /0 ' (t) Ent,,(Peh) dt, (26)

where 7 is a non-decreasing positive function such that [(1/n(t))dt = 1, and W, denotes the
(quadratic) Wasserstein distance between v and pu. We may take here

1
n(t) = 2A(Cp, || h ||5) e3 /ACH IkIZ)

which yields
1
Wa(v, ) < D (14 A2(Cp, | b %)) \/Ent,(h). (27)

In the Latala-Oleszkiewicz situation, we recover, up to the constants, Theorem 1.11 in [CG0].



Using Marton’s trick, (R7) allows us to obtain a concentration result (a little bit less explicit than
the one obtained via GBI in Proposition 29 of [BCRO5H]) namely there exist ry and o such that if
w(A) > 1/2 and AS = {z,d(z, A) = r} one has

r—ro < 0 A2(Cp, (1/u(A2))) /og(1/u(AS)) .

In the Latala-Oleszkiewicz situation, we recover up to the constants, the same concentration function
as llq, showing that our restricted logarithmic Sobolev inequality is (up to the constants) optimal.
Note that another way to get the concentration result is to use the modified logarithmic Sobolev
(and transportation) inequalities discussed in [[GGMO054, GGMO5D].

Let us finally note that even if the results obtained by the WLSI are always efficient in the regime
between Poincaré and Gross inequality, it relies on the crucial assumption that A is a smooth
bounded density. The goal of the next section is to get rid of these two assumptions.

5 Convergence to equilibrium for diffusion processes

In this section we shall discuss the rate of convergence to equilibrium for the diffusion process, both
in total variation and in entropy. The main difference between the previous section is that we do
not assume that the beginning of the diffusion processes is a density of probability with respect to
symmetric measure u. The initial entropy is not finite.

To clarify our statement in the introduction, we shall first define the diffusion process and the
hypotheses we need. For simplicity we only consider the case when M = R™ and p = e ?Vdx.
Hence our diffusion process is given by the stochastic differential equation

dXt == dBt - (VV)(Xt)dt 5 Law(Xo) =V (28)

where B, is a standard Brownian motion. We assume that V is C® and that there exists some
such that ¢(z) — 400 as [z] — +00 and £ Ay — VV.V¢ is bounded from above. This assumption
ensures the existence of an unique non explosive strong solution for (R§). If v = §, we will denote
by X7 the associated process.

A remarkable consequence of Girsanov theory is that with our assumptions, for all ¥ and all ¢ > 0
the law of X; denoted by Piv is absolutely continuous with respect to p, its density will be denoted
by h. Of course if v = hu, Pev = (Pyh)p and p is a reversible measure.

In particular Pyv = (Py_yhy )i, (where hy, = Py h)and the rate of convergence of Py towards p can
be studied by using the semigroup properties only. But of course what is needed is the behaviour
of Pyh for densities of probability (in a sense it is Py f? rather than Py f which is interesting).

Of particular interest is the case when
IVV2(z) — AV(z) > —Cpin > —00 (29)

for a nonnegative Cy;;, since in this case one can show (see [Roy99, Theorem 3.2.7]) that Ent,,(P¢d,)
is finite for all ¢ > 0. Actually the proof of Royer can be used in order to get the following more
general and precise result

Proposition 5.1 With the previous hypotheses

/Ptdx logh (Pydz) dp <

A I C)+1Cm;
gp—1 <Vf(m)+ <C2 ) + <E log(7)> + ¢V (@)+p(logp 1)+§Cmmt> (30)

for all t €]0,1/27[ and p > 1.



If in addition
Vi(y) < D(Vi(@) + |y — a* + D) (31)

for some D >0, D' and all pair (z,y), then for all t €]0,1/2D N1/27]

P -1 ’ Omint P n 1 p
Pyd, logh (Pedy)dp < 4P~ ( (1 + DP) (Vi(z) + D')P + — ] t{3 log(2—ﬂt) . (32)
In particular, if [eV*dv = M < +o0,
1
([P togt@aydn)” < petan) (3)

for allt >ty > 0, where C(v, ty) only depends on tg, M, Cpipn and the dimension. If in addition 1))
holds, it is enough to assume that fe>‘ Vidy := M < 400 for some X > 0.

Proof

< Let
1

F = exp (V(m) ~V(W) -5 /Ot (IVV]2 - AV) (Ws)ds> ,

where W is a Brownian motion starting from z. Recall that F' is a density of probability (with our
hypotheses). If I(t) = [Pyd, logh (P¢d,) dp we may use the argument in [Roy99, Theorem 3.2.7]
and the convexity of u — uP in order to get

1 1)
10 <& (P (VA + (V00 = Wi = a2+ Cont/20 +1o2(55)) )
The first statement follows easily bounding (V (W) — & |W; — z|?)+ by D(V/(W,) + D)1 and uPe*
by pP e P. The second one is immediate since (BI]) allows us to bound the same term by V. (z) for
t small enough.
The last statements are obtained by using two arguments. First u? < p!e* (or uP < p!(1/\)PeP),

1
so that for a given t the result follows from (p!)» < ¢p. The second one is standard, namely
t— f Pih log’j_ P.h dp is non-increasing. >

It is important to notice that, a contrario, there is no tractable general sufficient condition for P4,
to belong to L2(1). We shall come back to the condition (Bl]) later on. Note however that such a
condition is trivially verified for V(z) = |z|7, v < 2.

Accordingly the logarithmic Sobolev inequality is particularly well suited for studying the conver-
gence of Pid, towards p in entropy. We shall see that simple manipulations allow us to obtain
similar results with WLSI only and we shall also compare the role of WLSI, WPI and Poincaré
inequality for the (weaker) convergence in total variation.

5.1 Rate of convergence

Theorem 5.2 Let du = e 2Vdx be a probability measure which satisfies a WLSI with function
Bwr and let & be defined as in (R4) of Proposition [[.]. Assume that (RY) holds and let v be a
probability measure such that (BJ) holds.

Then for all 1 > e > 0 and all k € N, there exist a constant C(e,k) depending (in addition) on M,
Cinin and the dimension only, and t. > 0 such that

C(e, k)
Bty (Puv) < 1500 (1 /e@)

for all t > t..



Before proving the theorem we need a preliminary result. Recall first that for all non-negative
functions f,g we have Ent,(f +g) < Ent,(f) + Ent,(g). Then for h > 0, applying this with
f = Py(hlj<k) and g = Pg(hl}~ k), and using the fact that entropy is decaying along the semi-
group, we obtain that

EntM(Pth) S Entu(Pt(h][hSK)) +Entu(h1h>K) s (34)

for all K > 0. The next Lemma explains how control the second term of the right hand side of (B4)
using the estimate of the Proposition [5.1.

Lemma 5.3 Let h be a density of probability with respect to p. Assume that there exists ¢ > 0 such

that for allp > 1,
’
</h logh, hd,u) < cp.

For K > €2, if Ent,(h) < 2_1@ log K then we get

Ent,,(h) log K
Ent,(h1 < 2) —H 7] _— ] .
aty (o) < (eo+2) Tt log (A ) (35)
Proof
< It is easily seen (see e.g. [[CGOH, Lemma 3.4]) that if K > €2,
2
< — .
/ T i < o Bt (1) (36)
Hence
p=1 1
/thghIh>KdN < </h1h>Kd,U> ’ (/ hlogﬁ(h)d/l)p (37)
p—1
< ep Ent,(h)\ » < ce Ent,(h) log log K
log K log K Ent,(h)

provided Ent,(h) < % log K. The last inequality is obtained by an optimization upon p (for which
we need Ent,(h) < 1 log K).
If Ent,(h) < & log K,

2 2

using (B@), so that we have finished the proof. >

Proof of Theorem
< Let h = Psv. According to (B4), Proposition [L.1 and Lemma [.3, it holds for all ¢ > s > 0,

H log K
Ent,(P,v) < KE(t — ) 1 ,
nt,(Pv) < KE(t—s) + ¢ log K 0g< 7 >

where H = Ent,(h), provided K is large enough. Since H can be bounded from above by a quantity

Hy depending on M, C),;, and the dimension only, we may choose K > K independent of H.

Choosing K = ¢ 1o 1 btai
00sIng =) 1+log+(§(£s)> , We obtain

1 +log, (log, (1/£(t —s)))
1 +log, (1/&(t —s))

Ent,(Pyv) <C (38)



It follows that, for all 1 > ¢ > 0 there exists some t. such that for ¢ > ¢,

Ent, (P) < ——© (39)

~ log'TE(1/€(t)

Using again (B4) and (BJ) (we may choose ¢ = ¢, for all ¢ > s) we may write

Ent,(Pyv) o log K
log K Ent,(Pv)
cd cloglog, K
" g K logm (1 " g K logi (1
og K logm == (1/£(t)) ~ log K log™~*(1/£(t))

Ent,(Pyr) < KE(t) + ¢

< KE(t)

where we have used ylog(1/y) < ¢'y'~¢ for y < 1/e. Hence choosing K = 1/£(t)log?(1/£(t)) we
obtain a bound like

C
S Tvae
log=™=*(1/¢(t))
for ¢ large enough. Note that C' depends on €. We may iterate the method and get the result. >

Of course this result is not totally satisfactory, but it indicates that the decay of entropy is faster
than any 1/log"1==)(1/£(t/k)).

Ent,(Pyv)

Example 5.4 Let us study the two classical examples we already mentioned. To be rigorous |t| :=
V1 +12 in what follows (to ensure the required regularity), so that (R9) is satisfied.

e For a > 0, the measure dmy(t) = Zo(1 + [t|)717%dt, t € R satisfies the weak logarithmic
Sobolev inequality with

(log 1/s)l+2/oz

Vs € (0,1), Bwr(s)=C s2/a '

for some constant C > 0. Hence,

Ca
/2 Jogtto(t)

§(t)

for large t, and

Ca k,e
< 9 3
Ent,, (Pir) < 710gk(1_5)(t) .
Notice that, if roughly the rate of decay does not depend on « (it is faster than any logk(t)),

the dependence on a of all constants shows that this regime is attained for smaller t when «
increases.

o For a € (0,2), the measure dug(t) = Zoe M%dt, t € R, (Z, is a normalization constant)
satisfies the weak logarithmic Sobolev inequality with fwr(s) = C(log l/s)(2_a)/o‘, C > 0.
Hence £(t) = ce~ " and for t large enough,

Ca,k

Entua(PktV) S m .

Of course this result is not satisfactory for o > 2 where we know that the decay is exponential.
See below for an improvement.

If we replace Proposition [£.1] or Proposition .9 we can greatly improve the previous results. Let us
describe the latter situation.



Theorem 5.5 In the situation of Evample[[. (i.e. the Latala-Oleszkiewicz situation) and Theorem
[5.3, there exists s > 0 such that for all 1 > & > 0 one can find T. in such a way that for t > T,

(1-8)a
Ent,(Pysv) < 7077 .

In particular for a = 2 relative entropy is exponentially decaying.

Proo

< TIJ:e beginning of the proof is similar to the one of Theorem [5.9 but replacing the estimate of

Proposition [l.1 by the one of Example [£.3 (in particular we may take K = +oo0 if a« = 2). The first

step yields .

C(1+logZ ™ (1))
14t7a

Let us choose s in such a way that H < 1/e, i.e. Hlog(1/H) < 1. Then

Hy := Ent,(Pyv) < Hlog(1/H).

2

C(1 +logZ ™ (1)) log(1 + +757)

1+t2a

C(1 +logZ = (1))
1+t7a

Hy < Hilog(1/H;) <

provided C' > 1 that we can assume. Iterating the procedure we get

a k
C(1+log = (¢ kol .
Hy, (L+ og; () log ((1 +tm)y)
1 _|_t27a ]:1
_a o k
C (1 +1og" (1)) log(1 + t2°) (k —1)!
- 147 log(1 4 t7%)

Now, we may find . such that for ¢t > ¢.,

(&3

C (141og>“ (1)) log(1 + t7-a) .1
1+t to-a

and log(1 + tﬁ) > 1, so that

k k
< |-
o < ()

as soon as k is large enough (for (k — 1)! < (k/e)¥). Choosing t = k(~®/a(1=¢) (hence k large
(1—8)a
to—ea

2—ea

enough for ¢t to be greater than t.) we obtain that H, < ek for u= kU9 ie H, < ee”
>

Of course the statement of the Theorem is not sharp (we have bounded some logarithm by some
power) but it is tractable and shows that (up to some ¢) the decay is similar to £. Of course we are
able to derive a similar (but not very explicit) result with the general bound (A) in Proposition [£.3.

It is interesting to see what can be done by using the usual Poincaré inequality. Indeed recall that
Ent,(g) < Var,(g)/ [ gdu for a nonnegative g. Using this with g = Py(hln<f), using also (B4)
and Poincaré yield a decay
1+ log (1)

1+t
that is a slightly better result than the one we may obtain at the first step of the previous method
(up to a log_ (t) factor) in this situation (corresponding to aw = 1). But iterating the procedure also

Entu(Ptu) < C



yields a polynomial decay. Nevertheless if P, € L2(p1) for some s, we obtain an exponential decay.
It is thus particularly interesting to study stronger integrability condition. This will be done on an
example in the next subsection.

To finish this section we shall now discuss the weaker convergence in total variation distance.
Denoting again h = Pgv, we thus have for K > 0

/]Pth—l\du < /]Pt(h/\K)—Pth\du+/]Pt(h/\K)—/(h/\K)du!du—Ir\/(h/\K)du—ll

IN

/]Pt(h/\K) —/(hAK)dmdﬂ+2/(h—K)1h>Kdu (40)

where we have used the fact that P; is a contraction in L'. The second term in the right hand sum is
going to 0 when K goes to +oo, while the first term can be controlled either by /Var, (P (h A K))

or by \/ 2([(h A K)dp)Ent,(Py(h A K)) according respectively to Cauchy-Schwarz and to Pinsker

inequality. In both cases, WPI or WLSI inequalities imply that Pyv goes to p in total variation
distance, for all initial v.

If we want a rate of convergence, we immediately see that WPI will furnish a better rate than
WLSI for the p that do not satisfy Poincaré inequality. If u satisfies a Poincaré inequality with
constant Cp then

Var, (Py(h A K)) < Ke ¥/¢P

so that the optimal K is given (up to a factor 2) by 2 [(h— K)Ip>xdu = Kie t/2Cr In particular

if (29) holds,
2C(p)
2 [ (h— K)Ip>gdp < ——~
for K > 1 and p > 1, so that we obtain || Pysv — p ||7v < k(p)/tP for all s > 0, p > 1, where &
depends on s, Cyuin, p, M and the dimension. But if we directly use Theorem p.§ and Pinsker we
(1—g)o

have the much better | Pypsv — p ||7y < ke™ 217 4t least for s large enough. In particular for
a =1 we obtain a faster decay. Once again, if ||Psv||« is finite for some positive s then one should

use the entropic convergence of Proposition [1.9 to get an exponential decay.

5.2 Example(s)

In the previous subsection, we have seen that finite entropy conditions are quite natural for the law
of the diffusion at any positive time. If there is no general result ensuring a better integrability
condition, it is however interesting to get such conditions on examples. Before to study such
examples, we shall give a generic example showing that some natural measures v never satisfy
Psv € L2(p1), but satisfy the conditions in Proposition f.1.

Consider V' such that for all A > 0, fe_)‘vdzr < +o00. Let du = e ?Vdx and dv = e_(2_‘3)v/Z€ dx
so that dv/dy = h = Z. eV ¢ L?(u) for 2 > ¢ > 1, but feQ%EVdV < t00. Set G =V = ht.

If Psh € L%(u) for some s > 0, then PsG € L?(u). If (R9) holds, it follows from [Cat0d, Theorem
2.8] that y satisfies a logarithmic Sobolev inequality. Thus if it is not the case, Psh ¢ L2(u) for all
s > 0, while if (BI)) is satisfied (for instance for V(y) = |y|% 1 < a < 2 see below) v satisfies the
conditions in Proposition f.1|.

This example shows that the set of initial measures satisfying the conditions in the previous sub-
section but not the necessary conditions to simply apply Poincaré is non empty.

We shall go further, and for simplicity we shall only consider the measures p, for a > 1, and
essentially discuss the case a = 1.



First of all notice that if 1 < o < 2,
1 < 27 ol + [y — 2l + 1)

so that (BI) is satisfied. Hence as soon as fe)‘|x|a1/(dx) < 400 for some A > 0, we may apply all
the results of the previous subsection. We shall now give a precise description of h = Pgd,. This
will allow us to give a similar sufficient condition for Psv to belong to L2(u).

We thus consider (in one dimension)

dX; = dB; — sign(Xy)dt , Xo==x, (41)
corresponding to o« = 1. Elementary stochastic calculus (inspired by the first sections of [GHROI])
furnishes

E[f(Xy)] = E|f(z+ By) €7 exp <— /Ot sign(x + Bs)dB5>]
= eI E[fa — W) exp (<|W — 2| + L))

where W; = — By is a new Brownian motion with local time at x denoted by L¥. Now as usual we
introduce the hitting time of x of (W) denoted by T, and the supremum S; = supg<s<¢ Ws. We
also assume here that z > 0. Then

Elf(Xy)] = E[f(Xy) Li<r,] + E[f(Xy) 1>, ]
= el e 2 E[f(z — W) Is,<0 V7] + € 2 ElLs,»oE[f (Bi_1,) exp (~|Bi_1,| + Li_1,)]]

where B’ is a Brownian motion independent of W and L’ its local time at 0.
For the first term, we know that the joint law of (W, S;) is given by the density

(w, 5) — Types \/2/7t3 (25 — w) exp(—(25 — w)?/2t)

so that (recall x > 0)

E[f(Xy) Li<r,] = /f(u) <Iu20\/ 2/mt eT2et et <e_(m_“)2/2t - e_(m+“)2/2t>> du.
For the second term, we know that the law of T, is given by the density

T x\/1/20T3 e =127

and that (|B|, L)) has the same law as (S, — B, S.) so that (noting that only the even part of f
has to be considered)

E[lf(Xe) Lis1,] = e 2 /// To<cr<tTus>01lpsn <w> 9(T,u,v) dudvdT,

with

g(T7 u, U) - \/1/27TT3 \/2/7T(t _ T)3 ve e—2u e—Uz/Q(t—T) e—I2/2T .
But

t +o0
Q= / / V1/27T3\/2/n(t — T)3ve’ e~V /20=T) o=a*/2T g, g
0 Ju

is such that

t
Q < / V/1/2rT3 <\/2/7T(t —T)e" e /2=T) 4 2et_T) e~ 2T g
0

/t V/1/2rT3 <\/2/7r(t —T)el’? + 2€t—T> o—%/2T g
0
C(t)

IN

IN



independently of x. The first inequality is obtained by performing an integration by parts in v, the

second one by bounding e e~u?/2(=T)

and the final one by bounding separately fg /% and ftt/2 We
thus see that

E[f(X,) Lor] = C'() / F(w) e g(u) du

where ¢ is bounded.
Putting all this together we have obtained the following

(Pudy) () = e(t) (Luzo e et (e (@02 =(?/20)) o ' ()g(u) (42)

for all x > 0. A similar result holds for < 0, while Pidg is bounded. Of course the previ-
ous () shows that for a fixed =, Pyd, is bounded. This result is not so surprising. Indeed for
a = 2 (more precisely for the normalized gaussian measure i.e. the Ornstein-Uhlenbeck process)
(Ped,)(u) = c(t) el=e™)a?/20-e™") g=(e7"?u=2)?/2(1=¢™") j5 hounded too. One may adapt our proof
and Proposition 4 in } in order to show that a similar result actually holds for all 1 < o < 2.
But () allows us to look at more general Pyr. In particular we see that Pyv € L?(u) if and only

if
2
/ (/ e¥ e (u=u)?/2t V(dm)) du < +o00 (43)
u>0 z>0

and a similar property is available on the negative real numbers. We then easily recover and complete
the discussion at the beginning of this subsection, i.e. if dv = e N¥ldz/Z | Pov ¢ L2(p) if A < 1,
but belongs to L2(y) if A > 1.

Let us finally give some discussion concerning the obtainable rate of entropic convergence depending
on the initial measure:

i. if v = §;, then ||Pydz]lcc < 0o and using respectively Proposition [L.1], Proposition .3 or
Poincaré inequality, one gets

Ent,,(Prir,v) < Cmin (€7 [Prydy oo, e /08 Pt 1) o=t Py, o )

(note that it easily extends to the case where v has compact support.)

ii. if v does not satisfy () but for some positive A, [eM*ldv is finite then we can only use
Theorem p.5 to get that for all € > 0, there exists 7. such that for all ¢ > T, we have

1—¢
—t2—¢
61 ¢ .

Ent“(Pty) <

6 Classical properties of WLSI

6.1 Tensorization

Let us begin by the following naive procedure of tensorization.

Proposition 6.1 Assume that for every f: M — R and every s > 0 one has
Ent, (1) < 5(s) [ [V fPdu-+ s Osc?().

Let n > 1, then the measure pu" satisfies a WLSI with function ﬁ(%), for s > 0.



Proof
< By the sub-additivity property of the entropy we get

Ent,u”(f) < Z/Ent,u(f(xlv sy Li—15 5 Lit1y - - - ,xn)) Hdﬂ(!ﬂj)
i=1 jF#i

For each i we get for all (z1,...,2-1,%it1,...,%n) € M1

Ent,(f(x1,...,%i—1, ", Tit1,-- -,

Ty)) <
6(8) |vif|2($17 sy Yiy e axn)dlu(yl) + SOSC(f(xlv seey Ty axn))27

It yields Vs > 0, Ent,«(f) < B(s) [ |Vf[2du™ + ns Osc*(f). >

The tensorization result above is of course the same as the one in B d] for weak Poincaré
inequality. As explained in Section 5 of this paper, one cannot expect a better result beyond the
exponential case. However as we have already seen, WLSI may take place between the exponential
and the gaussian regime (when GBI holds), so that we obtain this corollary:

Corollary 6.2 If u; (1 < i < n) satisfy a WLSI with the same function By satisfying the
hypotheses in Proposition [3.8, then the tensor product @', w; satisfies a WLSI with function

Bivr(u) = C Bwr(C'u)
where C,C" are constants which don’t depend on n.

Proof
< Tt is enough to use both parts of Proposition .q and the (exact) tensorization property of GBI.
One can see [LO0(] for the proof of the tensorization of GBI. >

Among the most important consequences of functional inequalities, one find concentration of mea-
sure and isoperimetric profile. Unfortunately weak inequalities are not easily tractable to derive
results in this direction (due to the Oscillation term). However results for WPI are contained in
[RW01, BCRO54| with a particular interest in dimension dependence in the latter. Actually we
do not succeed in deriving similar estimates starting from WLSI, as Herbst’s argument or Aida-
Masuda-Shigekawa iteration argument are more intricate and we can only recover weak Poincaré
unoptimal concentration rate.

The situation is still worse (from the WLSI point of view) when a SPI holds. In this case various
(more or less explicit) results have been obtained. Let us mention on one hand [Wan0(] Section 6,
[GWO03J] Section 5 (using super Poincaré) and [Wan0j] Corollary 2.4 (using GBI), on the other
hand [BCRO5H] Section 6 (using GBI) and Section 8 (using F-Sobolev inequalities) and [BCRO5]]
Theorem 12 for an improvement of [[Wan0(]] Section 6. The previous result may be used in conjunc-
tion with the above mentioned results to get dimension free concentration (or isoperimetric) results,
completing thus the transportation approach presented before.

6.2 Perturbation

Among the methods used to obtain functional inequalities, an efficient one is to perturb measures
satisfying themselves some functional inequalities. The most known result in this direction was first
obtained by Holley and Stroock who showed that a logarithmic Sobolev inequality is stable under a
log-bounded perturbation. The same is true for a SPI (using the related GBI [Wan09, Proposition
2.5]), and actually one can replace the bounded assumption by a Lipschitz assumption (this was
shown by Miclo for logarithmic Sobolev, and by Wang [Wan09, Proposition 2.6] for a SPI).



For the WPI, a similar result is shown in [RWO1], Theorem 6.1]. Actually this result shows that one
can consider non bounded perturbation, but with very strong integrability assumptions, the final
result being far to be explicit. For WLSI we may state

Proposition 6.3 Suppose that u satisfies a WLSI with function Bywr. Let vy = eV u/Zy, where
Vv = fevd,u and assume that V is bounded on M.
Then vy satisfies a WLSI with function

By (u) = 295V By p (ue= 05y
We may replace WLSI by WPI replacing Bwr by Bwp, or by SPI with

BYp(u) = €295V Bgp(ue205¢V)),

Proof
< Recall that Ent,,, ( f2) < 9sc(V) Ent ( f 2) Applying WLSI for u yields
ity (7)< 0% (ﬁms) [ 95 sosen)
< 20seV) BWL<ue Osc(V ) /\Vf\ dvy + u Osc?(f),

which is exactly the first statement. The second one is similar since Var,,, (f) < e9%¢(V)Var,(f).
For SPI the proof is immediate. >

The second way to get perturbation results is to use a natural isometry between L2 spaces. For
notational convenience we assume now that vy = e 2V u. Then g — f := e Vg is an isometry
between L?(vy) and L2(u). It is thus immediate that on one hand

Ent,, (¢°) = Ent,(f?) + 2 / g*Vdvy . (44)

On the other hand, an integration by parts yields

[Ivitdu= [1Valan + [ (20v - [9VE) (45)

where L is the generator of P, reversible for pu.

Combining these two facts, yields perturbation results for logarithmic Sobolev inequalities (the idea
goes back to Rosen [Ros7(], and was used in [Car91, [Cat0F]). In order to see how to use it in our
framework, we shall first introduce some notation.

Definition 6.4 Let G be a positive continuous function defined on RT. We shall say that a smooth
V' is Witten (G, u)-good, if V(x) — +o0 as |x| — 400 and if there exists A > 0 such that one has
for any x such that V(z) > A,

IVV|*(z) — 2LV (z) = G(V(z)).
Our first general result is a bounded (but not log-bounded) perturbation result.

Proposition 6.5 Let o be a positive measure (not a necessarily probability measure) satisfying a
WLSI with continuous function Bwr. Let V be Witten (G, p)-good, such that vy = e 2V is a
probability measure.

Then for all w > 0 and b > A the following inequality holds for any g € Cl}(M),

Ent,, (%) < C(ub) / Vgl + D(u,b) Osc*(g).



with

C(u,b) = h(b) + (2 + 24+ M(V)h(b)) Biyp(u), (46)
D(u,b) = spe 2V 1 (2424 + M(V)A(b))) u+ /{V>b} 2Vdvy (47)

where h(b) 1= suppa<.<p} % ,sp:=1nf {s >0, Bwr(s) < h(b)},

M(V):= sup (2LV —|VV]?),
{v<ay

(which is finite) and ﬁ“,/vp is the best function such that vy satisfies WPI (if it does not take
Bl p(u) = 400 for small u).

Proof
< First according to Rothaus inequality, we may assume that [ gdvy = 0 up to 2Var,,(g).
Applying WLSI in ({f4) and ([[J) we get for all s > 0,

Ent,, (¢*) < wi(s) [ Vol +
/92 (ﬂwL(s) <2LV — \VV]2) + 2V) dvy + sOsc?(ge™V). (48)

Note that if By, is bounded, we may replace it by any 3(s) = Bwr(0).

e On {V < A}, the second integrand is bounded by (Swr(s)M (V) +2A) Var,, (g), and can
be controlled (together with the term 2Var,,, (¢g) coming from Rothaus inequality) with the
WPI for the measure vy .

e On {b>V > A}, we choose s = s; then the second integrand is non-positive.

e On {b <V}, 2LV — |VV|* is still non-positive, so that the second integrand is bounded by

/ 2Vg® dvy < (/ 2Vd1/v> Osc?(g),
{V>b) {vb}

since [ gdvy =0. >

For this proposition to be useful, we must choose u and b in such a way that D(u,b) — 0 as b — +o0.
If pu is a probability measure, [ e?Vdyy =1 so that if b > 1/2,

S b e—2b

2 < Ent,, (1 = > I -
/{v>b} Vdvy < Ent,, (Iyz) = vy(V > b) log <VV(V>b)>

where we used Markov inequality and the fact that zlog(1/x) is non decreasing on [0,1/e] for the
latter.

If 1 is not bounded, we assume in addition that f e PVdy = K(p) < +oo for some p < 2, so that a
similar argument (changing the constants) yields again

K(p) .
/{V>b} 2Vdvy <wvy(V =b)(2/2 —p) log <m> < (2K (p)/(2 — p)) belr=20

if b > (1+log(K(p)/(2 - p)-



In both cases, defining ¢ as the upper bound, one can find constants a and a’ (depending on p if

necessary) such that
"og(1
b=alog (761 Oge( /€)> )

and the appropriate choice for u is then u = ¢/h(b), provided Bwr(e) < h(b).

Conversely, if Bwr(e) = h(b), sp is greater than £ (up to multiplicative constants) and the good
choice is then u = s,/h(b).

If h(b) > Cb we obtain that 3}, (s) behaves like a function greater than or equal to (up to some
constants) log(1/s)By p(s/log(1/s)) in the first case, Bwr(s)BYy p(s/Bwr(s)) in the second case,
with Sy r(s) larger than log(1/s) in the latter case. Hence the result is not better (even worse) than
([3) in Proposition B.1.

If h(b)/b — 0 as b — +oo we obtain the same results, but replacing log(1/s) by h(log(1/s)), provided
By p is not bounded (otherwise By, (s) = Ch(log(1/s)) for some C). Hence if B (s) < log(1/s)
we obtain a better result that the one in Proposition B.J, namely vy satisfies WPI with a function

h(log(1/s)) v
> _~ =20 77
6(8) lOg(l/S) ﬁWP(CS)
provided this function is non-increasing. But if there exists M such that 8y, p(cs) < M By, p(s), we
may thus choose § < (1/ 2)51‘//{, p» which leads to a contradiction since BXV p is assumed to be the best
one. We have thus obtained (recall that we leave some constants away in the previous argument)

Corollary 6.6 Let pu be a positive measure (not necessarily bounded) satisfying a WLSI with con-
tinuous function Py . Let V be Witten (G, ji)-good, such that vy = e~2V 11 is a probability measure.
If p is not bounded, we assume in addition that there exists p < 2 such that [ e PVdu < +oo.
Assume in addition that

o h(b) == suppa<.<p % is such that h(b)/b — 0 as b — +o0,

e Bwr(s)/log(l/s) — 0 as s — 0 (that is, if p is bounded, p satisfies some SPI which is
stronger than the usual Poincaré inequality).

Then vy satisfies a Poincaré inequality, and a WLSI with function By, (s) = ah(a'log(1/s)) for
some constants a and a’.

In particular if G(z) > cz for large z, vy satisfies the usual logarithmic Sobolev inequality.

The previous result extends part of the results in [[Cat0q] since we do not assume that p satisfies a
logarithmic Sobolev inequality.

It has to be noticed that the conditions in Corollary 6.6 are far to be optimal for vy to satisfy
Poincaré inequality. Indeed if g = dx on the euclidean space, it is known that G(b) > k > 0 for
large b is sufficient (i.e. h asymptotically linear) (see for a reference). In the general manifold
case with p the riemannian measure, Wang ([Wan99] Theorem 1.1 and Remark 1) has obtained a
beautiful sufficient condition, namely —Lp(x) > k > 0 for p(x) large, when p is the riemannian
distance to some point o. In the flat case, this condition reads |VV|(x) > k > 0 for |z| large. In
the one dimensional case, it is easy to see that this condition is weaker than our G(b) > k > 0 for
large b. Wang’s condition thus appears as the best general one, though it is not necessary as shown
in one dimension by a potential V(z) = x + sin(x) for large . But Wang’s approach, based on
Cheeger inequality and the control of local Poincaré inequality outside large balls, seems difficult to
extend to more general functional inequalities (though it can be used in particular cases, see [RWO0]]

section 3 and [[Wan0()]).

Example 6.7 For 1 < a <2 and G(u) = w2(1=3) we recover (here dyu = dx) the same By, as the
one corresponding to the measure i, studied at the end of section [}. This furnishes a new proof of
some results in [BCRO51] section 7.2. For more general G the result is linked to the perturbation

results in .
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