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1 Introduction

A key tool in the study of the dynamics of vector fields near an equilibrium point is
the theory of normal forms, invented by Poincaré, which gives simple forms to which a
vector field can be reduced close to the equilibrium [1],[6]. In the class of formal vector
valued vector fields the problem can be easily solved [1], whereas in the class of analytic
vector fields convergence issues of the power series giving the normalizing transformation
generally occurs [6], [13]. Nevertheless the study of the dynamics in a neighborhood of
the origin, can very often be carried out via a normalization up to finite order (see for
instance [8], [11] Reference à completer). Normal forms are not unique and various
characterization exist in the literature [7], Reference à completer. In this paper we will
consider the version given in [7]:

Theorem 1.1 (Unperturbed NF-Theorem) Let V be a smooth (resp. analytic) vec-
tor field defined on a neighborhood of the origin in R

m (resp. in C
m) such that V (0) = 0.
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Then, for any integer p ≥ 2, there are polynomials Qp,Np : R
m → R

m (resp. C
n → C

n) ,
of degree ≤ p, satisfying

Qp(0) = Np(0) = 0,DQp(0) = DNp(0) = 0

such that under the near identity change of variable X = Y + Qp(Y ), the vector field

dX

dt
= V (X) (1)

becomes
dY

dt
= LY + Np(Y ) + Rp(Y ) (2)

where DV (0) = L, where the remainder Rp is a smooth (resp. analytic) function sat-
isfying Rp(X) = O(‖X‖p+1) and where the normal form polynomial Np of degree p is
characterized by

Np(e
tL∗
Y ) = etL∗Np(Y )

for all Y ∈ R
m (resp. in C

m) and t ∈ R or equivalently

DNp(Y )L∗Y = L∗Np(Y )

where L∗ is the adjoint of L. Moreover, if T is a unitary linear map which commutes with
V then for every Y ,

Qp(TY ) = TQp(Y ) Np(TY ) = TNp(Y ).

Similarly, if V is reversible with respect to some linear symmetry S (S2 = Id), i.e. if v
anticommutes with this symmetry, then for every Y ,

Qp(SY ) = SQp(Y ) Np(SY ) = −SNp(Y ).

This version of the Normal Form Theorem up to finite order has two advantages :
firstly, it works for a non semi-simple linear operator L and secondly the characterization
of the normal form Np involves the adjoint L∗ of the operator L and not simply the
diagonalizable part of L. This leads to simpler normal forms.

Since the usual way to study the dynamics of vector fields close to an equilibrium is to
see the full vector field as a perturbation of its normal form L+Np by higher order terms,
it happens to be of great interest to obtain sharp upper bounds of the remainders Rp. A
similar theory of resonant normal forms was developed for Hamiltonians systems written
in action-angle coordinates (see for instance [2], [4], [12]). A sticking result obtained by
Nekhoroshev [9], [10], in order to study the stability of the action variables over exponen-
tially large interval of time, is that up to an optimal choice of the order p of the normal
form , the remainder can be made exponentially small. For more details of such Normal
Form Theorems with exponentially small remainder we refer to [12]. A similar result of
exponential smallness of the remainder was also obtained by Giorgilli and Posilicano in
[5] for a reversible system with a linear part composed of Harmonic oscillators.

The aim of the present paper is to prove that such a result of exponential smallness
of the remainder is still true for any analytic vector fields provided that the spectrum
of its linearization satisfies some ”nonresonance assumptions” which enable to control
the small divisor effects. For a subset Z of Z

m, for K ∈ N, and for γ > 0, a vector
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λ = (λ1, · · · , λm) ∈ C
m, is said to be γ,K-nonresonant modulo Z if for every k ∈ Z

m with
|k| ≤ K,

| 〈λ, k〉 | ≥ γ when k /∈ Z.
Similarly, for γ > 0, τ > m − 1, λ is said to be γ, τ -Diophantine modulo Z if for every
k ∈ Z

m,

| 〈λ, k〉 | ≥ γ

|k|τ when k /∈ Z.

where for k = (k1, · · · , km) ∈ Z
m, |k| := |k1|+ · · ·+ |km|. In the problem of normal forms,

the small divisors appears as eigenvalues of the homological operator giving the normal
forms by induction (see Subsection 2.1 and Lemma 2.5). To control these small divisors
let us introduce the following definitions :

Definition 1.2 Let us define λ = (λ1, · · · , λm) ∈ C
m, K ∈ N, γ > 0 and τ > m− 1.

(a) The vector λ is said to be γ,K-homologically nonresonant if for every α ∈ N
m

with 2 ≤ |α| ≤ K, and every j ∈ N, 1 ≤ j ≤ m,

| 〈λ, α〉 − λj| ≥ γ when 〈λ, α〉 − λj 6= 0.

(b) The vector λ is said to be γ, τ -homologically Diophantine if for every α ∈ N
m,

|α| ≥ 2,

| 〈λ, α〉 − λj| ≥
γ

|α|τ when 〈λ, α〉 − λj 6= 0.

(c) For a linear operator L in R
m, let us denote λ1, · · · , λm its eigenvalues and λL :=

(λ1, · · · , λm). Then L is said to be γ,K-homologically nonresonant ( resp. γ, τ -
homologically Diophantine) if λL is so.

Remark 1.3 Observe that in the above definitions, the components of α are a nonnegative
integers.

In what follows we use Arnold’s notations [1] for denoting matrices under complex
Jordan normal forms : λ2 denotes the 2×2 complex Jordan block corresponding to λ ∈ C

whereas λ.λ represents 2 × 2 complex diagonal matrix diag(λ, λ), i.e.

λ2 :=

(
λ 1
0 λ

)
whereas λ.λ :=

(
λ 0
0 λ

)
.

A matrix under complex Jordan normal form is then denoted by the products of the name
of its Jordan blocs. Moreover since for real matrices the Jordan blocks corresponding
to non zero matrices occur by pairs λr and λ

r
we shorten their name as follows : for

λ1, λ2 ∈ C \ R, 02.λr1

1 .λr2

2 .λ
r1

1 .λ
r2

2 is simply denoted by 02.λr1

1 .λr2

2 |
C
. Moreover, when

one works with vector fields in R
m, one may want to remain in R

m and thus to use
real Jordan normal forms for the linearization of the vector field. So, for µ ∈ R and
λ = x+ iy ∈ C \ R, we denote by µ2λ2|

R
the real Jordan matrix




(
µ 1
0 µ

)
0 0
0 0

0 0
0 0

0 0
0 0

(
x −y
y x

) (
1 0
0 1

)

0 0
0 0

0 0
0 0

(
x −y
y x

)



.
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Finally, we equip R
m and C

m with the canonical inner product and norm, i.e. for

X = (X1, · · · ,Xm) ∈ C
m, ‖X‖2 := 〈X,X〉 =

m∑
j=1

XjXj . We are now ready to state our

main result:

Theorem 1.4 (Unperturbed NF-Theorem with exponentially small remainder)
Let V be an analytic vector field in a neighborhood of 0 in R

m (resp. in C
m) such that

V (0) = 0, i.e.
V (X) = LX +

∑

k≥2

Vk[X
(k)] (3)

where L is a linear operator in R
m (resp. in C

m) and where Vk is bounded k-linear
symmetric and

‖Vk[X1, · · · ,Xk]‖ ≤ c
‖X1‖ · · · ‖Xk‖

ρk
(4)

with c, ρ > 0 independent of k.

(a) If L is semi-simple and under real (resp. complex) Jordan normal forms, then

(i) if L is γ, τ -homologically Diophantine, then for every δ > 0 such that popt ≥ 2,
the remainder Rp, given by the Normal Form Theorem 1.1 for p = popt, satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤Mτδ
2e

− w
δb (5)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb

and

Mτ =
10

9
cC2





(
m

√
27

8e

)1+τ

+ (2e)2+2τ





where

C =

√
m

ρ2

{(
5

2
m+ 2

)
ac+ 3ρ

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

, a = γ−1.

(ii) if L is γ,K-homologically nonresonant, then for every δ > 0 such that K ≥
popt ≥ 2 then the remainder Rp given by the Normal Form Theorem 1.1 for
p = popt satisfies (5) with τ = 0, i.e. b = 1.

(b) If L is not semi simple, then

(i) For L = 02 , L = 03, L = 02.iω|
Ror C

and L = (iω)2|
RorC

estimate (5) still holds
with τ = 0, i.e b = 1 and respectively with a = 1, a = 1, a = max(1, ω−1) and
a = max(1, ω−1).

(ii) For L = 02.iω1. · · · .iωq|Ror C
and L = (iω1)

2.iω2. · · · .iωq|RorC
, where ω :=

(ω1, · · · , ωq,−ω1, · · · ,−ωq) ∈ R
2q is γ, τ -homologically diophantine, estimate (5)

still holds with a = max(2−τ , γ−1).

Remark 1.5 Stirling’s formula ensures that m is finite.
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Remark 1.6 A semi simple matrix under complex Jordan normal form is simply a diag-
onal matrix whereas a real semi simple matrix under real Jordan normal form is the direct

sum of a diagonal matrix with 2 × 2 blocks of the form

(
x −y
y x

)
with x, y ∈ R.

Remark 1.7 The characterization of the normal form and the exponentially small esti-
mates are invariant under unitary changes of coordinates. Indeed, if we perform in (2) a
unitary change of coordinates Y = QỸ where Q is a unitary linear operator (Q∗ = Q−1),
then it becomes

dỸ

dt
= L̃Ỹ + Ñp(Ỹ ) + R̃p(Ỹ )

with L̃ = Q−1LQ, Ñp(Ỹ ) = Q−1Np(QỸ ), R̃p(Y ) = Q−1Rp(QY ), where Ñp satisfies the

same normal form criteria as Np, i.e. Ñ (etL̃∗
Ỹ ) = etL̃∗Ñ (Ỹ ) and where R̃p admits the

same exponentially small upper bound as Rp given by (5).

However, when Q is not unitary then Ñp satisfies a slightly different normal form
criteria given by

Ñ (et
∨
LỸ ) = et

∨
LÑ (Ỹ )

where
∨

L = Q−1L∗Q which is not equal to L̃∗ when Q is not unitary. In this case, R̃popt

also admits a slightly different upper bound given by

sup
‖Ỹ ‖≤δ̃

‖R̃popt(Y )‖ ≤Mτ‖|Q−1‖| ‖|Q‖|2 δ̃2 e
− w

‖|Q‖|b δ̃b .

The above remark enables to state a corollary without assuming that L is under real or
complex Jordan normal form

Corollary 1.8 Let V be an analytic vector field in a neighborhood of 0 in R
m (resp. in

C
m) such that V (0) = 0, i.e. satisfying (3) and (4). Denote L = DV (0) and let Q be

an invertible matrix such that J = QLQ−1 is under real (resp. complex) Jordan normal
form.

Then, there are polynomials Qpopt ,Npopt : R
m → R

m (resp. C
n → C

n) , of degree
≤ popt, satisfying Qpopt(0) = Npopt(0) = 0,DQpopt(0) = DNpopt(0) = 0 such that under the
near identity change of variable X = Y + Qpopt(Y ), the vector field (1) becomes

dY

dt
= LY + Npopt(Y ) + Rpopt(Y )

where the remainder Rpopt = O(‖Y ‖popt+1) is analytic and where Npopt satisfies the normal

form criteria

Npopt(e
t
∨
LY ) = et

∨
LNpopt(Y ) with

∨

L = Q−1J∗Q

for all Y ∈ R
m (resp. in C

m) and t ∈ R. Moreover,

(a) if L is semi-simple and γ, τ -homologically Diophantine, then for every δ > 0 such
that popt ≥ 2, the remainder Rpopt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤ Mτδ
2e

− w

δb (6)
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with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb

and

Mτ =
10

9
c‖|Q‖| ‖|Q−1‖| C2





(
m

√
27

8e

)1+τ

+ (2e)2+2τ





where

C =

√
m

ρ2

{(
5

2
m+ 2

)
ac‖|Q‖|2 ‖|Q−1‖|2 + 3ρ‖|Q‖| ‖|Q−1‖|

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

and a = γ−1;

(b) if L is γ,K-homologically nonresonant, then for every δ > 0 such that K ≥ popt ≥ 2
then the remainder Rpopt satisfies (6) with τ = 0, i.e. b = 1;

(c) for J = 02, J = 03, J = 02.iω|
Ror C

and J = (iω)2|
RorC

estimate (6) still holds
with τ = 0, i.e b = 1 and respectively with a = 1, a = 1, a = max(1, ω−1) and
a = max(1, ω−1);

(d) for J = 02.iω1. · · · .iωq|RorC
and J = (iω1)

2.iω2. · · · .iωq|RorC
, where ω :=

(ω1, · · · , ωq,−ω1, · · · ,−ωq) ∈ R
2q is γ, τ -homologically diophantine, estimate (6) still

holds with a = max(2−τ , γ−1).

Proof. Starting with (1), perform a first change of coordinates X = Q−1X̃ to obtain a
vector field Ṽ such that DṼ (0) = J is under Jordan normal form, then apply Theorem
1.4, i.e perform a second change of coordinates X̃ = Q̃popt(Ỹ ) and finally perform a last

change of coordinates Ỹ = QY to get the desired result. �

Reste à commenter ce théorème puis à énoncer les résultats pour les champs perturbés.

6



2 Exponential estimates for unperturbed vector fields

This section is devoted to the proof of Theorem 1.4. We first recall in few words the proof
of Theorem 1.1.

2.1 Normalization and Homological equations

Let V be an analytic vector field in a neighborhood of 0 in R
m (resp. in C

m) such that
V (0) = 0, i.e. a vector field satisfying (3) and (4). Let H be the space of the polynomial
Φ : R

m 7→ R
m (resp. C

m 7→ C
m) and let Hk be the space of the homogeneous ones of

degree k. We are interested in polynomial changes of variables, of the form X = Y +Qp(Y )
with

Qp(Y ) =
∑

2≤k≤p

Φk(Y ), Φk ∈ Hk

such that by the change of variable, equation (1) becomes of the form (2) with

Np(Y ) =
∑

2≤k≤p

Nk(Y ), Nk ∈ Hk,

where Np is as simple as possible. A basic identification of powers of Y leads to

{1 +
∑

2≤k≤p

DΦk(Y )}{LY +
∑

2≤k≤p

Nk(Y ) + Rp(Y )}

= L{ ∑
1≤k≤p

Φk(Y )} +
∑
q≥2

Vq

[
{ ∑
1≤k≤p

Φk(Y )}(q)

]
.

(7)

where Φ1(Y ) = Y . This leads to the following hierarchy of homological equations in Hn

for 2 ≤ n ≤ p,
A

L
Φn +Nn = Fn, (En)

with
Fn = −

∑

2≤k≤n−1

DΦk.Nn−k+1 +
∑

2≤q≤n

∑

p1+···+pq=n

Vq[Φp1 , · · · ,Φpq ], (8)

where some sums are empty and where A
L

is the homological operator given by

(A
L
Φ)(Y ) = DΦ(Y ).LY − LΦ(Y ).

Observe that A induces on each Hn a linear endomorphism denoted by A
L
|
Hn

: Hn → Hn.
Generally A

L
|
Hn

is not invertible. So when Fn lies in the range ran(A
L
|
Hn

) of A
L
|
Hn

one can take Nn = 0 and for Φn any preimage of Fn whereas when Fn does not lie in
ran(A

L
|
Hn

), then one has to choseNn in an appropriate supplementary space of ran(A
L
|
Hn

)
so that Fn −Nn belongs to ran(AL|Hn

).
The key idea of the proof of Theorem 1.1 contained in [7] is to introduce an appropriate

inner product on H such that the adjoint A∗
L

of A
L

is given by A
L∗ . Hence,

Hn = kerA
L
|Hn

⊥⊕ ranA
L∗ |Hn

, Hn = ranAL|Hn

⊥⊕ kerA
L∗ |Hn

.

Then for solving (En), we use the orthogonal projection πn on kerA
L∗ |Hn

for obtaining Nn

and the pseudo-inverse Ã
L
|−1
Hn

of A
L
|
Hn

defined in (kerA
L∗ )

⊥ = ranA
L
|
Hn

taking values in

(kerA
L
|
Hn

)⊥ for Nn, i.e.

Nn = πn(Fn) and Φn = Ã
L
|−1
Hn

((Id − πn)(Fn)). (9)

7



This completes the proof of theorem 1.1 and ensures that Nn belongs to kerA
L∗ |Hn

and
thus that Np lies in kerA

L∗ := {N/DN (Y )L∗Y − L∗N (Y ) = 0}.
To conclude this subsection, the appropriate inner product in H introduced in [7] is

given by
〈
Φ|Φ′〉

H
=

m∑

j=1

〈
Φj|Φ′

j

〉

with Φ = (Φ1, · · · ,Φm), Φ′ = (Φ′
1, · · · ,Φ′

m), where for any pair of polynomial P,P ′ :
R

m → R (resp. C
m → C) ,

〈
P |P ′〉 = P (∂Y )P ′(Y )|

Y =0
.

where by definition P (Y ) := P
(
Y
)
. E.g, for all positive integers α1, · · · , αm, β1, · · · , βm

〈
Y α1 . · · · .Y αm |Y β1. · · · .Y βm

〉
= α1!. · · · .αm! δα1,β1. · · · .δαm,βm

where δα,β = 1 if α = β, and 0 otherwise. It what follows we norm Hn with the associated

euclidian norm |Φ|
2

:=
√
〈Φ|Φ〉

H

2.2 Exponential upper bounds for the remainder: main results

Main result. We want to give an estimate on Rp(Y ) depending on p and on the size of
the ball where Y lies. Given the size of this ball, the aim is to optimize the degree p of
the normal form, and show that Rp(Y ) can be made exponentially small with respect to
δ. For unperturbed vector fields, all follows from the following proposition which ensures
that the exponentially estimates of the remainder follows from the estimates of the growth
with respect to k of the euclidian norm of the pseudo inverse of A

L
|
Hk

.

Remark 2.1 A priori the pseudo inverse Ã
L
|−1
Hk

is only defined from (kerA
L∗ )

⊥ = ranA
L
|
Hk

onto (kerA
L
|
Hk

)⊥. From now on, we extend it on the whole space Hk as follows

A
L
|
Hk

Ã
L
|−1
Hk

Φ = Φ for Φ ∈ (kerA
L∗ )

⊥, Ã
L
|−1
Hk

Φ = 0, for Φ ∈ kerA
L∗ .

Proposition 2.2 (Exponential estimates of the remainder) Let V be an analytic
vector field in a neighborhood of 0 in R

m (resp. in C
m) such that V (0) = 0, i.e. a

vector field satisfying (3) and (4). Denote

ak := ‖|Ã
L
|−1
Hk

‖|
2

= sup
|Φ|

2
=1

∣∣∣ÃL
|−1
Hk
.Φ
∣∣∣
2
.

Then, if there exits K ≥ 2, a ≥ 0 and τ ≥ 0 such that ak ≤ akτ for every k with
2 ≤ k ≤ K ≤ +∞, then for every δ > 0 such that K ≥ popt ≥ 2 the remainder Rp given
by the Normal Form Theorem 1.1 for p = popt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤M δ2e
− w

δb

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb
, M =

10

9
cC2





(
m

√
27

8e

)1+τ

+ (2e)2+2τ




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where C =
√

m
ρ2

{(
5
2m+ 2

)
ac+ 3ρ

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

and where for a real number x, we

denote by [x] its entire part.

Remark 2.3 Stirling’s formula ensures that m is finite.

The proof of this proposition is performed in two main steps. We first prove that
roughly speaking, Rp admits an upper bound of the form

sup
‖Y ‖≤δ

‖Rp(Y )‖ ≤M(Cδ)p+1(p!)1+τ .

where M depends on τ but not on δ and p. Then we optimize p (see Lemma 2.17), so
that (Cδ)p+1(p!)τ+1 is exponentially small for p = popt. In fact, the upper bound for Rp

is a little bit more complicated (see Lemma 2.15) and we obtain it only for (Cδ)
1

1+τ p ≤
e−1, which is just enough to obtain the desired exponentially small upper bound of the
remainder. The detailed proof of this proposition is postponed to subsection 2.3.

Remark 2.4 The euclidian norms ak of the homological operator are invariant under
unitary changes of coordinates. Indeed, if Q is a unitary linear operator, let us denote
L′ = Q−1LQ and a′k = ‖|Ã

L′ |−1
Hk

‖|
2
. Then, since A

L′ |Hk
= T

Q
A

L
|
Hk

T −1
Q

where (T
Q
Φ)(Y ) =

Q−1Φ(QY ) and since T
Q

is unitary when Q is unitary (see Appendix A.3), we get that
a′k = ak for every k ≥ 1.

The semi-simple case. Theorem 1.4-(a) directly follows from proposition 2.2 and from
the following lemma

Lemma 2.5 Let L be a m×m matrix.

(a) Denote by σ(L) := {λ1, · · · , λm} the spectrum of L. Then, for every k ≥ 2 the
spectrum σ(A

L
|
Hk

) of A
L
|
Hk

is given by

σ(A
L
|
Hk

) := {Λj,α := 〈λL, α〉 − λj , 1 ≤ j ≤ m, α ∈ N
m, |α| = k}. (10)

(b) If L is semi-simple and is under real or complex Jordan normal form, then for every
k ≥ 2,

ak := ‖|Ã
L
|−1
Hk

‖|
2
≤ max

1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−1.

Remark 2.6 When L is semi simple, under Jordan normal form, and γ,K-homologically
nonresonant, the above lemma ensures that ak ≤ γ−1 for 2 ≤ k ≤ K and if L is γ, τ -
homologically Diophantine, then ak ≤ γ−1 kτ for k ≥ 2.

Proof of Lemma 2.5. (a):Although this result is classical (see [3]), we give its short proof
for self-contentness of the paper. Let Q be an invertible matrix such that J = Q−1LQ
is under complex Jordan normal form and observe that A

L
|
Hk

= T −1
Q

A
J
|
Hk

T
Q

where

(T
Q
Φ)(Y ) = Q−1Φ(QY ). Hence the spectrum of A

L
|
Hk

is equal to the spectrum of A
J
|
Hk

.
Let {cj}1≤j≤m

be the canonical basis of C
m. Then, since J is under Jordan normal form, we

9



have Jcj = λjcj + δj−1cj−1 with δ0 = 0 and where δj−1 = 0 if λj 6= λj−1 and δj−1 = 0 or 1
otherwise. Let {Pj,α}1≤j≤m,α∈Nm,|α|=k

be the basis of Hk given by

Pj,α(Y ) := Y α1
1 . · · · .Y αm

m cj

we order this basis with the lexicographical order, i.e. Pj,α < Pℓ,β if the first non zero
integer ℓ− j, β1 − α1. · · · .βm − αm is positive. Within this order, A

J
is upper triangular

and

A
J
Pj,α = (〈λL, α〉 − λj)Pj,α +

m∑

ℓ=1

αℓδℓPj,α−σℓ+σℓ+1
− δj−1Pj−1,α (11)

with σℓ = (0, · · · , 0, 1, · · · , 0) where the coefficient 1 is at the ℓ-th position. Hence the
spectrum of A

J
|
Hk

and thus the spectrum of A
L
|
Hk

is given by (10).

(b) : We proceed in two steps.
Step 1. First assume that L is semi-simple and is under complex Jordan normal form i.e.
assume that L = J is diagonal. Then δj = 0 for 1 ≤ j ≤ m. Thus, by (11), A

L
|
Hk

is also
semi simple and {Pj,α}1≤j≤m,α∈Nm,|α|=k

is a basis of eigenvectors of A
L
|
Hk

. For Φ ∈ Hk, let
us denote

Φ = Φ̂ +
∨

Φ,
∨

Φ = πkΦ ∈ ker(A
L∗ |Hk

), Φ̂ =
∑

1≤j≤m,|α|=k

Λj,α 6=0

Φ̂j,αPj,α ∈ ran(A
L
|
Hk

),

and M = max
1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−1. Then since Ã
L
|−1
Hk

∨

Φ = 0 and 〈Pj,α|Pℓ,β〉
H

= 0 for (j, α) 6=

(ℓ, β) we have

∣∣∣ÃL
|−1
Hk

Φ
∣∣∣
2

2
=

∑

1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−2 |Φ̂j,α|2 |Pj,α|2
2

≤ M2
∑

1≤j≤m,|α|=k

Λj,α 6=0

|Φ̂j,α|2 |Pj,α|2
2

= M2
∣∣∣Φ̂
∣∣∣
2

2

Finally, since 〈∨

Φ|Φ̂〉
H

= 0, ∣∣∣ÃL
|−1
Hk

Φ
∣∣∣
2
≤ M |Φ|

2
. (12)

Step 2. if L is real semi simple and is under real Jordan normal form then it is conjugated
to to its complex Jordan normal form by a unitary matrix since

(
x+ iy 0

0 x− iy

)
= Q−1

(
x −y
y x

)
Q, with Q =

(
1
√

2

1
√

2
1

i
√

2

−1

i
√

2

)
.

Then, remark 2.4 and the previous step ensures that (12) still holds when L is real, semi
simple and under real Jordan normal forms. �
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The non semi-simple case. For non semi simple operators L the direct computation of
the norm Ã

L
|−1
Hk

is in general quite intricate. So we use the following lemma which gives this

norm in terms of the spectrum of the self adjoint operator (A
L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

which happens more easy to handle.

Lemma 2.7 For every linear operator L in R
m or C

m and every k ≥ 1, let us denote
Σk(L) ⊂ R

+ the spectrum the positive self adjoint operator (A
L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

.
Then,

ak := ‖|Ã
L
|−1
Hk

‖|
2

=

(
min

σ∈Σk(L)\{0}
|σ|
)− 1

2

.

Proof. Observe that

ak = sup
Φ∈Hk\{0}

∣∣∣ÃL
|−1
Hk

Φ

∣∣∣
2

|Φ|
2

= sup
Ψ∈(kerA

L
|
Hk

)⊥

|Ψ|
2∣∣∣AL

|
Hk

Ψ

∣∣∣
2

=


 inf

Ψ∈(kerA
L
|
Hk

)⊥

〈
A

L∗ |Hk
A

L
|
Hk

Ψ|Ψ
〉

|Ψ|2
2




− 1
2

.

Then, since kerA
L
|
Hk

= kerA
L∗ |Hk

A
L
|
Hk

and since A
L∗ |Hk

A
L
|
Hk

is a positive self adjoint

operator, we get ak :=
(

min
σ∈Σk(L)\{0}

|σ|
)− 1

2
.

�

This lemma enables us to compute the norm of Ã
L
|−1
Hk

for various examples of non

semi simple linear operator L. Coupled with Proposition 2.2, these computations gives
the proof of Theorem 1.4-(b).

Lemma 2.8

(a) For L = 02 , L = 03, L = 02.iω|
RorC

and L = (iω)2|
RorC

, the norm ak of Ã
L
|−1
Hk

satisfies
ak ≤ a, for every k ≥ 1,

respectively with ak = 1, ak = 1, a = max(1, ω−1) and a = max(1, ω−1).

(b) For L = 02.iω1. · · · .iωq|Ror C
and L = (iω1)

2.iω2. · · · .iωq|Ror C
, where ω :=

(ω1, · · · , ωq,−ω1, · · · ,−ωq) ∈ R
2q is γ, τ -homologically diophantine, the norm ak of

Ã
L
|−1
Hk

satisfies

ak ≤ akτ , for every k ≥ 1,

with a = max(2−τ , γ−1).

The proof of this lemma is postponed to subsection 2.4.
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2.3 Exponentially small estimates of the remainder for polynomially

bounded pseudo inverse of the homological operator.

This subsection is devoted to the proof of proposition 2.2. To fix the notations we make
he proof vector fields in R

m. The proof is the same for C
m. So, let V be an analytic vector

field in a neighborhood of 0 in R
m such that V (0) = 0, i.e. a vector field satisfying (3)

and (4). We assume that the pseudo inverse of the homological operator is polynomially
bounded on Hk for 2 ≤ k ≤ K ≤ +∞, i.e we assume that there exists a > 0 and τ ≥ 0
such that

ak =
∣∣∣ÃL

|−1
Hk
.Φ
∣∣∣
2
≤ akτ for 2 ≤ k ≤ K.

Our aim is to find an exponential upper bound of the remainder Rp(Y ) for Y in a ball
of radius δ. Since the remainder Rp(Y ) is given by equation (7), for estimating it, we
successively compute upper bounds for Φn(Y ), Nn(Y ),

∑
2≤k≤p

DΦk(Y ),
∑

1≤k≤p

Φk(Y ) and

finally for Rp(Y ). For the polynomials Nn and Φn the natural norm to finally compute
an upper bound of sup

‖Y ‖≤δ

‖Rp(Y )‖ is the ”sup-norm” defined for any Φ ∈ H by

|Φ|
0,n

= sup
Y ∈Cm

‖Φ(Y )‖
‖Y ‖n

However, Nn and Φn are the solution of the Homological Equation (En) given by (9), i.e.
defined via the orthogonal projector πn which has nice properties for the euclidian norm
and not for the sup norm. These two norm can be compared has follows :

Lemma 2.9 (Comparison of the euclidian and the sup norm)
For every Φ ∈ Hk,

|Φ|
0,k

≤ 1√
k!

|Φ|
2
≤
√
Cm−1

k+m−1 |Φ|
0,k

≤ √
m k

m−1
2 |Φ|

0,k
.

where Cr
n =

n!

r!(n− r)!
.

The proof of this Lemma is given in Appendix A. Moreover if we normalize the euclidian
norm on Hn by defining

|Φ|
2,n

:=
1√
n!

|Φ|
2
, for every Φ ∈ Hn,

then the normalized euclidian norm has very nice properties with respect to multiplication
and derivation :

Lemma 2.10 (Multiplicativity of the normalized euclidian norm)

(a) Let q and {pℓ}1≤ℓ≤q be positive integers and let Rq ∈ Lq(R
m) be q-linear. Then

for every Φpℓ
∈ Hpℓ

, 1 ≤ ℓ ≤ q, the polynomial Rq[Φp1, · · · ,Φpq ] lies in Hn with
n = p1 + · · · + pq and

∣∣Rq[Φp1, · · · ,Φpq ]
∣∣
2,n

≤ ‖|Rq‖|Lq(Rm)
|Φp1|2,p1

· · ·
∣∣Φpq

∣∣
2,pq

.
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(b) Let k > 0 and p ≥ 0 be two integers and let Φk, Np lie respectively in Hk and Hp.
Then DΦk.Np lies in Hn with n = k − 1 + p and

|DΦk.Np|
2,n

≤
√
k2 + (m− 1)k |Φk|2,k

|Np|
2,p

This Lemma is also proved in Appendix A.

Hence to compute by induction upper bounds of Φn, Nn defined via πn, we use the
normalized euclidian norms

νn = |Nn|2,n
, for n ≥ 2,

φn = |Φn|2,n
, for n ≥ 1,

with the convention Φ1(Y ) = Y and thus φ1 = |Y |
2,1

=
√
m. Lemma 2.9 ensures that the

same upper bounds will also hold for the sup norms of Nn,Φn. Since πn is orthogonal, we
deduce from (9) that

νn = |Nn|2,n
= |πn(Fn)|

2,n
= 1√

n!
|πn(Fn)|

2
≤ 1√

n!
|Fn|2 = |Fn|2,n

and similarly
φn ≤ ‖|Ã

L
|−1
Hn

‖|
2
|Fn|2,n

≤ anτ |Fn|2,n
.

Hence using the multipicativity and the derivation properties of the normalized euclidian
norms, we get that

νn ≤
∑

2≤k≤n−1

(
k2 + (m− 1)k

) 1
2 φkνn−k+1 +

∑

2≤q≤n

∑

p1+···+pq=n

c

ρq
φp1 · · ·φpq , (13)

φn ≤ anτ
∑

2≤k≤n−1

(
k2 + (m− 1)k

) 1
2 φkνn−k+1 + anτ

∑

2≤q≤n

∑

p1+···+pq=n

c

ρq
φp1 · · ·φpq (14)

for 2 ≤ n ≤ K with the convention φ1 = |Φ1|2,1
= |Y |

2,1
=

√
m. Hence using that

(
k2 + (m− 1)k

) 1
2 ≤ √

mk, we check by induction that

Lemma 2.11 Let {βn}n≥1 be the sequence defined by induction

βn = m
∑

2≤k≤n−1

kβkβn−k+1 +
∑

2≤q≤n

∑

p1+···+pq=n

(
ρ

ac

)q−2

βp1 · · · βpq , n ≥ 2, (15)

β1 = 1.

Then we have the estimates

νn ≤
√
m

a

(
ac
√
m

ρ2

)n−1 (
(n− 1)!

)τ
βn, for 2 ≤ n ≤ K, (16)

φn ≤ √
m

(
ac
√
m

ρ2

)n−1

(n!)τβn, for 1 ≤ n ≤ K. (17)

13



Proof. We proceed by induction. For n = 1, the above inequality is true since φ1 =
√
m.

For n = 2, equation (15) ensures that β2 = 1 and (13), (14) ensure that ν2 ≤ cmρ−2 and
φ2 ≤ acm2τρ−2, and thus (17), (16) are true for n = 2. Assume now that (16), (17) holds
for k < n with n ≥ 3. Then (13) ensures that

νn ≤
√
m

a

(
ac
√
m

ρ2

)n−1 (
(n− 1)!

)τ
(
m

∑

2≤k≤n−1

kβkβn−k+1 (D′
n,k)

τ

+
∑

2≤q≤n

∑

p1+···+pq=n

(
ρ

ac

)q−2

βp1 · · · βpq(Dn,p1,··· ,pq)
τ

)

where

D′
n,k =

k!(n − k)!

(n− 1)!
and Dn,p1,··· ,pq =

p1! · · · pq!

(n − 1)!
.

It remains to prove that D′
n,k ≤ 1 for 2 ≤ k ≤ n − 1 and that Dn,p1,··· ,pq ≤ 1 for

2 ≤ q ≤ n, p1 + · · · + pq = n, pj ≥ 1, to ensures that (16) holds for n and similarly that
(17) holds also for n.

Denoting Ck
n = n!

k!(n−k)! and observing that Ck
n ≥ n for 1 ≤ k ≤ n− 1, we get

D′
n,k =

n

Ck
n

≤ 1.

Finally to prove that Dn,p1,··· ,pq ≤ 1 we proceed by induction on q. For q = 2, we have

Dn,p1,p2 =
p1!(n− p1)!

(n− 1)!
= D′

n,p1
≤ 1

since 1 ≤ p1 ≤ n− 1. Assume now that Dn,p1,··· ,pq ≤ 1 for q ≥ 2 and every n ≥ q, then

Dn,p1,··· ,pq+1 = Dp1+···+pq,p1,··· ,pq (p1 + · · · + pq − 1)!
pq+1!

(n− 1)!
,

= Dp1+···+pq,p1,··· ,pq

1

C
pq+1

n−1

≤ 1,

since for every r ∈ N and j with 0 ≤ j ≤ r, we have Cj
r ≥ 1. This completes the proof of

Lemma 2.11.
�

The study of the sequence {βn}n≥1 enables to obtain Gevrey estimates for φn, νn.

Lemma 2.12 In choosing α1 = 1 and

αn = Θn−2(n− 2)!, for n ≥ 2,

and Θ large enough such that
acΘ > ρ, (18)

and
5
2m+ 2

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ 1, (19)
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then βn in (15) satisfies βn ≤ αn for n ≥ 1 and thus

φn ≤ acm

ρ2

(
ac
√
m Θ

ρ2

)n−2

(n!)τ (n− 2)!, for 2 ≤ n ≤ K, and φ1 =
√
m,

νn ≤ cm

ρ2

(
ac
√
m Θ

ρ2

)n−2 (
(n− 1)!

)τ
(n− 2)!, for 2 ≤ n ≤ K.

Proof. We proceed by induction. We have β1 = 1 = α1 ≤ α1 and β2 = 1 = α2 ≤ α2.
Assume now that βk ≤ αk for k < n and n ≥ 3.

Step 1. Splitting of the bounds. Then by induction hypothesis,

βn ≤ ∆1
n + ∆2

n (20)

with

∆1
n = m

∑

2≤k≤n−1

k αk αn−k+1 +
∑

1≤k≤n−1

αk αn−k,

∆2
n =

∑

3≤q≤n

∑

p1+...pq=n

(
ρ

ac

)q−2

αp1.....αpq .

Step 2. Two auxiliary sums for ∆1
n. Let us we define

Sn =
∑

2≤k≤n−1

k(k − 2)!(n − k − 1)!

(n − 2)!
.

We have the following inequality

Sn ≤ 5/2, for n ≥ 3. (21)

This comes from the identity for n ≥ 5

Sn+1 − Sn = −
∑

3≤k≤n−2

k!

(n− 1)...(n − k)
+

n− 4

(n− 1)(n − 2)

and the fact that for k = n−2 the corresponding term in the sum cancels the last positive
term. Then a direct calculation of the cases n = 3 and n = 4 shows the result (21).

We now define

Pn =
∑

2≤k≤n−2

(k − 2)!(n − k − 2)!

(n− 2)!

and we check that
Pn ≤ 1/2, for n ≥ 4 (22)

since Pn+1 − Pn < 0, for n ≥ 4.

Step 3. Upper bound for ∆1
n. It results from (21) and (22) that for Θ ≥ 1,

∆1
n ≤

5
2m+ 2

Θ
αn, n ≥ 3, (23)

where the proof of this inequality is direct for n = 3.
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Step 4. Auxiliary sums for ∆2
n. Now, we define for n ≥ q ≥ 2 :

Πq,n =
∑

p1+...pq=n

αp1.....αpq ,

then we already have

Πn,n = 1 ≤ 1

Θn−2
αn, n ≥ 3

Π2,2 = 1,

Π2,n ≤ 2

Θ
αn, n ≥ 3,

where the last inequality comes easily from the inequality for Pn. For estimating Πq,n with
n ≥ q + 1, we proceed as follows

Πq,n =
∑

1≤k≤n−q+1

αkΠq−1,n−k = Πq−1,n−1 + αn−q+1 +
∑

2≤k≤n−q

αkΠq−1,n−k

and prove by recurrence that

Πq,n ≤ 2

Θq−1
αn, n ≥ q + 1 ≥ 3.

Finally, gathering all our results, we get

Πq,n ≤ 2

Θq−2
αn, n ≥ q ≥ 3, (24)

Step 5. Upper bound for ∆2
n. We deduce from (24) that

∆n
2 =

∑

3≤q≤n

(
ρ

ac

)q−2

Πq,n ≤
∑

3≤q≤n

2

(
ρ

acΘ

)q−2

αn ≤ αn

{
2 ρ

acΘ

1 − ρ
acΘ

}
, (25)

provided that ρ
acΘ < 1.

Step 6. Upper bound for βn. Hence, (23) and (25) ensure that

βn ≤
{

5
2m+ 2

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

}
αn ≤ αn

provided that
ρ

acΘ
< 1 and (5

2m+ 2)
1

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ 1.

�

In all what follows we choose

Θ =
5

2
m+ 2 +

3ρ

ac
(26)

which ensures that (18) and (19) are simultaneously satisfied since with this choice

ρ

acΘ
<

1

3
, and (

5

2
m+ 2)

1

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ (5
2m+ 2) 1

Θ

1 − ρ
acΘ

+
2 ρ

acΘ

1 − ρ
acΘ

= 1.

We can now compute an upper bound for the change of coordinates and for its differential.
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Lemma 2.13 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp1+τ ≤ ρ2

2ac
√
m Θ

. (27)

we have

‖
∑

1≤k≤p

Φk(Y )‖ ≤ 10

9

√
m δ, (28)

‖|
∑

2≤k≤p

DΦk(Y )‖|L(Rm)
≤ 2/5. (29)

for every Y ∈ R
m with ||Y || ≤ δ.

Remark 2.14 Observe that the size δ of the ball where Y lies and the degree p of the
normal form, i.e. the degree of the polynomial change of variable are now mutually
constrained by (27).

Proof. We proceed in three steps.

Step 1. Upper bound for ‖
∑

1≤k≤p

Φk(Y )‖. Lemmas 2.9, 2.12 ensure that

‖
∑

1≤k≤p

Φk(Y )‖ ≤
∑

1≤k≤p

|Φk|0,k
‖Y ‖k,

≤
∑

1≤k≤p

|Φk|2,k
‖Y ‖k,

≤
∑

1≤k≤p

φkδ
k,

≤ δ
√
m +

∑

2≤k≤p

acm δ2

ρ2

(
ac
√
mΘ δ

ρ2

)k−2

(k!)τ (k − 2)!

≤ δ
√
m



1 +

1

Θ

∑

2≤k≤p

(
1

2p1+τ

)k−1

(k!)τ (k − 2)!



 ,

≤ δ
√
m



1 +

1

Θ p

∑

2≤k≤p

(
1

2

)k−1


 ,

since for 2 ≤ k ≤ p,

(k − 2)!

pk−1
≤ 1

p
, and

k!

pk−1
=

2

p
. · · · .k

p
≤ 1. (30)

Hence,

‖
∑

1≤k≤p

Φk(Y )‖ ≤ δ
√
m

{
1 +

1

pΘ

}
≤ 10

9

√
m δ,

since Θ ≥ 5
2m+ 2 ≥ 9

2 and p ≥ 2.
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Step 2. Upper bound for ‖|DΦk(Y )‖|
L(Rm)

. For Y,Z ∈ R
m seeing Z as an homoge-

neous polynomial of degree 0, Lemmas 2.9, 2.10 ensure that

‖DΦk(Y ).Z‖
‖Y ‖k−1

≤ |DΦk(Y ).Z|
0,k
,

≤ |DΦk(Y ).Z|
2,k
,

≤
√
k2 + (m− 1)k |Φk|2,k

|Z|
2,0
,

=
√
k2 + (m− 1)k φk ‖Z‖.

Hence using that
√
k2 + (m− 1)k ≤ √

mk we obtain

‖|DΦk(Y )‖|L(Rm)
≤ √

mkφk‖Y ‖k−1.

Step 3. Upper bound for ‖|
∑

2≤k≤p

DΦk(Y )‖|
L(Rm)

. Lemma 2.12, the previous step

and estimate (30) ensure that for ‖Y ‖ ≤ δ, with δ, p satisfying (27) we have

‖|
∑

2≤k≤p

DΦk(Y )‖|L(Rm)
≤ m

Θ

∑

2≤k≤p

(
ac
√
mΘδ

ρ2

)k−1

k (k!)τ (k − 2)!,

≤ m

Θ

∑

2≤k≤p

(
1

2p1+τ

)k−1

k (k!)τ (k − 2)!,

≤ m

Θ

∑

2≤k≤p

(
1

2

)k−1

,

≤ m

Θ
,

≤ 2

5
,

since Θ ≥ 5
2m. �

We have now enough material to compute an upper bound of the remainder.

Lemma 2.15 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp1+τ ≤ ρ2

e1+τac
√
m Θ

. (31)

we have

‖Rp(Y )‖ ≤ 10c

9

(
(Cδ)p+1(p!)1+τ +

1

p2+2τ

(
1

e1+τ

)p+1
)

for every Y ∈ R
m with ||Y || ≤ δ where

C =
ac
√
mΘ

ρ2
=

√
m

ρ2

{(
5

2
m+ 2

)
ac+ 3ρ

}
.

.
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Remark 2.16 Observe that the constraint (31) imposed on δ and p is slightly stronger
than the one (27) imposed in Lemma 2.13 since 1

e1+τ ≤ 1
2 . The constraint (31) has been

chosen to get the optimal exponential decay rate for the upper bound of Rp obtained by an

optimal choice of popt =

[
1

e(Cδ)
1

1+τ

]
, i.e δ(popt)

1+τ ≈ 1
e1+τ C

(for details see below lemmas

2.17 and 2.19).

Proof. The remainder Rp(Y ) is given by equation (7) where it gathers all the terms of
order larger than p. To bound it, we proceed in several steps.

Step 1. Splitting of the upper bound. From the explicit expression of Rp given by
(7) and using lemmas 2.9, 2.10, 2.13, we get that for every δ > 0, every p, 2 ≤ p ≤ K
satisfying (27) and for every Y ∈ R

m with ‖Y ‖ ≤ δ,

3

5
‖Rp(Y )‖ ≤ ∆1

p + ∆2
p + ∆3

p (32)

where

∆1
p =

∑

2≤k≤p
p+1≤n≤p+k−1

√
m kφkνn−k+1δ

n

∆2
p =

∑

2≤q≤p
p+1≤n=p1+···+pq,

1≤pj≤p

cδn

ρq
φp1 · · · φpq

∆3
p =

∑

p+1≤q

c

ρq
(
10

9

√
m δ)q.

The sums ∆1
p and ∆3

p can be optimally bounded with constraint (27) whereas for ∆2
p we

use the stronger constraint (31).

Step 2. Upper bound for ∆1
p. Defining C = ac

√
m Θ

ρ2 and using lemma 2.12 we get

∆1
p ≤ m

5
2
ac2

ρ4

∑

2≤k≤p
p+1≤n≤p+k−1

(
ac
√
m Θ

ρ2

)n−3

δn k(k!)τ (k − 2)!
(
(n− k)!

)τ
(n− k − 1)!,

≤ mρ2

a2c Θ3

∑

2≤k≤p

k (k!)τ (k − 2)! (Cδ)p+1
∑

p+1≤n≤p+k−1

(Cδ)n−p−1(n− k − 1)!
(
(n− k)!

)τ
,

≤ mρ2

a2c Θ3

∑

2≤k≤p

k(k!)τ (k − 2)! (Cδ)p+1
∑

p+1≤n≤p+k−1

(
1
2

)n−p−1 (n− k − 1)!

pn−p−1

(
(n− k)!

pn−p−1

)τ

,

since Cδ ≤ 1
(ep)1+τ ≤ 1

2 p1+τ (here we do not need the strongest constraint). Then, observe

that for p+ 1 ≤ n ≤ p+ k − 1,

(n− k − 1)!

(p − 2)n−p−1
≤ (p− k)! and

(n− k)!

pn−p−1
≤ (p − k + 1)!.

Thus, we obtain
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∆1
p ≤ mρ2

a2c Θ3

∑

2≤k≤p

k(k!)τ (k − 2)! (Cδ)p+1 2(p − k)!
(
(p − k + 1)!

)τ
,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

Ck
p (k − 1)

(
p+ 1

Ck
p+1

)τ

,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

Ck
p (k − 1)

,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

p− 1
.

Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (27),

∆1
p ≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ (33)

Step 3. Upper bound for ∆2
p. Observing that αn ≤ (n−2)! Θn−1 for any n ≥ 1 where

(−1)! = 0! = 1 and using Lemma 2.12 we get

∆2
p =

∑

2≤q≤p

∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

c(
√
m)q

ρq

(
ac
√
m

ρ2

)n−q

δn
(
(p1!)

ταp1

) · · · ((pq!)
ταpq

)

≤
∑

2≤q≤p

∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

c(
√
m)q

ρq

(
ac
√
mΘ

ρ2

)n−q

δn (p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!

≤
∑

2≤q≤p

∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

c

(
ac
√
mδΘ

ρ2

)n (
ρ

acΘ

)q

(p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!,

≤ c
∑

2≤q≤p

rq
∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

(Cδ)n (p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!,

since C = ac
√

m Θ
ρ2 and where r := ρ

acΘ ≤ 1
3 with our choice of Θ given by (26). Moreover,

for δ > 0 and p ≥ 2 satisfying (31) (here we use the stronger constraint), i.e. for Cδ ≤
1

(ep)1+τ , we obtain
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∆2
p ≤ c

∑

2≤q≤p

rq
∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

(
1

ep

)n(1+τ)

(p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!,

≤ c

(
1

e1+τ

)p+1∑

2≤q≤p

rq
∑

n≥p+1

∑

p1+···+pq=n
1≤pj≤p

(
1

p

)n(1+τ)

(p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!,

≤ c

(
1

e1+τ

)p+1 ∑

2≤q≤p

rq




p∑

j=1

(
1

p1+τ

)j

(j!)τ (j − 2)!




q

,

≤ c

(
1

e1+τ

)p+1 ∑

2≤q≤p

rq

(
1

p1+τ
+
p− 1

pτ+2

)q

,

≤ c

(
1

e1+τ

)p+1 ∑

2≤q≤p

(
2r

p1+τ

)q

,

≤ c

(
1

e1+τ

)p+1 4r2

p2+2τ

1

1 − 2r
p1+τ

,

since 2
p1+τ ≤ 1. Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (31),

∆2
p ≤ 4c

(
ρ

acΘ

)2 1

1 − ρ
acΘ

1

p2+2τ

(
1

e1+τ

)p+1

. (34)

Step 4. Upper bound for ∆3
p. Observing that with our choice of Θ given by (26), for

every δ > 0 and every p, 2 ≤ p ≤ K satisfying (27), we obtain

√
m δ

ρ
≤ ρ

2acΘp1+τ
≤ 1

12

and thus,

∆3
p = c

∑

p+1≤q

(
10

9

√
m δ

ρ

)q

≤ c

(
10

9

√
m δ

ρ

)p+1∑

q≥3

(
5

54

)q

.

Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (27),

∆3
p ≤ 54

49

(
5

54

)3

c

(
10

9

√
m δ

ρ

)p+1

. (35)

Step 5. Upper bound for ‖Rp(Y )‖. Gathering the upper bounds for ∆1
p, ∆2

p, ∆3
p

given by (33), (34), (35), that with our choice of Θ given by (26),

ρ

acΘ
≤ 1

3
,

m

Θ
≤ 2

5
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we obtain that for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (31)

‖Rp(Y )‖ ≤ 5

3

(
∆1

p + ∆2
p + ∆3

p

)

≤ 4c

27
(Cδ)p+1(p!)1+τ +

10c

9

1

p2+2τ

(
1

e1+τ

)p+1

+
90c

49

(
5

54

)3
(

10

9

√
m δ

ρ

)p+1

≤
(

4

27
+

90

49

(
5

54

)3
)
c (Cδ)p+1(p!)1+τ +

10c

9

1

p2+2τ

(
1

e1+τ

)p+1

since with our choice of Θ given by (26),

10
√
m

9ρ
=

10

9

ρ

acΘ
C ≤ 10

27
C ≤ C.

Hence, since

(
4
27 + 90

49

(
5
54

)3
)

≤ 10
9 , for every δ > 0 and every p, 2 ≤ p ≤ K satisfying

(31) we have

‖Rp(Y )‖ ≤ 10

9
c

(
(Cδ)p+1(p!)1+τ +

1

p2+2τ

(
1

e1+τ

)p+1
)

for every Y ∈ R
m with ||Y || ≤ δ. �

The upper bound of ‖Rp(Y )‖ contains two terms. The second one, 1
p2+2τ

(
1

e1+τ

)p+1

tends to 0 as p tends to infinity whereas the first one (Cδ)p+1(p!)1+τ tends to infinity. The

key idea is to choose an optimal p for which (Cδ)p+1(p!)1+τ =

(
(Cδ)

p+1
1+τ p!

)1+τ

is minimal

and prove that this minimal value is exponentially small with respect to δ. This results
from the following lemma :

Lemma 2.17 Choose ε > 0 and let us define fε(p) := εp+1p! for p ∈ N. Moreover, for
x ∈ R, denote by [x] its entire part.

Then, for popt :=
[

1
εe

]
, fε(popt) is exponentially small with respect to ε. Indeed,

f

([
1

εe

])
≤ m

√
ε

e
e−

2
εe

where m = sup
p∈N

e2 p!

pp+ 1
2 e−p

.

Remark 2.18 Stirling’s formula ensure that M is finite.

Proof.

f

([
1

εe

])
≤ mε

e2
exp

{([
1

εe

]
+

1

2

)
ln

[
1

εe

]
+

[
1

εe

]
ln
ε

e

}
,

≤ mε

e2
exp

{([
1

εe

]
+

1

2

)
ln

1

εe
+

[
1

εe

]
ln
ε

e

}
,

=
mε√
εe

exp

{
−2

([
1

εe

]
+ 1

)}
≤ m

√
ε

e
e−

2
εe .
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Using this lemma we finally obtain the desired exponentially small upper bound for
Rp(Y ).

Lemma 2.19 If there exits K ≥ 2, a > 0 and τ ≥ 0 such that ak := ‖|Ã
L
|−1
Hk

‖|
2
≤ akτ for

every k with 2 ≤ k ≤ K, then for every δ > 0 such that K ≥ popt ≥ 2, the remainder Rp

given by the Normal Form Theorem 1.1 for p = popt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤Mδ2 exp
(
− w

δb

)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb
, M =

10

3
cC2





(
m

√
27

8e

)1+τ

+ (2e)2+2τ





where C =
√

m
ρ2

{(
5
2m+ 2

)
ac+ 3ρ

}
and m = sup

p∈N

e2 p!

pp+ 1
2 e−p

.

Proof. Let δ > 0 be such that popt =
[

1
e(Cδ)b

]
satisfies K ≥ popt ≥ 2. Observe that

condition (31) reads δbp ≤ 1
eCb and thus that popt satisfies it. Then since,

popt + 1 ≥ 1

e(Cδ)b
≥ popt ≥ 2 and

1

popt
≤ 2 e(Cδ)b

lemmas 2.15 and 2.17 with ε = (Cδ)b ensure that

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤ 10

9
c






m

√
(Cδ)b

e
e
− 2

e(Cδ)b




1+τ

+
(
2e(Cδ)b

)2+2τ
e
− 1+τ

e(Cδ)b




,

≤ 10

9
c(e1+τCδ)2 e

− 1+τ
e(Cδ)b





(
m

e
(e(Cδ)b)−

3
2 e

− 1
e(Cδ)b

)1+τ

+ 41+τ



 ,

≤ 10

9
c(e1+τCδ)2 e

− 1+τ
e(Cδ)b





(
m

e

√
27

8
e−

3
2

)1+τ

+ 41+τ



 ,

=
10

9
cC2





(
m

√
27

8e

)1+τ

+ (2e)2+2τ



 δ2 e

− 1+τ
e(Cδ)b

,

since x
3
2 e−x ≤

√
27
8 e−

3
2 for any x ≥ 0. �
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2.4 Computations of the norm of the pseudo inverse of the homological

operator for non semi simple-matrices.

This subsection is devoted to the computation of the norm of Ã
L
|−1
Hk

for various examples

of non semi simple operator L. We begin with the 02 singularity. All these computations
of the norm of the pseudo inverse of the homological operator are performed via lemma
2.7. Hence, in all this subsection we denote by Σk(L) ⊂ R

+ the spectrum of the positive
self adjoint operator (A

L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

.

Lemma 2.20 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 02)

For L = 02 and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ 1.

Proof. We are in dimension 2, with Y = (x, y) and L =

(
0 1
0 0

)
. We intend to give a

lower bound of the non zero eigenvalues of A
L∗AL

in the subspace Hk of homogeneous
polynomials of degree k. We recall that

A
L
Φ(Y ) = DΦ(Y )LY − LΦ(Y ).

Thus, denoting Φ = (φ1, φ2) in Hk, we have

A
L
Φ = (y

∂φ1

∂x
− φ2, y

∂φ2

∂x
) and kerA

L
= span{(yk, 0), (xyk−1, yk)}.

Now we look for the eigenvalues λ (λ ≥ 0) of A
L∗AL

in the subspace Hk. They are given
by

xy
∂2φ1

∂x∂y
+ x

∂φ1

∂x
− x

∂φ2

∂y
= λφ1

xy
∂2φ2

∂x∂y
+ x

∂φ2

∂x
− y

∂φ1

∂x
+ φ2 = λφ2.

(36)

We check that
i) Φ = (0, xk) gives λ = k + 1
ii) Φ = (yk, 0) gives λ = 0
iii) Φ = (xαyβ, xα−1yβ+1) gives λ = (α− 1)(β + 1) with α+ β = k, α = 1, ...k
iv) Φ = ((β + 1)xαyβ,−αxα−1yβ+1) gives λ = α(β + 2) with α+ β = k, α = 1, ...k.

These are the 2(k + 1) eigenvalues of the operator A∗A in the subspace Hk, corre-
sponding to a family of orthogonal eigenvectors. It is clear that min

λ∈Σk(L)\{0}
{λ} ≥ 1 and

thus,
ak := ‖|Ã

L
|−1
Hk

‖|
2
≤ 1.

�

Lemma 2.21 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 03)

For L = 03 and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ 1.
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Proof. We are in dimension 3, with Y = (x, y, z), Φ = (φ1, φ2, φ3) and

L =




0 1 0
0 0 1
0 0 0


 .

Here again, we intend to give a lower bound of the non zero eigenvalues of A
L∗AL

in Hk.
This is performed in several steps.

Step 1. Splitting of the operators. We define differential operators D and D∗ by

D = y
∂

∂x
+ z

∂

∂y

D∗ = x
∂

∂y
+ y

∂

∂z

then

A
L
Φ = DΦ − LΦ

A
L∗Ψ = D∗Ψ − L∗Ψ,

and

A
L∗AL

Φ =




D∗(Dφ1 − φ2)
D∗(Dφ2 − φ3) −Dφ1 + φ2

D∗Dφ3 −Dφ2 + φ3


 .

Moreover, we check that kerA
L

is spanned by



zα(xz − y2

2 )β

0
0


 ,




yzα(xz − y2

2 )β

zα+1(xz − y2

2 )β

0


 ,




xzα(xz − y2

2 )β

yzα(xz − y2

2 )β

zα+1(xz − y2

2 )β


 .

In what follows we use the properties

Dx = y, Dy = z, Dz = 0, D(xz − y2

2
) = 0,

D∗x = 0, D∗y = x, D∗z = y, D∗(xz − y2

2
) = 0.

Step 2. Splitting of Hk. Using the basis of monomials, for α, β, γ integers ≥ 0

φα,β,γ = xαzβ(xz − y2

2
)γ , and ψα,β,γ = xαyzβ(xz − y2

2
)γ .

we split Hk into the direct sum
Hk = H′

k ⊕H′′
k

where

H′
k =

{
Φ = (φ1, φ2, φ3)/φ1, φ3 ∈ span

α+β+2γ=k

{φα,β,γ}, φ2 ∈ span
α+β+2γ+1=k

{ψα,β,γ}
}
,

H′′
k =

{
Φ = (φ1, φ2, φ3)/φ1, φ3 ∈ span

α+β+2γ+1=k

{ψα,β,γ}, φ2 ∈ span
α+β+2γ=k

{φα,β,γ}
}
.
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Then, using the identities

Dφα,β,γ = αψα−1,β,γ ,

Dψα,β,γ = (1 + 2α)φα,β+1,γ − 2αφα−1,β,γ+1

D∗φα,β,γ = βψα,β−1,γ ,

D∗ψα,β,γ = (1 + 2β)φα+1,β,γ − 2βφα,β−1,γ+1,

D∗Dφα,β,γ = α(1 + 2β)φα,β,γ − 2αβφα−1,β−1,γ+1,

D∗Dψα,β,γ = (2α + 1)(β + 1)ψα,β,γ − 2αβψα−1,β−1,γ+1,

we observe that H′
k and H′′

k are both invariant under A
L∗AL

. Hence, the spectrum of the
operator A

L∗AL
in Hk is the union of its spectrum when restricted to H′

k and to H′′
k.

Step 3. Spectrum of A
L∗ A

L
in H′

k. We also split H′
k into subspaces invariant by

A
L∗AL

.

Step 3.1. Splitting of H′
k . First observe that for α+ β + 2γ = k, the subspace E ′

α,β,γ

of H′
k gathering the polynomials Φ of the form

φ1 =
∑

p

apφα−p,β−p,γ+p,

φ2 =
∑

p

bpψα−p−1,β−p,γ+p,

φ3 =
∑

p

cpφα−p−1,β−p+1,γ+p,

where

for α ≤ β, 0 ≤ p ≤ α, bα = cα = 0,
for β + 1 ≤ α, 0 ≤ p ≤ β + 1, aβ+1 = bβ+1 = 0 and cβ+1 = 0 if α = β + 1.

is invariant under the operator A
L∗AL

. Indeed, we have

Dφ1 − φ2 =
∑

{(α− p)ap − bp}ψα−p−1,β−p,γ+p,

Dφ2 − φ3 =
∑

{(2α − 2p− 1)bp − cp}φα−p−1,β−p+1,γ+p

−2(α − p− 1)bpφα−p−2,β−p,γ+p+1,

D∗(Dφ1 − φ2) =
∑

(2β − 2p+ 1){(α − p)ap − bp}φα−p,β−p,γ+p

−2(β − p){(α − p)ap − bp}φα−p−1,β−p−1,γ+p+1,

D∗(Dφ2 − φ3) =
∑

(β − p+ 1){(2α − 2p− 1)bp − cp}ψα−p−1,β−p,γ+p

−2(β − p)(α− p− 1)bpψα−p−2,β−p−1,γ+p+1,

D∗Dφ3 =
∑

(α− p− 1)(2β − 2p+ 3)cpφα−p−1,β−p+1,γ+p

−2(α − p− 1)(β − p+ 1)cpφα−p−2,β−p,γ+p+1.

Moreover, Φ′
k = (0, 0, φk,0,0) is an eigenvector of A

L∗AL
in Hk belonging to the eigenvalue

λ = k + 1.

Then, since Φ = (φα,β,γ , 0, 0), Φ = (0, ψα−1,β,γ , 0), Φ = (0, 0, φα−1,β+1,γ ) and Φ =
(0, 0, φα−2,β,γ+1) belong to E ′

α,β,γ respectively for α ≥ 0 , α ≥ 1 , α ≥ 1 and α ≥ 2, we
have the splitting of H′

k into the non direct sum

H′
k = CΦ′

k +
∑

α+β+2γ=k

E ′
α,β,γ .
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Hence, the spectrum spec(A
L∗AL|Hk

) of the operator A
L∗AL

in Hk is given by the union
with possibly many overlaps

spec(A
L∗AL

|
Hk

) = {k + 1} ∪
⋃

α+β+2γ=k

spec(A
L∗AL

|
E′
α,β,γ

).

Step 3.2. Spectrum of A
L∗ A

L
in E ′

α,β,γ. The spectral equation A
L∗AL

Φ = λΦ, for
Φ ∈ E ′

α,β,γ can be written as a hierarchy of systems of equation (37)p where for p = 0 we
have

(2β + 1)(αa0 − b0) = λa0,
(β + 1){(2α − 1)b0 − c0} + b0 − αa0 = λb0,
(α− 1)(2β + 3)c0 + c0 − (2α− 1)b0 = λc0,

(37)0

and for 1 ≤ p ≤ min{α, β + 1},

λap = (2β − 2p + 1){(α − p)ap − bp}
−2(β − p+ 1){(α − p+ 1)ap−1 − bp−1}

λbp = (β − p+ 1){(2α − 2p − 1)bp − cp} − (α− p)ap + bp
−2(β − p+ 1)(α − p)bp−1,

λcp = (α− p− 1)(2β − 2p+ 3)cp − (2α − 2p− 1)bp + cp
−2(α − p)(β − p+ 2)cp−1 + 2(α − p)bp−1.

(37)p

In particular, when α ≤ β the last system of the hierarchy is obtained for p = α (bα =
cα = 0) and it reads

λaα = −2(β − α+ 1)(aα−1 − bα−1),
0 = 0,

(37)α

while for β ≤ α − 1 the last system is obtained for p = β + 1 (aβ+1 = bβ+1 = 0, and
cβ+1 = 0 if α = β + 1) and it reads

λcβ+1 = (α− β − 1)cβ+1 − 2(α − β − 1){cβ − bβ},
0 = 0.

(37)β+1

The system with p = 0 gives the eigenvalues:

λ1 = (α− 1)(2β + 1), a0 = b0 = c0 = 1,
λ2 = α(2β + 3), a0 = (β + 1)(2β + 1), b0 = −2α(β + 1), c0 = α(2α − 1),
λ3 = (2α− 1)(β + 1), a0 = −(2β + 1), b0 = α− β − 1, c0 = 2α− 1.

We check that for for α = 0 or 1, we recover known eigenvectors belonging to the 0
eigenvalue, all other eigenvalues are positive integers.

For proving that they indeed give eigenvalues of A
L∗AL

it is needed to check that for
1 ≤ p < min{α, β + 1} the determinant ∆p does not cancel for λ = λ1 or λ2 or λ3 where

∆p =

∣∣∣∣∣∣∣

(2β′ + 1)α′ − λ −(2β′ + 1) 0
−α′ (β′ + 1)(2α′ − 1) + 1 − λ −(β′ + 1)
0 −2α′ + 1 (α′ − 1)(2β′ + 3) + 1 − λ

∣∣∣∣∣∣∣

with α′ = α− p, β′ = β − p. It results that

∆p = (λ′1 − λ)(λ′2 − λ)(λ′3 − λ)
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with

λ′1 = (α′ − 1)(2β′ + 1) = λ1 − p(2α+ 2β − 2p− 1)

λ′2 = α′(2β′ + 3) = λ2 − p(2α + 2β − 2p + 3)

λ′3 = (2α′ − 1)(β′ + 1) = λ3 − p(2α+ 2β − 2p+ 1).

It is then easy to see (using the fact that 1 ≤ p ≤ min{α− 1, β}) that the only case when
∆p(λj) = 0 is when p = 1 and λ′2 = λ1 :

λ′2 − λ1 = (1 − p)(2α + 2β − 2p + 1).

The case p = 1, λ = λ1 = (α− 1)(2β + 1) leads to

−2(α− 1)a1 − (2β − 1)b1 = 2β(α − 1)

−(α− 1)a1 − (α+ β − 2)b1 − βc1 = 2β(α − 1)

−(2α− 3)b1 − 2βc1 = 2β(α − 1)

where the compatibility condition is satisfied, hence giving a one parameter family of
eigenvectors.

Finally, it remains to study the cases when the limiting equations cannot be solved,
i.e. the two cases

i) when α ≤ β, λ = 0 (i.e. α = 0, or 1), p = α; the case α = 0, p = 0, λ = 0 gives a
known eigenvector, while α = p = 1, λ = 0 gives a0 = b0 = c0 = 1 and the equation for a1

gives 0.a1 = −2(a0 − b0) = 0, hence the compatibility condition is satisfied.
ii) When β ≤ α− 2, λ = α− β − 1, p = β + 1. The only possibility is λ1 = α− β − 1

which happens if β = 0. Then p = 1, and we need to solve c1 = c1 − 2(c0 − b0) where
a0 = b0 = c0 = 1. Hence the compatibility condition is satisfied. This ends the study in
the first invariant subspace.

In conclusion, all the eigenvalues of A
L∗AL

in E ′
α,β,γ and thus in H′

k are non negative
integers.

Step 4. Spectrum of A
L∗ A

L
in H′′

k. We also split H′′
k into subspaces invariant by

A
L∗AL

.

Step 4.1. Splitting of H′′
k . For α+ β + 2γ + 1 = k, let us denote E ′′

α,β,γ the subspace
of H′′

k gathering the polynomials Φ of the form

φ1 =
∑

p

apψα−p,β−p,γ+p

φ2 =
∑

p

bpφα−p,β−p+1,γ+p

φ3 =
∑

p

cpψα−p−1,β−p+1,γ+p

where

for α ≤ β, 0 ≤ p ≤ α, cα = 0

for β ≤ α− 1, 0 ≤ p ≤ β + 1, aβ+1 = 0, and cβ+1 = 0 if α = β + 1.
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The following identities

Dφ1 − φ2 =
∑

{(2α − 2p + 1)ap − bp}φα−p,β−p+1,γ+p

−2(α− p)apφα−p−1,β−p,γ+p+1

Dφ2 − φ3 =
∑

{(α − p)bp − cp}ψα−p−1,β−p+1,γ+p

D∗(Dφ1 − φ2) =
∑

(β − p+ 1){(2α − 2p + 1)ap − bp}ψα−p,β−p,γ+p +

−2(α− p)(β − p)apψα−p−1,β−p−1,γ+p+1

D∗(Dφ2 − φ3) =
∑

(2β − 2p + 3){(α − p)bp − cp}φα−p,β−p+1,γ+p +

−2(β − p+ 1){(α − p)bp − cp}φα−p−1,β−p,γ+p+1

D∗Dφ3 =
∑

(2α − 2p− 1)(β − p+ 2)cpψα−p−1,β−p+1,γ+p +

−2(α− p− 1)(β − p+ 1)cpψα−p−2,β−p,γ+p+1

ensure that subspace E ′′
α,β,γ is invariant under A

L∗AL
.

Moreover, the two dimensional subspace P ′′
k = span{Φ′′

k,Ψ
′′
k} where Φ′′

k = (0, φk,0,0, 0)
and Ψ′′

k = (0, 0, φk−1,0,0) is stable by A
L∗AL

since

A
L∗AL

Φ′′
k = (k + 1)Φ′′

k − kΨ′′
k, and A

L∗AL
Φ′′

k = −Φ′′
k + 2kΨ′′

k.

Then, since Φ = (ψα,β,γ , 0, 0), Φ = (0, φα,β+1,γ , 0), Φ = (0, φα−1,β,γ+1, 0), Φ = (0, 0, ψα−1,β+1,γ)
and Φ = (0, 0, ψα−2,β,γ+1) belong to E ′′

α,β,γ respectively for α ≥ 0 , α ≥ 0, α ≥ 1 , α ≥ 1
and α ≥ 2, we have the splitting of H′′

k into the non direct sum

H′′
k = P ′′

k +
∑

α+β+2γ=k

E ′′
α,β,γ with P ′′

k = span{Φ′′
k,Ψ

′′
k}.

Hence, the spectrum spec(A
L∗AL

|
Hk

) of the operator A
L∗AL

in Hk is given by the union
with possibly many overlaps

spec(A
L∗AL

|
Hk

) = spec(A
L∗AL

|
P′′

k

) ∪
⋃

α+β+2γ=k

spec(A
L∗AL

|
E′
α,β,γ

).

Step 4.2. Spectrum of A
L∗ A

L
in P ′′

k . In the basis {Φ′′
k,Ψ

′′
k} the matrix of A

L∗AL
|
P′′

k

reads (
k + 1 −k
−1 2k

)
.

Hence, the spectrum of A
L∗AL

in P ′′
k is given by

spec(A
L∗AL

|
P′′

k

) = {2k + 1, k}.

Step 4.3. Spectrum of A
L∗ A

L
in E ′′

α,β,γ. The spectral equation A
L∗AL

Φ = λΦ, for
Φ ∈ E ′′

α,β,γ can be written as a hierarchy of systems of equation (38)p where for p = 0 we
have

(β + 1){(2α + 1)a0 − b0} = λa0

(2β + 3)(αb0 − c0) + b0 − (2α + 1)a0 = λb0,
(2α− 1)(β + 2)c0 + c0 − αb0 = λc0,

(38)0
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for 1 ≤ p ≤ min{α, β + 1}

λap = (β − p+ 1){(2α − 2p+ 1)ap − bp} − 2(α− p+ 1)(β − p+ 1)ap−1,

λbp = (2β − 2p+ 3){(α − p)bp − cp} − (2α− 2p+ 1)ap + bp+
−2(β − p+ 2){(α − p+ 1)bp−1 − cp−1} + 2(α− p+ 1)ap−1,

λcp = (2α − 2p− 1)(β − p+ 2)cp − (α− p)bp + cp+
−2(α − p)(β − p+ 2)cp−1.

(38)p

In particular, when α ≤ β the last system of the hierarchy is reached for p = α (cα = 0)
and it reads

λaα = (β − α+ 1)(aα − bα) − 2(β − α+ 1)aα−1,
λbα = −aα + bα − 2(β − α+ 2)(bα−1 − cα−1) + 2aα−1,
0 = 0.

This last system enables to compute aα, bα if λ 6= 0 and λ 6= β − α+ 2.

When β ≤ α− 1, the last system of the hierarchy is reached for p = β + 1 ( aβ+1 = 0
and cβ+1 = 0 if β = α− 1) and it reads

0 = 0,
λbβ+1 = (α− β)bβ+1 − cβ+1 + 2{(α − β)(aβ − bβ) + cβ},
λcβ+1 = (α− β − 1){2cβ+1 − bβ+1 − 2cβ}.

This last system enables to compute bα, cα if λ 6= 1, when β = α− 1 and if λ 6= α− β − 1
and λ 6= 2α− 2β − 1 when β ≤ α− 2.

The system for p = 0 gives the eigenvalues λ1, λ2, λ3 where

λ1 = α(2β + 3) a0 = β + 1, b0 = β − α+ 1, c0 = −α,
λ2 = (β + 1)(2α − 1) a0 = 1, b0 = 2, c0 = 1,
λ3 = (β + 2)(2α + 1) a0 = (β + 1)(2β + 3), b0 = −(2α+ 1)(2β + 3), c0 = α(2α + 1).

Notice that λ1 = 0 for α = 0, which corresponds to a already known eigenvector in the
kernel of A

L
. The coefficients ap, bp, cp can be computed by induction provided that for

λ = λ1 or λ2 or λ3 the determinant

∆p(λ) = (λ′1 − λ)(λ′2 − λ)(λ′3 − λ)

does not cancel, where

λ′1 = λ1 − p(2α+ 2β − 2p+ 3),

λ′2 = λ2 − p(2α+ 2β − 2p+ 1),

λ′3 = λ3 − p(2α+ 2β − 2p+ 5).

Using the fact that 1 ≤ p ≤ min{α, β + 1}, we can see that the only problem comes when
λ′3 = λ2 :

λ′3 − λ2 = (1 − p)(2α+ 2β + 3 − 2p)

which occurs when p = 1. This case p = 1, λ = (β + 1)(2α − 1) gives the system

0 = −(2α − 1)a1 − βb1 − 2αβa0

0 = −(2α − 1)a1 + (1 − α− β)b1 − (2β + 1)c1 − 2(β + 1)(αb0 − c0) + 2αa0

0 = (1 − α)b1 − (2β + 1)c1 − 2(α− 1)(β + 1)c0
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where the compatibility condition is satisfied with the values we found for a0, b0, c0 (a0 −
b0 + c0 = 0).

Finally, it then remains to study the last equation of the hierarchy:

i) when α ≤ β, p = α, λ = 0 (i.e. α = p = 0 leading to the know eigenvector in the
kernel) or λ = β − α + 2, i.e. λ = λ2, α = 1 = p where the compatibility condition is
satisfied due to a0 − b0 + c0 = 0.

ii) When β ≤ α−1, p = β+1. Then for β = α−1, λ2 = 1 (the bad case) for α = 1 and
this is again the case seen above. For β ≤ α − 2, the bad cases are when λj = α − β − 1
or 2α − 2β − 1, i.e. λ2 = 2α − 2β − 1 for β = 0. We are again in the case p = 1 (notice
that a1 = 0) :

0 = (1 − α)b1 − c1 − 2(αb0 − c0) + 2αa0

0 = (1 − α)b1 − c1 − 2(α− 1)c0

which is admits solutions since a0 − b0 + c0 = 0.

In conclusion, all the eigenvalues of A
L∗AL

in E ′′
α,β,γ and thus in H′′

k are non negative
integers. Gathering the results of step 3 and 4 we finally conclude that for every k ≥ 2 all
non zero eigenvalues of A

L∗AL
in Hk are positive integers. Hence, for every k ≥ 2,

ak := ‖|Ã
L
|−1
Hk

‖|
2
≤ 1.

Lemma 2.22 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 02iω|
RorC

)

For L = 02iω|
RorC

and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ min{1, ω2} and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, ω−1}.

Proof. Since the real Jordan matrix 02iω|
R

is conjugated to the complex Jordan matrix
02iω|

C
via the unitary map 



1 0 0 0
0 1 0 0
0 0 1

√

2

1
√

2

0 0 i
√

2

−i
√

2


,

Remark 2.4 ensures that ak(0
2iω|

C
) = ak(0

2iω|
R
) for every k ≥ 2. Thus, we make only

the proof for L = 02iω|
C
. Here again, we intend to give a lower bound of the non zero

eigenvalues of A
L∗AL

in Hk. We proceed in several steps.

Step 1. Splitting of the homological operators. We are in dimension 4, with
X = (A,B,C, C̃) and

L =




0 1 0 0
0 0 0 0
0 0 iω 0
0 0 0 −iω


 .
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In this case we have Φ = (φA, φB , φC , φC̃
) and

A
L
Φ =




B
∂φA

∂A
+ iωC

∂φA

∂C
− iωC̃

∂φA

∂C̃
− φB

B
∂φB

∂A
+ iωC

∂φB

∂C
− iωC̃

∂φB

∂C̃

B
∂φC

∂A
+ iωC

∂φC

∂C
− iωC̃

∂φC

∂C̃
− iωφC

B
∂φ

C̃

∂A
+ iωC

∂φ
C̃

∂C
− iωC̃

∂φ
C̃

∂C̃
+ iωφ

C̃




,

A
L∗

Ψ =




A
∂ψA

∂B
− iωC

∂ψA

∂C
+ iωC̃

∂ψA

∂C̃

A
∂ψB

∂B
− iωC

∂ψB

∂C
+ iωC̃

∂ψB

∂C̃
− ψA

A
∂ψC

∂B
− iωC

∂ψC

∂C
+ iωC̃

∂ψC

∂C̃
+ iωψC

A
∂ψ

C̃

∂B
− iωC

∂ψ
C̃

∂C
+ iωC̃

∂ψ
C̃

∂C̃
− iωψ

C̃




,

kerA
L

=





(Bβ(CC̃)γ , 0, 0, 0), β + 2γ = k,

(ABβ(CC̃)γ , Bβ+1(CC̃)γ , 0, 0), β + 1 + 2γ = k,

(0, 0, BβC(CC̃)γ , BβC̃(CC̃)γ), β + 1 + 2γ = k.

Let us introduce some notations which simplify the writing of A
L∗AL

:

LΦ =





AB
∂2φA

∂A∂B
+A

∂φA

∂A
−A

∂φB

∂B

AB
∂2φB

∂A∂B
+A

∂φB

∂A
−B

∂φA

∂A
+ φB

AB
∂2φC

∂A∂B
+A

∂φC

∂A

AB
∂2φ

C̃

∂A∂B
+A

∂φ
C̃

∂A

S = A

{
C

∂2

∂B∂C
− C̃

∂2

∂B∂C̃

}
−B

{
C

∂2

∂A∂C
− C̃

∂2

∂A∂C̃

}

P = C2 ∂2

∂C2
+ C̃2 ∂2

∂C̃2
+ C

∂

∂C
+ C̃

∂

∂C̃
− 2CC̃

∂2

∂C∂C̃

then we can write A
L∗AL

as

A
L∗AL

Φ = LΦ + iωSΦ + ω2PΦ + iω

{
C
∂

∂C
− C̃

∂

∂C̃

}



φB

−φA

2iωφC

−2iωφ
C̃




+

{
B
∂

∂A
−A

∂

∂B

}



0
0

iωφC

−iωφ
C̃


+




0
0

ω2φC

ω2φ
C̃


 .

Step 2. Splitting of Hk. We observe that the subspace Eη of linear combinations of
monomials AαBβCγC̃δ where the powers of C and C̃ satisfy η := γ − δ fixed is invariant
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under A
L
|Hk

and A
L∗ |Hk

. In Eη, we have

SΦ = η

{
A
∂

∂B
−B

∂

∂A

}
Φ

PΦ = η2Φ.

and

A
L∗AL

Φ = LΦ + iω

{
A
∂

∂B
−B

∂

∂A

}



η φA

η φB

(η − 1)φC

(η + 1)φ
C̃


+

+iω(γ − δ)




φB

−φA

0
0


+ ω2




η2 φA

η2 φB

(η − 1)2φC

(η + 1)2φ
C̃


 .

Moreover the three subspaces

H
AB

= {Φ ∈ Hk/Φ = (φA, φB , 0, 0)},
H

C
= {Φ ∈ Hk/Φ = (0, 0, φC , 0)},

H
C̃

= {Φ ∈ Hk/Φ = (0, 0, 0, φ
C̃

)},

are also invariant under A
L
|
Hk

and A
L∗ |Hk

and

Hk =
⊕

−k≤η≤k

(Eη ∩H
AB

) ⊕ (Eη ∩H
C
) ⊕

(
Eη ∩H

C̃

)
.

Hence, the spectrum of A
L∗AL

in Hk is the union of its spectrum in each subspaces of the
direct sum.

Step 3. Spectrum of A
L∗ A

L
in Eη ∩ H

AB
. For computing the spectrum of A

L∗AL
in

H
AB

∩Eη, we identify the operators L|
HAB

and A
L∗AL

|
HAB

with their restriction L
AB

and
(A

L∗AL
)

AB
to the two first components. With this identification the spectral equation

A
L∗AL

Φ = λΦ (39)

in H
AB

∩ Eη reads

L
AB

Φ + iωηBΦ = (λ− ω2η2)Φ (40)

where

BΦ =

{
A
∂

∂B
−B

∂

∂A

}(
φA

φB

)
+

(
φB

−φA

)
.

Step 3.1. Spectrum of A
L∗ A

L
in E0 ∩ H

AB
. Observing that for η = 0 the spectral

equation (39) reads L
AB

Φ = λΦ and that L
AB

is the same operator as the one involved in
the 02 singularity studied in Lemma 2.20 (see (36)), we get that all eigenvalues of A

L∗AL

in E0 ∩H
AB

are positive integers and thus

inf
λ∈spec(A

L∗AL
|
E0∩H

AB
)

λ6=0

{λ} ≥ 1.
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Step 3.2. Spectrum of A
L∗ A

L
in Eη ∩ H

AB
for η 6= 0. In this case, observing that

L
AB

is a positive self adjoint operator and that for any Φ = (φA, φB) we have 〈BΦ,Φ〉 = 0,
it then results from (40) that

λ ≥ ω2η2 ≥ ω2.

since η = γ − δ 6= 0 is an integer. Hence, for every η,

inf
λ∈spec(A

L∗AL
|
Eη∩H

AB
)

λ6=0

{λ} ≥ min{ω2, 1}.

Step 4. Spectrum of A
L∗ A

L
in Eη ∩ H

C
. In H

C
∩ Eη, the spectral equation (39)

reads

iω

{
A
∂

∂B
−B

∂

∂A

}
(η − 1)ΦC +AB

∂2φC

∂A∂B
+A

∂φC

∂A
= (λ− (η − 1)2)φC . (41)

Step 4.1. Spectrum of A
L∗ A

L
in E1 ∩ H

C
. In H

C
∩ E1, the spectral equation (39)

reduces to

AB
∂2φC

∂A∂B
+A

∂φC

∂A
= λφC

which gives λ = α(β + 1) , with α + β + 2γ − 1 = k, with eigenvectors belonging to the
canonical basis. This leads again to

inf
λ∈spec(A

L∗AL
|
E1∩H

C
)

λ6=0

{λ} ≥ 1.

Step 4.1. Spectrum of A
L∗ A

L
in Eη ∩ H

C
with η 6= 1. For η − 1 6= 0, we observe

again that
{
A ∂

∂B
−B ∂

∂A

}
φC is orthogonal to φC and that ΦC 7→ AB ∂2φC

∂A∂B
+A∂φC

∂A
= λφC

is self adjoint and positive. Hence, we deduce from (41) that

λ ≥ ω2(η − 1)2 ≥ ω2

since η = γ − δ 6= 1 is an integer. Hence, for every η,

inf
λ∈spec(A

L∗AL
|
Eη∩H

C
)

λ6=0

{λ} ≥ min{ω2, 1}.

Proceeding similarly, we get the same result for H
C̃
. Collecting all the results, this shows

that for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ min{1, ω2} and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, ω−1}.

�
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Lemma 2.23 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 02.iω1. · · · .iωq|Ror C
)

(a) For L = 02.iω1. · · · .iωq|Ror C
where ω := (ω1, · · · , ωq,−ω1, · · · ,−ωq) ∈ R

2q

is γ, τ -homologically diophantine, we have for every k ≥ 2, min
λ∈Σk(L)\{0}

{λ} ≥

min{1, γ2

k2τ } and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, γ−1kτ} ≤ akτ

where a = max{2−τ , γ−1}.
(b) If ω is γ,K-homologically nonresonant, then there exist a′ > 0 such that for every

k ≥ 2,
ak(L) := ‖|Ã

L
|−1
Hk

‖|
2
≤ a′.

Proof. As for L = 02iω|
RorC

, since the real Jordan matrix L = 02.iω1. · · · .iωq|R is con-
jugated to the complex Jordan matrix L = 02.iω1. · · · .iωq|C via a unitary map, Remark
2.4 ensures that ak(0

2.iω1. · · · .iωq|R) = ak(0
2.iω1. · · · .iωq|C) for every k ≥ 2. Thus, we

make only the proof for L = 02.iω1. · · · .iωq|C . Here again, we intend to give a lower
bound of the non zero eigenvalues of A

L∗AL
in Hk. We make the proof only when ω is

γ, τ -homologically diophantine. When ω is γ,K-homologically nonresonant, the proof is
very similar and the details are left to the reader.

So, we are in dimension 2q + 2, with X = (A,B,C1, ...Cq, C̃1, ...C̃q) and

L =




0 1 0 0 . . 0
0 0 0 0 . .
0 0 iω1 0 . .
0 0 0 iω2 0 .
. 0 . 0 0
. 0 −iωq−1 0
0 . . . 0 0 −iωq




.

The homological operator A
L

reads

A
L
Φ =




B
∂φA

∂A
− φB +

∑
iωj(Cj

∂φA

∂Cj

− C̃j

∂φA

∂C̃j

)

B
∂φB

∂A
+
∑
iωj(Cj

∂φB

∂Cj

− C̃j

∂φB

∂C̃j

)

B
∂φC1

∂A
+
∑
iωj(Cj

∂φC1

∂Cj

− C̃j

∂φ
C1

∂C̃j

) − iω1φC1

...

B
∂φ

C̃q

∂A
+
∑
iωj(Cj

∂φ
C̃q

∂Cj

− C̃j

∂φ
C̃q

∂C̃j

) + iωqφC̃q



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Let us introduce notations which simplify the writing of A
L∗AL

. We define operators L,
S, Q by

LΦ =




AB
∂2φA

∂A∂B
+A

∂φA

∂A
−A

∂φB

∂B

AB
∂2φB

∂A∂B
+A

∂φB

∂A
−B

∂φA

∂A
+ φB

AB
∂2φC1

∂A∂B
+A

∂φC1

∂A
...

AB
∂2φ

C̃q

∂A∂B
+A

∂φ
C̃q

∂A




S =
∑

1≤j≤n

ωj(Cj
∂

∂Cj
− C̃j

∂

∂C̃j

), Q = A
∂

∂B
−B

∂

∂A

then we have

A
L∗
A

L
Φ = LΦ + iQSΦ + S2Φ −Q




0
0

iω1φC1

...
−iωqφC̃q




+ iS




φB

−φA

2iω1φC1

...
−2iωqφC̃q




+




0
0

ω2
1φC1

...
ω2

qφC̃q



.

The kernel of A
L
, which is also the kernel of A

L∗AL
is formed by the following vectors

(Bβ(C1C̃1)
γ1 · · · (CqC̃q)

γq , 0, 0, · · · , 0)
(ABβ(C1C̃1)

γ1 · · · (CqC̃q)
γq , Bβ+1(C1C̃1)

γ1 · · · (CqC̃q)
γq , 0, · · · , 0)

(0, 0, BβC1(C1C̃1)
γ1 · · · (CqC̃q)

γq , 0, · · · , BβC̃1(C1C̃1)
γ1 · · · (CqC̃q)

γq , 0, · · · , 0)
...

(0, 0, · · · , 0, BβCq(C1C̃1)
γ1 · · · (CqC̃q)

γq , 0, · · · , 0, BβC̃q(C1C̃1)
γ1 , · · · , (CqC̃q)

γq).

Let us proceed as for L = 02iω|
C
, and observe that here again, the subspaces

H
AB

= {Φ ∈ Hk/Φ = (φA, φB , 0, · · · , 0)},
H

Cj
= {Φ ∈ Hk/Φ = (0, 0, · · · , 0, φCj

, 0, · · · , 0)},
H

C̃j

= {Φ ∈ Hk/Φ = (0, 0, · · · , 0, φ
C̃j
, 0, · · · , 0)},

are invariant under A
L
|Hk

and A
L∗ |Hk

, and that Hk = H
AB

⊕
1≤j≤q

H
Cj

⊕
1≤j≤q

H
C̃j

.

For computing the spectrum of A
L∗AL

in H
AB

, denote by L
AB

the restriction of L to

the two first components. We observe that Q

(
φA

φB

)
and

(
φB

−φA

)
are orthogonal to

(
φA

φB

)
.

Hence the method used for L = 02iω|
C

applies and shows, using the reduced operator
L

AB
+ S2 that the eigenvalues of A

L∗AL
in H

AB
satisfy

min
λ∈spec(A

L∗AL
|
H

AB
)

λ6=0

{λ} ≥ min∑
1≤j≤q

γj+δj≤k

{
1,
(∑

(γj − δj)ωj

)2
}
≥ min{1, γ

2

k2ν
}.

Now in H
Cj

, the spectral equation A
L∗AL

Φ = λΦ reads

AB
∂2φCj

∂A∂B
+A

∂φCj

∂A
+ iQ(S − ωj)φCj

+ (S − ωj)
2φCj

= λφCj
.
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Looking at the eigenvalues of the selfadjoint operator AB ∂2

∂A∂B
+ A ∂

∂A
+ (S − ωj)

2, and
applying the same method as for L = 02iω, we find in this subspace

min
λ∈spec(A

L∗AL
|
H

Cj

)

λ6=0

{λ} ≥ min∑
1≤j≤q

γj+δj≤k





1,


 ∑

1≤ℓ≤q

(γℓ − δℓ)ωℓ ± ωj




2




≥ min{1, γ
2

k2ν
}.

The same inequalities holds in H
C̃j

. Collecting all the results, this shows that for every

k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ min{1, γ2

k2τ } and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, γ−1kτ}.

�

Lemma 2.24 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = (iω)2|
RorC

)

For L = (iω)2|
RorC

and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ min{1, ω2} and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, ω−1}.

Proof. As for the (iω)2|
Ror C

singularity, since the real Jordan matrix L = (iω)2|
R

is
conjugated to the complex Jordan matrix L = (iω)2|

C
via a unitary map, Remark 2.4

ensures that ak((iω)2|
R
) = ak((iω)2|

C
) for every k ≥ 2. Thus, we make only the proof

for L = (iω)2|
C
. Here again, we intend to give a lower bound of the non zero eigenvalues

of A
L∗AL

in Hk. So we are in dimension 4, with X = (A,B, Ã, B̃), Φ = (φA, φB , φÃ
, φ

B̃
)

and

L =




iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω


 .

Step 1. Splitting of the homological operators. Denoting ΦAB = (φA, φB) and
Φ

ÃB̃
= (φ

Ã
, φ

B̃
), the homological operators read

A
L
Φ =




iω(S − I)ΦAB + BΦAB −
(
φB

0

)

−iω(S − I)Φ
ÃB̃

+ BΦ
ÃB̃

−
(
φ

B̃

0

)



,

A
L∗Ψ =




−iω(S − I)ΨAB + B∗ΨAB −
(

0
ψA

)

iω(S − I)Ψ
ÃB̃

+ B∗Ψ
ÃB̃

−
(

0
ψ

Ã

)




where

S = A
∂

∂A
− Ã

∂

∂Ã
+B

∂

∂B
− B̃

∂

∂B̃
,

B = B
∂

∂A
+ B̃

∂

∂Ã
,

B∗ = A
∂

∂B
+ Ã

∂

∂B̃
.
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Step 2. Splitting of Hk. Observe that the two supplementary subspaces

H
AB

= {Φ ∈ Hk/Φ = (φA, φB , 0, 0)}, H
ÃB̃

= {Φ ∈ Hk/Φ = (0, 0, φ
Ã
, φ

B̃
)},

are both invariant by A
L

and A
L∗ . Hence the spectrum of A

L∗AL
in Hk is the union of

its spectrum in each subspaces. So we begin with the computation of the spectrum of
A

L
A

L∗ in H
AB

. The computation in H
ÃB̃

is totally similar since A
L
A

L∗ |H
ÃB̃

is equal to

A
L
A

L∗ |H
AB

up to the change of the sign of ω.

Step 3. Spectrum of A
L∗ A

L
in H

AB
. For computing the spectrum of A

L∗AL
in H

AB
,

we identify Φ and the operator A
L∗AL

|
HAB

with their restrictions ΦAB and (A
L∗AL

)
AB

to the two first components. With this identification A
L∗AL

|
H

AB
reads

A
L
A

L∗ |H
AB

Φ = ω2(S − I)2Φ + B∗BΦ + iω{B∗(S − I) − (S − I)B}Φ +

+iω(S − I)

(
φB

−φA

)
−
(

B∗φB

BφA

)
+

(
0
φB

)
.

Due to the selfadjointness of S, we observe that {B∗(S−I)−(S−I)B}Φ and (S−I)
(
φB

−φA

)

are orthogonal to Φ. Then, the minmax principle ensures that

spec(A
L∗AL|H

AB
) = spec(T ) (42)

where T : H
AB

→ H
AB

is the selfadjoint reduced operator

T Φ = ω2(S − I)2Φ + B∗BΦ −
(

B∗φB

BφA

)
+

(
0
φB

)
. (43)

Moreover the kernel of A
L

and A
L∗AL

in H
AB

is formed with the vectors

(B(BB̃)β(AB̃ −BÃ)γ , 0)

(A(BB̃)β(AB̃ −BÃ)γ , B(BB̃)β(AB̃ −BÃ)γ)

where we notice that all eigenvectors satisfy (S − I)Φ = 0, and (S − I)BΦ = 0, and thus
belong to the kernel of T .

Step 4. Spectrum of T . The problem is then reduced to the computation of the minimum
of nonzero eigenvalues of T in H

AB
.

Step 4.1 Splitting of H
AB

. To compute the spectrum of T , we use the non canonical
basis of monomials given by

φα,β1,β2,γ = AαBβ1B̃β2(AB̃ −BÃ)γ ,

ψα1,α2,β,γ = Aα1Ãα2B̃β(AB̃ −BÃ)γ ,

ψα,0,β,γ ≡ φα,0,β,γ .
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Using the following properties for the derivation operators S,B,B∗

S(AB̃ −BÃ) = 0,

B(AB̃ −BÃ) = 0, B(B) = 0,

B∗(AB̃ −BÃ) = 0, B∗(A) = 0,

S(B) = B, S(A) = A,

S(B̃) = −B̃, S(Ã) = −Ã,
B(A) = B, B(Ã) = B̃,

B∗(B) = A, B∗(B̃) = Ã,

we obtain

ω2(S − I)2φα,β1,β2,γ = ω2(α+ β1 − β2 − 1)2φα,β1,β2,γ ,

ω2(S − I)2ψα1,α2,β,γ = ω2(α1 − α2 − β − 1)2ψα1,α2,β,γ,

Bφα,β1,β2,γ = αφα−1,β1+1,β2,γ ,

Bψα1,α2,β,γ = (α1 + α2)ψα1,α2−1,β+1,γ − α1ψα1−1,α2−1,β,γ+1,

B∗φα,β1,β2,γ = (β1 + β2)φα+1,β1−1,β2,γ − β2φα,β1−1,β2−1,γ+1,

B∗ψα1,α2,β,γ = βψα1,α2+1,β−1,γ ,

B∗Bφα,β1,β2,γ = α(β1 + β2 + 1)φα,β1,β2,γ − αβ2φα−1,β1,β2−1,γ+1,

B∗Bψα1,α2,β,γ = (α1 + α2)(β + 1)ψα1,α2,β,γ − α1βψα1−1,α2,β−1,γ+1.

Let introduce the two supplementary subspaces

H′
AB

=
{
(Φ = (φA, φB)/ΦA ∈ span

α+β1+β2+2γ=k

{φα,β1,β2,γ}, ΦB ∈ span
α+β1+β2+2γ=k

β1≥1

{φα,β1,β2,γ}
}

H′′
AB

=
{
(Φ = (φA, φB)/ΦA ∈ span

α+β1+β2+2γ=k
α2≥1

{ψα1,α2,β,γ}, ΦB ∈ span
α1+α2+β+γ=k

{ψα1,α2,β,γ}
}

and observe that H′
AB

and H′′
AB

are both invariant under T . Hence, the spectrum of the
operator T in H

AB
is the union of its spectrum when restricted to H′

AB
and to H′′

AB
.

Step 4.2. Spectrum of T in H′
AB

. We also split H′
AB

into subspaces invariant by T .

Step 4.2.1. Splitting of H′
AB

. First observe that for α+β1 +β2+2γ = k, the subspace
E ′

α,β1,β2,γ of H′
AB

gathering the polynomials Φ of the form

φA =
∑

p

apφα−p,β1,β2−p,γ+p (44)

φB =
∑

p

bpφα−p−1,β1+1,β2−p,γ+p

where
for β2 ≤ α− 1, 0 ≤ p ≤ β2,
for α ≤ β2 0 ≤ p ≤ α, with bα = 0.

is invariant under the operator T . Indeed we have

BφA − φB =
∑

p

{(α− p)ap − bp}φα−p−1,β1+1,β2−p,γ+p,
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B∗(BφA − φB) =
∑

p

{(α− p)ap − bp}(β1 + β2 − p+ 1)φα−p,β1,β2−p,γ+p +

−
∑

p

{(α− p)ap − bp}(β2 − p)φα−p−1,β1,β2−p−1,γ+p+1,

B∗BφB =
∑

p

(α− p− 1)(β1 + β2 − p+ 2)bpφα−p−1,β1+1,β2−p,γ+p +

−
∑

p

(α− p− 1)(β2 − p)bpφα−p−2,β1+1,β2−p−1,γ+p+1,

where we observe that the last terms of the second sums cancel (for p = β2, or for p = α,
and bα = 0). Then, since Φ = (φα,β1,β2,γ , 0), Φ = (0, φα−1,β1+1,β2,γ), belong to E ′

α,β1,β2,γ

respectively for α ≥ 0 and α ≥ 1 we have the splitting of H′
AB

into the non direct sum

H′
AB

=
∑

α+β1+β2+2γ=k

E ′
α,β1,β2,γ .

Hence, the spectrum spec(T |
H′

AB

) of the operator T in H′
AB

is given by the union with

possibly many overlaps

spec(T |
H′

AB

) =
⋃

α+β1+β2+2γ=k

spec(T|
E′
α,β1,β2,γ

).

Step 4.2.2 Spectrum of T in E ′
α,β1,β2,γ. Denoting

λ′ = λ− ω2(α+ β1 − β2 − 1)2,

the spectral equation T Φ = λΦ, for φ ∈ E ′
α,β1,β2,γ can be written as a hierarchy of systems

of equations (45)p where for p = 0 we have

−λ′a0 + (αa0 − b0)(β1 + β2 + 1) = 0
−λ′b0 + b0 − αa0 + (α− 1)(β1 + β2 + 2)b0 = 0

(45)0

and for 1 ≤ p ≤ min{α, β2}

−λ′ap + {(α− p)ap − bp}(β1 + β2 − p+ 1)
−{(α− p+ 1)ap−1 − bp−1}(β2 − p+ 1) = 0,

−λ′bp + bp − (α− p)ap + (α− p− 1)(β1 + β2 − p+ 2)bp
−(α− p)(β2 − p+ 1)bp−1 = 0.

(45)p

In the case β2 ≤ α− 1,the last system is obtained for p = β2 and it reads

−λ′aβ2 + {(α − β2)aβ2 − bβ2}(β1 + 1) − {(α − β2 + 1)aβ2−1 − bβ2−1} = 0,

−λ′bβ2 + bβ2 − (α− β2)aβ2 + (α− β2 − 1)(β1 + 2)bβ2 − (α− β2)bβ2−1 = 0,

whereas in the case α ≤ β2 the last system is obtained for p = α, imposing bα = 0 and it
reads

−λ′aα − (aα−1 − bα−1)(β2 − α+ 1) = 0

0 = 0.
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For |a0| + |b0| 6= 0, the system (45)0 gives two eigenvalues

λ′1 = (α− 1)(β1 + β2 + 1), a0 = b0 = 1,
λ′2 = α(β1 + β2 + 2), a0 = β1 + β2 + 1, b0 = −α.

Let us show that for α ≥ 2 ( which gives non zero eigenvalues λ′) one can solve the above
system in (ap, bp). The determinant of the system (45)p is given by

D′
p = {−λ′ + (α− p)(β1 + β2 − p+ 1)}{−λ′ + 1 + (α− p− 1)(β1 + β2 − p+ 2)} +

−(α− p)(β1 + β2 − p+ 1)

where

{−λ′ + α(β1 + β2 + 1)}{−λ′ + 1 + (α− 1)(β1 + β2 + 2)} − α(β1 + β2 + 1) = 0.

Hence

D′
p = p(β1 + β2 + α+ 1 − p){2λ′ − α(β1 + β2 + 1) +

−(α− 1)(β1 + β2 + 2) + p(β1 + β2 + α+ 1 − p)}.

The first factor (β1 + β2 + α + 1 − p) is > 0 in all cases. For λ′1 = (α − 1)(β1 + β2 + 1),
the second factor is

(p− 1)(β1 + β2 + α− p),

while for λ′2 = α(β1 + β2 + 2), the second factor is

β1 + β2 + α+ 2 + p(β1 + β2 + α+ 1 − p) > 0.

Finally, the determinant is different from 0 except for p = 1 when λ′ = λ′1 and when
α = β1 = β2 = p = 0. It then remains to study these cases and the case when λ′ = 0,
α ≤ β2 with α = 0, or 1 (for computing aα).

The case α = 0 corresponds to an eigenvector of the form (p = 0)

φA = φ0,β1,β2,γ

φB = 0.

Indeed this is an eigenvector of T belonging to λ = ω2(β1 − β2 − 1)2 i.e. λ′ = 0.
We can also check that the case α = 1 corresponds to an eigenvector of T of the form

φA = φ1,β1,β2,γ

φB = φ0,β1+1,β2,γ

belonging to the eigenvalue λ = ω2(β1 − β2)
2 i.e. λ′ = 0. The above system reduces to

a0 = b0 = 1 and the equation for a1 is then 0a1 = 0.
The system (45)p for p = 1 and λ′ = λ′1 reads

−(α− 1)a1 − (β1 + β2)b1 = β2(αa0 − b0)

−(α− 1)a1 − (β1 + β2)b1 = β2(α− 1)b0

which satisfies the compatibility condition, since a0 = b0. Hence we can indeed compute
all coefficients ap, bp. This means that the eigenvalue λ′1 is at least double, which does not
give any trouble here (selfadjoint operator).
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In conclusion, the above study allows to obtain all possible eigenvalues of T in H′
AB

.
Since we proved that the only possible values for λ′ are nonnegative integers, we get that

min
λ∈spec(T |

H′
AB

)

λ6=0

{λ} ≥ min{1, ω2}.

Step 4.3. Spectrum of T in H′′
AB

. We now proceed in the same way in the subspace
H′′

AB
and we also split H′′

AB
into subspaces invariant by T .

Step 4.2.2. Splitting of H′′
AB

. First observe that for α1+α2+β+2γ = k, the subspace
E ′′

α1,α2,β,γ of H′
AB

gathering the polynomials Φ of the form

ψA =
∑

p

apψα1−p,α2,β−p,γ+p (46)

ψB =
∑

p

bpψα1−p,α2−1,β−p+1,γ+p

with α2 ≥ 1 and where

for β ≤ α1 − 1, 0 ≤ p ≤ β + 1, with aβ+1 = 0
for α1 ≤ β 0 ≤ p ≤ α1,

is invariant under the operator T . Indeed we have

BψA − ψB =
∑

p

{(α1 + α2 − p)ap − bp}ψα1−p,α2−1,β−p+1,γ+p +

−
∑

p

(α1 − p)apψα1−p−1,α2−1,β−p,γ+p+1

B∗(BψA − ψB) =
∑

p

{(α1 + α2 − p)ap − bp}(β − p+ 1)ψα1−p,α2,β−p,γ+p +

−
∑

p

(α1 − p)(β − p)apψα1−p−1,α2,β−p−1,γ+p+1

B∗BψB =
∑

p

(α1 + α2 − p− 1)(β − p+ 2)bpψα1−p,α2−1,β−p+1,γ+p +

−
∑

p

(α1 − p)(β − p+ 1)bpψα1−p−1,α2−1,β−p,γ+p+1.

Moreover, Φ′′
α1,α2

= (0, ψα1,α2,0,0) is an eigenvector of A
L∗AL

belonging to the eigenvalue
λ = ω2(α1 − α2 − 1)2 + k + 1.

Then, since Φ = (ψα1,α2,β,γ, 0), Φ = (ψα1,α2−1,β+1,γ , 0), and Ψ = (φα1,α2−1,β,γ+1, 0)
belong to E ′

α,β1,β2,γ respectively for α1 ≥ 0,α1 ≥ 0 and α1 ≥ 1 we have the splitting of
H′

AB
into the non direct sum

H′
AB

=
∑

α+β1+β2+2γ=k

E ′′
α1,α2,β,γ + span

α1+α2=k
{Φ′′

α1,α2
}.

Hence, the spectrum spec(T |
H′

AB

) of the operator T in H′
AB

is given by the union with

possibly many overlaps

spec(T |
H′

AB

) =
⋃

α1+α2=k

{
ω2(α1 − α2 − 1)2 + k + 1

}
∪

⋃

α1+α2+β+2γ=k

spec(T |
E′′
α1,α2,β,γ

).
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Step 4.2.2 Spectrum of T in E ′′
α1,α2,β,γ.Denoting

λ′ = λ− ω2(α2 − α1 + β + 1)2,

the spectral equation T Φ = λΦ, for φ ∈ E ′′
α1,α2,β,γ can be written as a hierarchy of systems

of equations (45)p where for p = 0 we have

0 = −λ′a0 + {(α1 + α2)a0 − b0}(β + 1)
0 = −λ′b0 + b0 − (α1 + α2)a0 + (α1 + α2 − 1)(β + 2)b0

(47)0

and for 1 ≤ p ≤ min{α1, β + 1},

0 = −λ′ap + {(α1 + α2 − p)ap − bp}(β − p+ 1)
−(α1 − p+ 1)(β − p+ 1)ap−1

0 = −λ′bp + bp − (α1 + α2 − p)ap + (α1 + α2 − p− 1)(β − p+ 2)bp
+(α1 − p+ 1){ap−1 − (β − p+ 2)bp−1}

(47)p

In the case β ≤ α1 − 1, the last equation is obtain for p = β + 1 and it reads (using
aβ+1 = 0)

0 = −λ′aβ + {(α1 + α2 − β)aβ − bβ} − (α1 − β + 1)aβ−1

0 = −λ′bβ + bβ − (α1 + α2 − β)aβ + (α1 + α2 − β − 1)2bβ +

+(α1 − β + 1){aβ−1 − 2bβ−1},

which should be completed by (using aβ+1 = 0)

0 = 0

0 = −λ′bβ+1 + (α1 + α2 − β − 1)bβ+1 − (α1 − β)(bβ − aβ),

and the last equation (p = α1), obtained in the case α1 ≤ β is

0 = −λ′aα1 + {α2aα1 − bα1}(β − α1 + 1) − (β − α1 + 1)aα1−1

0 = −λ′bα1 + bα1 − α2aα1 + (α2 − 1)(β − α1 + 2)bα1 +

+aα1−1 − (β − α1 + 2)bα1−1.

If |a0| + |b0| 6= 0, the system ((47)0) gives two eigenvalues

λ′1 = (β + 1)(α1 + α2 − 1) ≥ 0

λ′2 = (β + 2)(α1 + α2) > 0

corresponding respectively to the two eigenvectors

a0 = b0 = 1,

a0 = β + 1, b0 = −(α1 + α2).

Notice that even in the case when λ′1 = 0, one has λ ≥ 4ω2. Let us show that we can now
determine the components ap, bp for p > 0. The determinant of the system ((47)p) is given
by

D′′
p = {−λ′ + (α1 + α2 − p)(β − p+ 1)}{−λ′ + 1 + (α1 + α2 − p− 1)(β − p+ 2)} +

−(β − p+ 1)(α1 + α2 − p)
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where

0 = {−λ′ + (α1 + α2)(β + 1)}{−λ′ + 1 + (α1 + α2 − 1)(β + 2)} − (β + 1)(α1 + α2).

Hence

D′′
p = p(β + α1 + α2 + 1 − p){2λ′ − (α1 + α2)(β + 1) +

−(α1 + α2 − 1)(β + 2) + p(β + α1 + α2 + 1 − p)}.

The first factor is positive for p ≤ β+1 ≤ α1, and for p ≤ α1 ≤ β. For λ′ = λ′1, the second
factor is

(p− 1)(α1 + α2 + β − p)

while for λ′2 the second factor is

β + α1 + α2 + 2 + p(β + α1 + α2 + 1 − p) > 0.

The determinants are then different from 0 except for p = 1, with λ′ = λ′1, and in the
special cases when α1 = α2 = β = p = 0. This last case was already seen since it
corresponds to the eigenvector.

φA = φ000γ , φB = 0.

The equation ((47)p) for p = 1 and λ′ = λ′1 leads to

−(α1 + α2 − 1)a1 − βb1 = α1βa0

−(α1 + α2 − 1)a1 − βb1 = −α1{a0 − (β + 1)b0}

where the compatibility condition is satisfied due to a0 = b0. This means that λ′1 is at
least a double eigenvalue and that we can compute all coefficients ap, bp.

In conclusion, the above study allows to obtain all possible eigenvalues of T in H′′
AB

.
Since we proved that the only possible values for λ′ are nonnegative integers, we get that

min
λ∈spec(T |

H′′
AB

,
)

λ6=0

{λ} ≥ min{1, ω2}.

Finally since H
AB

= H′
AB

⊕H′′
AB

we get that

min
λ∈spec(T |

H
AB

)

λ6=0

{λ} ≥ min{1, ω2}.

The same estimates holds in H
ÃB̃

. Hence we can conclude that min
λ∈Σk(L)\{0}

{λ} ≥ min{1, ω2}
and thus

ak(L) := ‖|Ã
L
|−1
Hk

‖|
2
≤ max{1, ω−1}.

�
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3 Exponential estimates for perturbed vector fields

Pour finir je donnerai ici les résultats pour le cas des champ de vecteurs avec paramètres.

A Properties of the normalized euclidian norm

A.1 Comparison of the euclidian and the sup norm

We begin with two technical lemmas which will be used several times

Lemma A.1 Let k,m be two positive integers and {uj}1≤j≤m
be m complex numbers. Then

(u1 + · · · + um)k

k!
=
∑

|α|=k

uα1
1

α1!
· · · u

αm
m

αm!

Proof. We proceed by induction. For m = 1 this is trivial and for m = 2 this is true
because of the binomial formula. Assume now that it is true for m ≥ 2, then

∑

|α|=k

uα1
1

α1!
· · · u

αm+1

m+1

αm+1!
=

k∑

αm+1=0

u
αm+1

m+1

αm+1!

∑

α1+···+αm=k−αm+1

uα1
1

α1!
· · · u

αm
m

αm!

=
k∑

αm+1=0

u
αm+1

m+1

αm+1!

(u1 + · · · + um)k−αm+1

(k − αm+1)!

=
(u1 + · · · + um+1)

k

k!
.

�

Lemma A.2 Let k,m be two positive integers and

E1
k,m = {β = (β1, · · · , βm) ∈ N

m, βj ≥ 1, |β| = k},
E0

k,m = {α = (α1, · · · , αm) ∈ N
m, αj ≥ 0, |α| = k}.

Then, the cardinals dj
k,m of Ej

k,m, j = 0, 1, are given by

d1
k,m = Cm−1

k−1 , d0
k,m = Cm−1

k+m−1.

where Cr
n =

n!

r!(n− r)!
.

Proof. The cardinal of d1
k,m is equal to the number of ways for placing (m− 1) distinct

separators among k − 1 possible locations, the order of the separators being meaningless.
For instance, the cardinal of d1

k,3, is equal to the number of ways for placing 2 distinct
separators among k − 1 possible locations, the order of the separators being meaningless.

k︷ ︸︸ ︷
[ · | · | ·︸ ︷︷ ︸

α1

| · | ·︸ ︷︷ ︸
α2

| · | · | · | · ]︸ ︷︷ ︸
α3

Hence, d1
k,3 = C2

k−1 and more generally, d1
k,m = Cm−1

k−1 .
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Finally, the map E0
k,m → E1

k+m,m : (α1, · · · , αm) 7→ (β1 := α1 + 1, · · · , βm := αm + 1)
is one to one. Hence

d0
k,m = d1

m+k = Cm−1
m+k−1.

�

Lemma A.3 For every Φ ∈ Hk, |Φ|
0,k

≤ |Φ|
2,k

= 1√
k!
|Φ|

2
.

Proof. For Φ ∈ Hk with Φ =
∑

1≤j≤m

|α|=n

Φj,αY
α1
1 · · ·Y αm

m cj where {cj}1≤j≤m is the canonical

basis of R
m we have

|Φ|
2,k

=
1√
k!

√√√√√
∑

1≤j≤m

|α|=k

|Φj,α|2α1!. · · · .αm!

and

‖Φ(Y )‖2

‖Y ‖2k
=

m∑

j=1

∣∣∣
∑

|α|=k

Φj,α
Y α1

1

‖Y ‖α1
· · · Y αm

m

‖Y ‖αm

∣∣∣
2

≤
m∑

j=1

( ∑

|α|=k

|Φj,α|2 α1! · · ·αm!
) ( ∑

|α|=k

Y 2α1
1

α1!‖Y ‖2α1
· · · Y 2αm

m

αm!‖Y ‖2αm

)

by the Cauchy Schwarz formula. Then using Lemma A.1 we get

∑

|α|=k

Y 2α1
1

α1!‖Y ‖2α1
· · · Y 2αm

m

αm!‖Y ‖2αm
=

1

k!

(
Y 2

1

‖Y ‖2
+ · · · + Y 2

m

‖Y ‖2

)k

=
1

k!
.

Hence,

|Φ|
0,k

= sup
Y ∈Ck\{0}

‖Φ(Y )‖
‖Y ‖k

≤
√√√√ 1

k!

m∑

j=1

( ∑

|α|=k

|Φj,α|2 α1! · · ·αm!
)

=
1√
k!

|Φ|
2

= |φ|
2,k
.

�

We now prove a Parseval like formula :

Lemma A.4 For every Φ ∈ Hk,

|Φ|2
2

=
1

(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm ‖Φ(

√
r1e

iθ1 , · · · ,√rmeiθm)‖2e−r1 · · · e−rm

Proof. We have

‖Φ(
√
r1e

iθ1 , · · · ,√rmeiθm)‖2 =
m∑

j=1

∑

|α|=k

|β|=k

Φj,αΦj,β r
α1+β1

2
1 · · · r

αm+βm
2

m eiθ1(α1−β1) · · · eiθm(αm−βm).
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Hence,

1

(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm‖Φ(

√
r1e

iθ1 , · · · ,√rmeiθm)‖2 e−r1 · · · e−rm

=
m∑

j=1

∑

|α|=k

|Φj,α|2
∫ +∞

0
dr1 · · ·

∫ +∞

0
drm rα1

1 · · · rαm
m e−r1 · · · e−rm

=
m∑

j=1

∑

|α|=k

|Φj,α|2α1! · · ·αm! = |Φ|2
2
.

�

Finally, we ready to prove the opposite comparison of the two norms in Hk.

Lemma A.5 For every Φ ∈ Hk, |Φ|
2,k

≤
√
Cm−1

k+m−1 |Φ|
0,k
.

Proof. Using the Lemmas A.1, A.4 we get

|Φ|2
2,k

≤ |Φ|2
0,k

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm

(r1 + · · · + rm)k

k!
e−r1 · · · e−rm ,

= |Φ|2
0,k

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm

∑

|α|=k

rα1
1

α1!
· · · r

αm
m

αm!
e−r1 · · · e−rm ,

= |Φ|2
0,k

∑

|α|=k

1,

= |Φ|2
0,k

Cm−1
m+k−1,

�

A.2 Multiplicativity of the normalized Euclidian Norm

To handle the computations, we need in this subsection more compact notations. For
Y = (Y1, · · · , Ym) ∈ C

m and α = (α1, · · · , αm) ∈ N
m let us denote

α! = α1! · · ·αm! and Y α = Y α1
1 · · ·Y αm

m .

With these notations, for Φ ∈ Hn with Φ(Y ) =
∑

|α|=n

ΦαY
α where Φα ∈ R

m, we have

|Φ|
2,n

=
1√
n!

√ ∑

|α|=n

‖Φα‖2 α!

We start with two technical lemmas which will be used several times.

Lemma A.6 For α ∈ N
m and n ∈ N let us denote

B
α
n =

n!

α!

Then for every positive integers q and {pℓ}1≤ℓ≤q and every γ ∈ N
m with |γ| = p1 + · · · + pq,

we have
B

γ
p1+···+pq

=
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

B
α(1)

p1
· · ·Bα(q)

pq
.
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Proof. Using Lemma A.1 we get that for every u = (u1, · · · , um) ∈ C
m,

(u1 + · · · + um)p1+···+pq =
∑

|γ|=p1+···+pq

B
γ
p1+···+pq

uγ ,

= (u1 + · · · + um)p1 · · · (u1 + · · · + um)pq ,

=
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

B
α(1)

p1
· · ·Bα(q)

pq
uα(1)+···+α(q)

.

Identifying the powers of u we get the desired result. �

Lemma A.7 Let k > 0, p ≥ 0 be two integers. Then for every γ ∈ N
m with |γ| = n with

n := k − 1 + p

(k2 + (m− 1)k) B
γ
n =

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

(αj)
2

B
α
k B

β
p .

where σj = (0, · · · , 0, 1, 0, · · · , 0) ∈ N
m with the coefficient 1 placed at the j-th position.

Proof. Observe that for every u = (u1, · · · , um) ∈ C
m,

(u1 + · · ·+um)p
m∑

j=1

(
uj

∂2

∂u2
j

+
∂

∂uj

)
(
(u1 + · · ·+um)k

)
= (k2 + (m− 1)k)(u1 + · · ·+um)n.

Hence, since

(
uj

∂2

∂u2
j

+ ∂
∂uj

)
uα = (αj)2uα−σj , we get

(k2 + (m− 1)k)
∑

|γ|=n

B
γ
q u

γ =
m∑

j=1

∑

|α|=k,
|β|=p

(αj)
2

B
α
k B

β
p u

α+β−σj

Identifying the powers of u we immediately get the desired result. �

We are now ready to prove the multiplicativity of the normalized euclidian norm in
Hn.

Lemma A.8 Let q and {pℓ}1≤ℓ≤q be positive integers and let Rq ∈ Lq(R
m) be q-linear.

Then for every Φpℓ
∈ Hpℓ

, 1 ≤ ℓ ≤ q, the polynomial Rq[Φp1, · · · ,Φpq ] lies in Hn with
n = p1 + · · · + pq and

∣∣Rq[Φp1, · · · ,Φpq ]
∣∣
2,n

≤ ‖|Rq‖|Lq(Rm)
|Φp1|2,p1

· · ·
∣∣Φpq

∣∣
2,pq

.

Proof. For 1 ≤ ℓ ≤ q, let us denote

Φpℓ
(Y ) =

∑

|α|=pℓ

Φ(pℓ)
α Y α

Since Rq is q-linear we get

Rq[Φp1 , · · · ,Φpq ] =
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

Y α(1)+···+α(q)
Rq[Φ

(p1)

α(1) , · · · ,Φ(pq)

α(q) ],

=
∑

|γ|=n

Y γ
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Rq[Φ
(p1)

α(1) , · · · ,Φ(pq)

α(q) ].
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Hence,

∣∣Rq[Φp1, · · · ,Φpq ]
∣∣2
2,n

=
1

n!

∑

|γ|=n

γ!
∥∥∥

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Rq[Φ
(p1)

α(1) , · · · ,Φ(pq)

α(q) ]
∥∥∥
2
,

≤
∑

|γ|=n

1

B
γ
n

( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

‖|Rq‖|Lq(Rm)
‖Φ(p1)

α(1)‖ · · · ‖Φ(pq)

α(q)‖
)2
,

≤ ‖|Rq‖|2Lq(Rm)

∑

|γ|=n

[
1

B
γ
n

( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2)
)

×
( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

1

α(1)!
· · · 1

α(q)!

)]
,

by the Cauchy-Schwarz formula. Then since Lemma A.6 ensures that

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

1

α(1)!
· · · 1

α(q)!
=

1

p1! · · · pq!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

B
α(1)

p1
· · ·Bα(q)

pq
=

1

p1! · · · pq!
B

γ
n,

we obtain

∣∣Rq[Φp1, · · · ,Φpq ]
∣∣2
2,n

≤
‖|Rq‖|2Lq(Rm)

p1! · · · pq!

∑

|γ|=n

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2),

=
‖|Rq‖|2Lq(Rm)

p1! · · · pq!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2),

= ‖|Rq‖|2Lq(Rm)

q∏

ℓ=1

( 1

pℓ!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(ℓ)!‖Φ(pℓ)

α(ℓ)‖2
)
,

= ‖|Rq‖|2Lq(Rm)
|Φp1|22,p1

· · ·
∣∣Φpq

∣∣2
2,pq

. �

Lemma A.9 Let k > 0, p ≥ 0 be two integers and let Φk, Np lie respectively in Hk and
Hp. Then DΦk.Np lies in Hn with n = k − 1 + p and

|DΦk.Np|
2,n

≤
√
k2 + (m− 1)k |Φp|

2,k
|Np|

2,p

Proof. Let us denote

Φk(Y ) =
∑

|α|=k

Y αΦα, Np(Y ) =
∑

|β|=p

Y βNβ

where Φα, Nβ ∈ C
m, and Nβ = (Nβ,1, · · · , Nβ,m). Then,

DΦk.Np =
m∑

j=1

∑

|α|=k
|β|=p

αj Y
α−σj+βNβ,jΦα =

∑

|γ|=n

Y γ
m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

αjNβ,jΦα.
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where σj = (0, · · · , 0, 1, 0, · · · , 0) with the coefficient 1 placed at the j-th position. Hence,

|DΦk.Np|2
2,n

≤
∑

|γ|=n

1

B
γ
n

( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

αj |Nβ,j|‖Φα‖
)2

≤
∑

|γ|=n

1

B
γ
n

[( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α!β!|Nβ,j |2‖Φα‖2
)
,

×
( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

(αj)
2 1

α!

1

β!

)]

by the Cauchy-Schwarz formula. Then, since Lemma A.7 ensures that

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α2
j

1

α!

1

β!
=

1

k!p!

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α2
j B

α
k B

β
p =

1

k!p!
(k2 + (m− 1)k)Bγ

n

we finally obtain

|DΦk.Np|2
2,n

≤ 1

k!p!
(k2 + (m− 1)k)

∑

|γ|=n

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α!β!|Nβ,j |2‖Φα‖2

=
1

k!p!
(k2 + (m− 1)k)

∑

|α|=k,
|β|=p

m∑

j=1

α!β!‖Φα‖2|Nβ,j|2

=
1

k!p!
(k2 + (m− 1)k)

∑

|α|=k,
|β|=p

α!β!‖Φα‖2‖Nβ‖2

= (k2 + (m− 1)k) |Φk|22,k
|Np|2

2,p

�

A.3 Invariance of the euclidian norm under unitary linear change of

coordinates

Lemma A.10 Let Q be a unitary linear map in R
m or C

m and denote T
Q

: H → H,Φ 7→
Q−1 ◦ Φ ◦Q. Then T

Q
is a unitary linear operator in H, i.e. for every Φ ∈ H,

∣∣∣TQ
Φ
∣∣∣
2

= |Φ|
2
.

Proof. Using lemma A.4 we get that

∣∣∣TQ
Φ
∣∣∣
2

2
=

1

(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm ‖Φ◦Q(

√
r1e

iθ1 , · · · ,√rmeiθm)‖2e−r1 · · · e−rm .

Then performing the change of coordinates (r1, · · · , rm, θ1, · · · , θm) 7→ (r′1, · · · , r′m, θ′1, · · · , θ′m)
with

(
√
r′1e

iθ′1 , · · · ,
√
r′meiθ′m) = Q(

√
r1e

iθ1 , · · · ,√rmeiθm)
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the Jacobian of which is equal to 1 and observing that

r′1 + · · · + r′m = ‖Q(
√
r1e

iθ1 , · · · ,√rmeiθm)‖ = r1 + · · · + rm

we get the desired result. �
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