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1 Introduction

A key tool in the study of the dynamics of vector fields near an equilibrium point is
the theory of normal forms, invented by Poincaré, which gives simple forms to which a
vector field can be reduced close to the equilibrium [1],[6]. In the class of formal vector
valued vector fields the problem can be easily solved [1], whereas in the class of analytic
vector fields convergence issues of the power series giving the normalizing transformation
generally occurs [6], [13]. Nevertheless the study of the dynamics in a neighborhood of
the origin, can very often be carried out via a normalization up to finite order (see for
instance [8], [11] Reference & completer). Normal forms are not unique and various
characterization exist in the literature [7], Reference & completer. In this paper we will
consider the version given in [7]:

Theorem 1.1 (Unperturbed NF-Theorem) Let V' be a smooth (resp. analytic) vec-
tor field defined on a neighborhood of the origin in R™ (resp. in C™) such that V(0) = 0.



Then, for any integer p > 2, there are polynomials Q,, N, : R™ — R™ (resp. C" — C") ,
of degree < p, satisfying

Qp(0) = N(0) = 0,DQ,(0) = DN,,(0) =0

such that under the near identity change of variable X =Y + Q,(Y"), the vector field

dX
“ =v(x) 1)
becomes Iy
o LY + N, (Y) + Rp(Y) (2)

where DV (0) = L, where the remainder R, is a smooth (resp. analytic) function sat-
isfying Rp(X) = O(| X||P™1) and where the normal form polynomial Ny, of degree p is
characterized by

Ny(etE'Y) = ot N (V)

for allY € R™ (resp. in C™) and t € R or equivalently
DN,(Y)L*Y = L*N,(Y)

where L* is the adjoint of L. Moreover, if T is a unitary linear map which commutes with
V' then for every Y,

QP(TY) = TQP(Y) Np(TY) = TNp(Y)-

Similarly, if V is reversible with respect to some linear symmetry S (S? = 1q), i.e. if v
anticommutes with this symmetry, then for every Y,

Q,(SY) = SQ,(Y)  N,(SY) = —SN,(Y).

This version of the Normal Form Theorem up to finite order has two advantages :
firstly, it works for a non semi-simple linear operator L and secondly the characterization
of the normal form N, involves the adjoint L* of the operator L and not simply the
diagonalizable part of L. This leads to simpler normal forms.

Since the usual way to study the dynamics of vector fields close to an equilibrium is to
see the full vector field as a perturbation of its normal form L+ A, by higher order terms,
it happens to be of great interest to obtain sharp upper bounds of the remainders R,. A
similar theory of resonant normal forms was developed for Hamiltonians systems written
in action-angle coordinates (see for instance [2], [4], [12]). A sticking result obtained by
Nekhoroshev [9], [10], in order to study the stability of the action variables over exponen-
tially large interval of time, is that up to an optimal choice of the order p of the normal
form , the remainder can be made exponentially small. For more details of such Normal
Form Theorems with exponentially small remainder we refer to [12]. A similar result of
exponential smallness of the remainder was also obtained by Giorgilli and Posilicano in
[5] for a reversible system with a linear part composed of Harmonic oscillators.

The aim of the present paper is to prove that such a result of exponential smallness
of the remainder is still true for any analytic vector fields provided that the spectrum
of its linearization satisfies some “nonresonance assumptions” which enable to control
the small divisor effects. For a subset Z of Z™, for K € N, and for v > 0, a vector



A= (A1, Ap) € C™ is said to be v, K -nonresonant modulo Z if for every k € Z™ with

[ (AN k)| >y when ké¢Z.

Similarly, for v > 0,7 > m — 1, A is said to be ~, 7-Diophantine modulo Z if for every
kez™,

y<A,/<;>\2“Z‘T when k¢ Z.

where for k = (k1, -+ ,km) € Z™, |k| := |k1| +- - - + |km|. In the problem of normal forms,
the small divisors appears as eigenvalues of the homological operator giving the normal
forms by induction (see Subsection 2.1 and Lemma 2.5). To control these small divisors
let us introduce the following definitions :
Definition 1.2 Let us define A= (A, , A\p,) €C™, K €N, v >0 and 7 >m — 1.

(a) The vector X is said to be v, K-homologically nonresonant if for every a € N™

with 2 < |a| < K, and every j € N, 1 < j <m,
[ (A, o) = Aj| > when (A, a) —\j #0.

(b) The vector X is said to be v, T-homologically Diophantine if for every a € N™,

laf > 2,
(A, o) — Aj| > ﬁ when (A, a) —Aj #0.
Q@
(¢) For a linear operator L in R™, let us denote Ay,--- , Ay, its eigenvalues and \p :=

(M, -y Am). Then L is said to be v, K-homologically nonresonant ( resp. v, T-
homologically Diophantine) if \;, is so.

Remark 1.3 Observe that in the above definitions, the components of « are a nonnegative
integers.

In what follows we use Arnold’s notations [1] for denoting matrices under complex
Jordan normal forms : A% denotes the 2 x 2 complex Jordan block corresponding to A € C
whereas A.A represents 2 x 2 complex diagonal matrix diag(\, A), i.e.

N (A0
A .—<0 \ whereas A= N

A matrix under complex Jordan normal form is then denoted by the products of the name
of its Jordan blocs. Moreover since for real matrices the Jordan blocks corresponding
to non zero matrices occur by pairs A" and A" we shorten their name as follows : for
A, A2 € C\ R, 02 ATV A2 AT, is simply denoted by 02.A7".A52|.. Moreover, when
one works with vector fields in R™, one may want to remain in R™ and thus to use
real Jordan normal forms for the linearization of the vector field. So, for ¢ € R and
A=z +iy € C\ R, we denote by p?)?|, the real Jordan matrix

w1l 0 0 0 0
(Ou) 0 0 0 0
0 0 (z—y 1 0

()6 )

0
0 0 0 T —y
0 0 0 Yy x

o O O



Finally, we equip R™ and C™ with the canonical inner product and norm, i.e. for
mo___
X =(X1, - ,Xm) €C™, [ X]?:=(X,X) =3 X;X;. We are now ready to state our
j=1

main result:

Theorem 1.4 (Unperturbed NF-Theorem with exponentially small remainder)
Let V' be an analytic vector field in a neighborhood of 0 in R™ (resp. in C™) such that
V(0) =0, ie.
V(X)=LX + Y V[Xx®) (3)
E>2
where L is a linear operator in R™ (resp. in C™) and where Vi, is bounded k-linear

symmetric and
X[ - [ Xkl

[Vi[X1,-+, Xgl[| < c P (4)

with ¢, p > 0 independent of k.

(a) If L is semi-simple and under real (resp. complex) Jordan normal forms, then

(i) if L is vy, T-homologically Diophantine, then for every 6 > 0 such that pops > 2,
the remainder Ry, given by the Normal Form Theorem 1.1 for p = popt, satisfies

w

SUP || Ry, (V)| < M6%e7 5 (5)
IY]|<é
with
b 1 [ 1 ] 1
= — = _— w = ——
1+ Dert e(Co) |’ eC?
and .
10 7\’
MT = 3602 { (m g) + (26)2+2T}
where
) 2 pl
C:@{(—m+2)ac+3p}, m:sup%, a=~"1
p 2 peN pPTae—p

(ii) of L is v, K-homologically nonresonant, then for every 6 > 0 such that K >
Popt = 2 then the remainder R, given by the Normal Form Theorem 1.1 for
P = Popt Satisfies (5) with T =0, i.e. b=1.

(b) If L is not semi simple, then

(i) For L=0%,L=0% L=0%iw|, . and L = (iw)?|,, . estimate (5) still holds
with 7 = 0, i.e b = 1 and respectively with a = 1, a = 1, a = max(1,w™!) and
a = max(1,w™1).

(ii) For L = 0%iwy. - dwgly,,c and L = (iw1)?iws. - dwg|y,.., where w =
(Wi, Wgy —w1, -+, —wy) € R? is~y, 7-homologically diophantine, estimate (5)
still holds with a = max(277,~y71).

Remark 1.5 Stirling’s formula ensures that m is finite.



Remark 1.6 A semi simple matrix under complex Jordan normal form is simply a diag-
onal matrix whereas a real semi simple matrix under real Jordan normal form is the direct

sum of a diagonal matrix with 2 x 2 blocks of the form < Z ;y > with z,y € R.

Remark 1.7 The characterization of the normal form and the exponentially small esti-
mates are invariant under unitary changes of coordinates. Indeed, if we perform in (2) a
unitary change of coordinates Y = Qf/ where @ is a unitary linear operator (Q* = Q71),
then it becomes

% _ IV 4+ N(V) + Ry (V)
with L = Q7 'LQ, N,(Y) = Q'N,(QY), Ry(Y) = Q 'R, (QY), where N, satisfies the

same normal form criteria as N, i.e. N (etz*f/) = ¢!L" N(Y) and where R, admits the
same exponentially small upper bound as R, given by (5).

However, when @ is not unitary then N, satisfies a slightly different normal form
criteria given by

N(etz?) = etzﬁ(?)

where lv; = Q 'L*Q which is not equal to L* when Q is not unitary. In this case, ﬁp
also admits a slightly different upper bound given by

opt

w

)| < MAQ I Q7 6> e el o

sup_[|R,,
[IY][<é

opt

The above remark enables to state a corollary without assuming that L is under real or
complex Jordan normal form

Corollary 1.8 Let V' be an analytic vector field in a neighborhood of 0 in R™ (resp. in
C™) such that V(0) = 0, i.e. satisfying (3) and (4). Denote L = DV (0) and let @Q be
an invertible matriz such that J = QLQ™' is under real (resp. complex) Jordan normal
form.

Then, there are polynomials Qp,,,Np,,, : R™ — R™ (resp. C*" — C") , of degree
< Popt, satisfying Qp,,, (0) = Np,,, (0) = 0, DQp,,,, (0) = DNy, (0) = 0 such that under the
near identity change of variable X =Y + Qp, . (Y'), the vector field (1) becomes

dY

E = LY + Npopt (Y) + Rpopt (Y)

where the remainder Ry, = O(||Y||Per**1) is analytic and where Ny, satisfies the normal

form criteria

\ \
(eY) =Ny, (V) with L =Q 1J*Q
for allY € R™ (resp. in C™) and t € R. Moreover,

(a) if L is semi-simple and -y, T-homologically Diophantine, then for every § > 0 such
that popt > 2, the remainder R satisfies

N

Popt

Popt

sup [|Rpope (V)] < M 625 (6)
IY]| <o



with

and

1+7
_E -1 2 ﬁ 2427
M, = llQll lo | € {(m 8e> +(2)

where

5 ° p!
¢ =L {(Zm+2) acllQ? 17 I+ 3ol Q1. = sup =L

p 2 peN pPT3e—p

and a =~"";

(b) if L is vy, K-homologically nonresonant, then for every § > 0 such that K > popt > 2
then the remainder Ry, . satisfies (6) with T =0, i.e. b=1;

(c) for J = 0%, J = 0% J = 0%iw|,.. . and J = (iw)?|,... estimate (6) still holds
with 7 = 0, i.e b = 1 and respectively with a = 1, a = 1, a = max(l,w™!) and
a = max(1,w™!);

(d) for J = 0%iwy. - dwgly,,c and J = (iw1)?iws.: - dwgly,.., where w =
(W1, Wey —w1, -+, —wy) € R is~, 7-homologically diophantine, estimate (6) still
holds with a = max(2-7,y~1).

Proof. Starting with (1), perform a first change of coordinates X = Q" 'X to obtain a
vector field V such that DV(O) = J is under Jordan normal form, then apply Theorem
1.4, i.e perform a second change of coordinates X = épopt (Y) and finally perform a last
change of coordinates Y = QY to get the desired result. O

Reste a commenter ce théoréme puis a énoncer les résultats pour les champs perturbés.



2 Exponential estimates for unperturbed vector fields

This section is devoted to the proof of Theorem 1.4. We first recall in few words the proof
of Theorem 1.1.

2.1 Normalization and Homological equations

Let V' be an analytic vector field in a neighborhood of 0 in R™ (resp. in C™) such that
V(0) =0, i.e. a vector field satisfying (3) and (4). Let H be the space of the polynomial
® : R™ — R™ (resp. C™ +— C™) and let Hj be the space of the homogeneous ones of
degree k. We are interested in polynomial changes of variables, of the form X =Y +Q,(Y)
with

Q(Y)= Y ®(Y), By € Hy

2<k<p

such that by the change of variable, equation (1) becomes of the form (2) with
No(Y) = D Np(Y),  Nip€H,

2<k<p

where N, is as simple as possible. A basic identification of powers of Y leads to

(14 3 DOHLY + ¥ NulY)+Ry(Y)}
SESp SRSP ‘| (7)

=L{ ¥ )+ ;QVq[{ S 21}

1<k<p 1<k<p

where ®1(Y) = Y. This leads to the following hierarchy of homological equations in H,
for 2 <n < p,

with
Fo=— Y DY.Nyjpp+ Y. SV ®py,e, Py, (8)
2<k<n-—1 2<q<n pi+--+pg=n

where some sums are empty and where A, is the homological operator given by
(A, 2)(Y)=D®(Y).LY — LO(Y).

Observe that A induces on each H,, a linear endomorphism denoted by A, |Hn H, — Hay.
Generally A, |, is not invertible. So when F), lies in the range ran(A, |, ) of A, |,
one can take N, = 0 and for ®, any preimage of F;,, whereas when F,, does not lie in
ran(A, ]Hn ), then one has to chose N, in an appropriate supplementary space of ran(A, \Hn)
so that F}, — N,, belongs to ran(A, |, ).

The key idea of the proof of Theorem 1.1 contained in [7] is to introduce an appropriate
inner product on M such that the adjoint A% of A, is given by A, .. Hence,

1 1
Hp =ker A, |, @®ranA Hn =ranA [, D kerA .|, .

L*|Hn’

Then for solving (E,,), we use the orthogonal projection m, on ker A for obtaining IV,

L* "Hn
and the pseudo-inverse A, \;711 of A, |, defined in (ker A,,)* =ranA, |, taking values in

(ker A, |, )+ for Ny, ie.

Np=m(F,)  and @ = A, |} ((Ta — m)(F)). (9)



This completes the proof of theorem 1.1 and ensures that IV, belongs to ker A and

thus that N, lies in ker A, := {N/DN(Y)L*Y — L*N(Y') = 0}.
To conclude this subsection, the appropriate inner product in H introduced in [7] is
given by

2 b

(@fe),, = 3" (210}

with ® = (®q,--- ,P,,), ' = (P),---,P/,), where for any pair of polynomial P, P’ :
R™ — R (resp. C"™ — C) ,
(PIP) = P(oy) (1)

‘Y:O'

where by definition P(Y) := P(Y). E.g, for all positive integers a1, , am, B1, * , Bm
<Ya1- .. ‘Yam|Yﬁl. .. .Yﬁm> =l am! Say gy o B

where d, 3 = 1 if = 3, and 0 otherwise. It what follows we norm H,, with the associated

euclidian norm |®[ := /(®[P)

2.2 Exponential upper bounds for the remainder: main results

Main result. We want to give an estimate on R,(Y") depending on p and on the size of
the ball where Y lies. Given the size of this ball, the aim is to optimize the degree p of
the normal form, and show that R,(Y") can be made exponentially small with respect to
6. For unperturbed vector fields, all follows from the following proposition which ensures
that the exponentially estimates of the remainder follows from the estimates of the growth
with respect to k of the euclidian norm of the pseudo inverse of A, |Hk'

Remark 2.1 A priori the pseudo inverse .74;|;i is only defined from (ker A, . )= =ranA, |Hk

onto (ker AL|HI€)L. From now on, we extend it on the whole space Hy, as follows
AL|Hk:4VL|;i<I> =® for ®c (kerA,. )", IE;@ =0, for®eckerd,..

Proposition 2.2 (Exponential estimates of the remainder) Let V' be an analytic
vector field in a neighborhood of 0 in R™ (resp. in C™) such that V(0) = 0, ie. a
vector field satisfying (3) and (4). Denote

o = 1Ayl I, = sup Ak -®|
'

Then, if there exits K > 2, a > 0 and 7 > 0 such that ap < ak™ for every k with
2 <k < K < +oo, then for every 6 > 0 such that K > popy > 2 the remainder R, given
by the Normal Form Theorem 1.1 for p = popt Satisfies

w

SUp || Ry (V)| < M 5%~ o

opt
IYl<s

with

1+7
1 1 1 10 127
= o g [ - M: _ 2 - 2 24271
b 1+7_7 Popt |:e(C6)b:| 5 w eC’b’ 9 cC {(m 86) +( e)




2 pl
N e’ p!
where C = 3+ {(gm + 2) ac + 3p}, m = sup 71]9 and where for a real number x, we
P peN pp+5e*p

denote by [z] its entire part.

Remark 2.3 Stirling’s formula ensures that m is finite.

The proof of this proposition is performed in two main steps. We first prove that
roughly speaking, R, admits an upper bound of the form

sup || R,(Y)|| < M(COPF (ph)H7.
I¥l<s

where M depends on 7 but not on § and p. Then we optimize p (see Lemma 2.17), so
that (C8)PT1(p!)™*! is exponentially small for p = Popt- In fact, the upper bound for R,

1
is a little bit more complicated (see Lemma 2.15) and we obtain it only for (Cd)T™p <
e~ !, which is just enough to obtain the desired exponentially small upper bound of the
remainder. The detailed proof of this proposition is postponed to subsection 2.3.

Remark 2.4 The euclidian norms a; of the homological operator are invariant under
unitary changes of coordinates. Indeed, if @) is a unitary linear operator, let us denote
L'=Q 'LQanda}, = ||A,, |;i [ll,- Then, since A, |,, = %AJWTQ_l where (7,®)(Y) =
Q'®(QY) and since 7, is unitary when Q is unitary (see Appendix A.3), we get that
aj, = ay, for every k > 1.

The semi-simple case. Theorem 1.4-(a) directly follows from proposition 2.2 and from
the following lemma

Lemma 2.5 Let L be a m x m matriz.

(a) Denote by o(L) := {A1, -+, Am} the spectrum of L. Then, for every k > 2 the
spectrum o (A, |, ) of A, |, is given by

(ALl ) = {Aja =, 0) = Aj, 1<j<m, a € N" [af =k} (10)

(b) If L is semi-simple and is under real or complex Jordan normal form, then for every
k>2,

— 1
= < m ; .
aci= 1A, < | max (Al
Aj,a#0

Remark 2.6 When L is semi simple, under Jordan normal form, and ~, K-homologically
nonresonant, the above lemma ensures that a; < 7' for 2 < k < K and if L is v, 7-
homologically Diophantine, then aj, < y~! k7 for k > 2.

Proof of Lemma 2.5. (a):Although this result is classical (see [3]), we give its short proof
for self-contentness of the paper. Let Q be an invertible matrix such that J = Q~'LQ
is under complex Jordan normal form and observe that A, [, = TQ_lA s, T, where
(7,9)(Y) = Q'®(QY). Hence the spectrum of A, |5, is equal to the spectrum of A, |, .
Let {¢j},.;,, be the canonical basis of C™. Then, since J is under Jordan normal form, we



have JCj = )\jCj +5j_1Cj_1 with 50 = 0 and where 5j_1 =0if )\j 7& )\j—l and (5]‘_1 =0orl
otherwise. Let {Pja}, ;... cym o D€ the basis of Hy given by

P (Y) =Y. Yome;

we order this basis with the lexicographical order, i.e. P;, < Py g if the first non zero

integer £ — j, 31 — .- .Bm — Quy is positive. Within this order, A, is upper triangular
and
m
A, Pja = (AL, @) = \)Pja + D aedPja-oitoy = 0i-1Pj-1a (11)
=1

with op = (0,---,0,1,---,0) where the coefficient 1 is at the ¢-th position. Hence the
spectrum of A, [, ~and thus the spectrum of A, [,, is given by (10).

(b) : We proceed in two steps.

Step 1. First assume that L is semi-simple and is under complex Jordan normal form i.e.
assume that L = J is diagonal. Then §; = 0 for 1 < j < m. Thus, by (11), AL\Hk is also
semi simple and {Pj} is a basis of eigenvectors of A, |, . For ® € Hy, let
us denote

1<j<m,a€N™ |a|=k

=0+, b =md e ker(A,. [, ); o= > D;,Pj.€ ran(A, [, ),

1<j<m,|al=k
Ay

0
and M = max |Aj,|7'. Then since ./A:Elcf = 0 and (Pj.|Prp), = 0 for (j,a) #
1<i<m,|ol=k ’ k ’ a7
Aj,a#0

(¢, 3) we have

— 2 - ~ 9
e = Y Al 185l [Pl
1<js<m,|al=k
A]’,a?’éo

75 75 2
1<j<m,|a|=k

Aj,a7#0
2

IN

=

=2,

Finally, since <&)]<T>>H =0,
‘AL|;11<I>’2 < M2, (12)

Step 2. if L is real semi simple and is under real Jordan normal form then it is conjugated
to to its complex Jordan normal form by a unitary matrix since

. D
<$+1y 0 )Q—1<x _y)Q, with Q= ¥ 4 |.
0 T — iy Yy 5 /s

Then, remark 2.4 and the previous step ensures that (12) still holds when L is real, semi
simple and under real Jordan normal forms. U

10



The non semi-simple case. For non semi simple operators L the direct computation of
the norm A, \;i is in general quite intricate. So we use the following lemma which gives this
norm in terms of the spectrum of the self adjoint operator (A, [, )* A, |, = ALy, ALl
which happens more easy to handle.

Lemma 2.7 For every linear operator L in R™ or C™ and every k > 1, let us denote
Sk(L) C RT the spectrum the positive self adjoint operator (A, [, )*A,l,, = A,.
Then,

HkAL’Hk'

=

— 4 11 _ ; B
ax = 141l = (062%1\{0} |o|)

Proof. Observe that

NI

A
ap = sup T2 = sup
Q€M \{0} 2 \Ile(ker.AL‘Hk)l "AL‘H;C\P’
2

<AL* e, Ar b, \p\\p>

il in
2
\Ile(ker.ALL)_tlc )+ “I’b

2 —

Then, since ker A, [, =ker A, .

w, AL ly, and since A, [, A, |, is a positive self adjoint
1

operator, we get ag := ( OeEH(IiLf)l\{O} ‘U‘)_i-
k
O

This lemma enables us to compute the norm of Zul for various examples of non

semi simple linear operator L. Coupled with Proposition 2.2, these computations gives
the proof of Theorem 1.4-(b).

Lemma 2.8

(a) For L=0%, L =0°% L = 0%iw|, . and L = (iw)?,,.., the norm ay of .74;|;i

satisfies
ap < a, for every k> 1,
respectively with ar = 1, a = 1, a = max(1,w™!) and a = max(1,w™ ).

(b) For L = 0%iwy. - iwy|y,.. and L = (iwy)%iws.--- iwgly, o, where w =
(Wi, Wy, —wi, -+, —Wq) € R?4 s ~, 7-homologically diophantine, the norm aj of
.AL|7_1]1 satisfies

ay < ak”, for every k > 1,

with a = max(277,y71).

The proof of this lemma is postponed to subsection 2.4.

11



2.3 Exponentially small estimates of the remainder for polynomially
bounded pseudo inverse of the homological operator.

This subsection is devoted to the proof of proposition 2.2. To fix the notations we make
he proof vector fields in R™. The proof is the same for C™. So, let V' be an analytic vector
field in a neighborhood of 0 in R™ such that V(0) = 0, i.e. a vector field satisfying (3)
and (4). We assume that the pseudo inverse of the homological operator is polynomially
bounded on Hj, for 2 < k < K < 400, i.e we assume that there exists ¢ > 0 and 7 > 0
such that

ay = ‘Zﬂ;i@‘z < ak” for 2 <k < K.

Our aim is to find an exponential upper bound of the remainder R,(Y") for ¥ in a ball
of radius 0. Since the remainder R,(Y) is given by equation (7), for estimating it, we

successively compute upper bounds for ®,(Y), N,(Y), > D®r(Y), > &k(Y) and
2<k<p 1<k<p

finally for R,(Y’). For the polynomials NN, and ®,, the natural norm to finally compute

an upper bound of sup ||R,(Y)| is the "sup-norm” defined for any ® € H by
gy

e )]l
d = SUp ——
Plon = 28, T

However, N,, and ®,, are the solution of the Homological Equation (E,) given by (9), i.e.
defined via the orthogonal projector m, which has nice properties for the euclidian norm
and not for the sup norm. These two norm can be compared has follows :

Lemma 2.9 (Comparison of the euclidian and the sup norm)
For every ® € Hy,

1 -1 m—1
9l < 77190, < VO [0y, < Vi KT o],

here O n!

where = —.
"orlin—r)!

The proof of this Lemma is given in Appendix A. Moreover if we normalize the euclidian

norm on H, by defining

1
‘(I)’Zn = Wi \@\2, for every ® € H,,
then the normalized euclidian norm has very nice properties with respect to multiplication
and derivation :

Lemma 2.10 (Multiplicativity of the normalized euclidian norm)

(a) Let q and {pe}1<e<q be positive integers and let R, € L4(R™) be g-linear. Then
for every ®,, € Hy,, 1 < £ < q, the polynomial Ry[®p,,---,®p,] lies in H, with
n=py+--+pg; and

Ryf@py,- e By

» ¥ Pq < H’RqH’Lq(Rm) ‘¢p1’2’p1 e ‘épq‘

2,n 2,pq ’

12



(b) Let k > 0 and p > 0 be two integers and let @y, N, lie respectively in Hy and H,.
Then D®y.N), lies in H, withn =k —1+p and

‘Dq)k‘-Np’Q SRV k2 + (m— 1)k ‘(I)klzk ‘Np‘gp

This Lemma is also proved in Appendix A.

Hence to compute by induction upper bounds of ®,, N,, defined via m,, we use the
normalized euclidian norms

Up = ‘N"’2n’ for n > 2,
(bn:’(bn’Qna forn > 1,

with the convention ®1(Y) =Y and thus ¢; = [Y|, = /m. Lemma 2.9 ensures that the

same upper bounds will also hold for the sup norms of N,, ®,,. Since 7, is orthogonal, we
deduce from (9) that

Vp = ’Nn‘zm = ‘ﬂ'n(Fn)‘Qm = \/_177. ‘ﬂ'n(Fn)’Q < \/_177, ’Fn‘Q = ’Fn’2,n

and similarly -
On < AL, (B, , < an” |Fal,

Hence using the multipicativity and the derivation properties of the normalized euclidian
norms, we get that

i <Y (B m=1k) gkt Y Y Gy by (13)

2<k<n—1 2<q<n p1+-+pg=n
1
9 i c
¢n < an” (/f + (m — 1)k) ? GrVn—ks1+an”y Y bm ¢y, (14)
2<k<n—1 2<q<n p1+--+pg=n

for 2 < n < K with the convention ¢; = |®4] = /m. Hence using that

21 ’Y’2,1
1

(k* + (m — 1)k)2 < \/mk, we check by induction that

Lemma 2.11 Let {5, }n>1 be the sequence defined by induction

p\12
Be = m Y kKBbeint Y (—) By By n>2, (15)

2<k<n—1 2<qg<n p1+---+pg=n ac

pr = 1

Then we have the estimates

n—1
< @ (ac;éﬁ) (n =13, for2<n<K, (16)

Un

n—1
bn < Vm <ac/;éﬁ> (n) B, for1<n<K. (17)

13



Proof. We proceed by induction. For n = 1, the above inequality is true since ¢; = /m.
For n = 2, equation (15) ensures that 3 = 1 and (13), (14) ensure that vo < cmp~2 and
#2 < acm27p~2, and thus (17), (16) are true for n = 2. Assume now that (16), (17) holds
for k < n with n > 3. Then (13) ensures that

< vm <ac 2m> : (n=1)H" <m Y kBkBarir (Dhp)

a p 9<k<n—1

+ Z Z (ﬁ)q_Z Bpy - ﬁpq(Dn7p1w~wpq)T>

ac
2<q<n p1+--+pg=n

where
, El(n — k)! 1l pg!
D, = ——- —_—
: (n—1)! (n—1)!
It remains to prove that D;uk < 1for 2 < k < n—1 and that Dy, <1 for
2<q<n, pr+---+pg=n, pj > 1, to ensures that (16) holds for n and similarly that
(17) holds also for n.

and Dipy - pg =

Denoting C* = #lk), and observing that C* > n for 1 <k <n — 1, we get

n
/

ck =
Finally to prove that Dy, , ... p, < 1 we proceed by induction on g. For ¢ = 2, we have

pil(n —p1)!
Dn7p17p2 = (TL _ 1)| = D;L,pl S 1

since 1 <p; <n — 1. Assume now that Dy, .. ,, <1 for ¢ > 2 and every n > g, then

- D 1) 7pq+1!
P17 5Pg+1 T P1++Pq,P1, Pg (pl T +pq B ) (n — 1)"

1
Dp1+---+pq,p1;~,pq CPat1 <1,
n—1

D

since for every r € N and j with 0 < j < r, we have CJ > 1. This completes the proof of
Lemma 2.11.

O
The study of the sequence {3, },>1 enables to obtain Gevrey estimates for ¢y, vy,.
Lemma 2.12 In choosing a1 = 1 and
ap = 0" 2(n — 2)), forn > 2,
and © large enough such that
ac® > p, (18)
and gm s 0t
e ! 09

14



then By, in (15) satisfies By, < o, for n > 1 and thus

n—2
on < a[c);n (ac{)?@) (n)" (n—=2)l, for2<n<K, and ¢1 =/m,

n—2
vy < cp—?(“p@) (n=1)" (n-2), for2<n<K.

Proof. We proceed by induction. We have f; =1 =a; < aj and f5 =1 = as < as.
Assume now that 0, < oy for k <n and n > 3.

Step 1. Splitting of the bounds. Then by induction hypothesis,
B < Ay + A7 (20)
with

1
Ay = m Y kagpappiit >, 0 g,
2<k<n-—1 1<k<n—1

2 p\7?
Ay = Z Z <%) Qpy e Oty -

3<g<npi+...pg=n

Step 2. Two auxiliary sums for A},L. Let us we define

k(k —2)(n — k — 1)!

= %

2<k<n—1 (n —2)!
We have the following inequality
Sn <5/2, for n > 3. (21)
This comes from the identity for n > 5
k! n—4
Spy1 — Sp = —
+ ) ey iy Rk e orgey

3<k<n—2

and the fact that for £ = n — 2 the corresponding term in the sum cancels the last positive
term. Then a direct calculation of the cases n = 3 and n = 4 shows the result (21).

We now define
(k—2)!(n—k—2)!

(n—2)!

and we check that
P, <1/2, forn>4 (22)

since P41 — P, <0, for n > 4.
Step 3. Upper bound for Al. It results from (21) and (22) that for © > 1,

n >3, (23)

where the proof of this inequality is direct for n = 3.

15



Step 4. Auxiliary sums for Afr Now, we define for n > ¢ > 2 :

I, = E Qpy oo Qpy s

p1t...pqg=n

then we already have

Hn,n = 1§W
oo = 1,

H2,n < 60511’ n > 3,

where the last inequality comes easily from the inequality for P,. For estimating II, ,, with
n > q+ 1, we proceed as follows

Hq,n = Z ak‘Hq—l,n—k = qul,nfl + On—qg+1 + Z akﬂq—l,n—k
1<k<n—g+1 2<k<n—q

and prove by recurrence that

Hq,n S W

Finally, gathering all our results, we get

2
Iy < —=an, n>q>3, (24)

Step 5. Upper bound for A2. We deduce from (24) that
D () e D) e ) @
9 = — qn > — On > Qn N7 5 (>
ac sSaen ac® 1- L5

provided that _£5 < 1.

Step 6. Upper bound for 3,,. Hence, (23) and (25) ensure that

5
2 2 2_P_
6né{2m+ + —ac© }anéan

© 1-— Eé%
provided that P <1 and (§m+ 2) i + 2% <1
acO 2 e 1-_L5 7
O
In all what follows we choose
) 3p
O=gm+2+— 26
St ET . (26)

which ensures that (18) and (19) are simultaneously satisfied since with this choice

1 5 1 2L Sm+2) L 2L
P <=, and (zm+2) =+ ac® < (2 ) © 4 _"ac® 1,
ac® 3 2 C) 1—56% 1—5% 1—5%

We can now compute an upper bound for the change of coordinates and for its differential.

16



Lemma 2.13 For every 6 > 0 and every p, 2 < p < K satisfying

2

1+7 < 14 9
o s 2ac/m ©° 27)
we have
10
> 2(Y)]| < Z?x/;ié’ (28)
1<k<p

2<k‘<p

for every Y € R™ with ||Y]| <.

Remark 2.14 Observe that the size d of the ball where Y lies and the degree p of the
normal form, i.e. the degree of the polynomial change of variable are now mutually
constrained by (27).

Proof. We proceed in three steps.

Step 1. Upper bound for | Y. ®r(Y)||. Lemmas 2.9, 2.12 ensure that
1<k<p

k
Y2 @M < > 1%l IV

1<k<p 1<k<p

k
> (@l VI,

1<k<p

> owd”,

1<k<p

9 k—2
N i <“CV”_;@ 5) (k)7 (k- 2)!

o<k<p P P

IN

IN

IN

IN

2<k<p

s x ()

2<k<p

k—1
5\/_{”6 > (2131%) (kDT (k—2)!},

IN

since for 2 < k < p,

Hence,
1 1
Y @Y H<M7{Lw—}<§¢E&

1<k<p PO

. 5 9
since © > 3m +2 > 5 and p > 2.

17



Step 2. Upper bound for |||D<I>k(Y)|||£(Rm)
neous polynomial of degree 0, Lemmas 2.9, 2.10 ensure that

. For Y, Z € R™ seeing Z as an homoge-

[D®r(Y).Z]]

||YHk71 < ’D(IDk(Y)-Z‘O,M
< |DO(Y).Z],, .
< R A (m =k [0, 2],

VR 4 (m =1k ¢ || Z].
Hence using that \/k? + (m — 1)k < y/mk we obtain

DB (Y gy < VgV [

Step 3. Upper bound for ||| > D®k(Y)|l| . zm,- Lemma 2.12, the previous step
2<k<p (B™)
and estimate (30) ensure that for |Y'|| < 4, with 0, p satisfying (27) we have

IS DB, <

2<k<p 2<k<p

m acy/mOd
n oy (e

k—1
; ) k (k)7 (k—2),

m ( 1 )k—l
=Y (== kE (E)T (k —2)!
— 1 T )
O, \ P
m 1\ k1
S ~ (_) 9
@2§k§p 2
m
< A
- 0
2
< =
- 5
since@E%m. ]

We have now enough material to compute an upper bound of the remainder.

Lemma 2.15 For every § > 0 and every p, 2 < p < K satisfying
2

1471 < P
s el*Tacy/m ©° (31)

we have

10c . 1 1 \P*H!
HRp(Y)H57<(05)p*1(p!)” + 5 (o) )

for every Y € R™ with ||Y|| < § where

C:ac\/EGZ\/m{<

p? p?

)
§m—i—2> ac+3p}.

18



Remark 2.16 Observe that the constraint (31) imposed on 0 and p is slightly stronger
than the one (27) imposed in Lemma 2.13 since — < 1. The constraint (31) has been
chosen to get the optimal exponential decay rate for the upper bound of R, obtained by an

optimal choice of pop = l%], ie 5(popt)1+7 ~ 1+Tc (for details see below lemmas
e(Co) T+7

2.17 and 2.19).

Proof. The remainder R,(Y") is given by equation (7) where it gathers all the terms of
order larger than p. To bound it, we proceed in several steps.

Step 1. Splitting of the upper bound. From the explicit expression of R, given by
(7) and using lemmas 2.9, 2.10, 2.13, we get that for every 6 > 0, every p, 2 < p < K
satisfying (27) and for every Y € R™ with [|Y]| <4,

3
IR () < AL+ AL+ A (32)
where
A;l; = Z \/mk%%fkﬂ(sn
2<k<p
p+1<n<p+k—1
9 co”
A} = > =, by,
2<q<p p
p+1<n=pi+---+pq,
1<p;<p
c 10
A= Y Svmor.
p+1<q

The sums All) and Ag can be optimally bounded with constraint (27) whereas for AIQ) we
use the stronger constraint (31).

Step 2. Upper bound for All,. Defining C = “{7’?9 and using lemma 2.12 we get

IA
S

2|

N

n—3
N 5 ac? <a0g9> 8" k()T (k= 2)! (n— k)™ (n— k- 1)),

p 2<k<p
p+1<n<p+k—1

2

< S S R (k=20 (€Ot YD (o =k = ) (0= )Y
asc 2<k<p p1<n<p+k—1
2 T
mp . n—p-1 (n—k—1)! /(n—k)!
= a?c ©3 Z k(KT (k = 2)! (GO Z (%) ( n—p—1 ! <( "*P*)l > ’
2<k<p p+1<n<p+k—1 p p

since C' < W < 5— (here we do not need the strongest constraint). Then, observe
) 2p
that forp+1<n<p+k-1,

%ﬁ(p—k)! and (” )1§(p—/<:+1)!.

'E

Thus, we obtain

19



AL < P ST )Tk — 2) (COPFE 2p — B)((p— k+1)!),

a’c ©3 2<k<p
< (1227:7’;23 (COPH(p 1+72<z:k< o k:— ) <2§+1> ;
< (122?7[(1)23 (COPH (ph T 2;k< Ck( o

Hence, for every § > 0 and every p, 2 < p < K satisfying (27),

Al < 28 2mp”

< 3o gs (COT )T (33)

Step 3. Upper bound for A;. Observing that a,, < (n—2)! ©"~! for any n > 1 where
(=1)!'=0!' =1 and using Lemma 2.12 we get

IR S SED SR 0k (m) 5 (1)) -+ (o))

2<q<p n>p+1 . p? P
<q<p nzp+l pi+--+pg=n
1<p;<p

<y v oy (ﬁ@) 5 (p1) (1 — 2!+ (pg) " (pg — 2)!
2<q<p n>p+1 pl—{-<p—2—];qp n
RN (aC{(S@) (s) 700 =20 a7 -2,

2<q<p n>p+l pi+-+pg=
1<p;<p

< e oy ST (OO () (p1 = 2)! - (pg) (g — 2)!,

2<g<p  n2p+l pit-tpg=n

1<p;<p
since C' = “p@ and where r := -5 < % with our choice of © given by (26). Moreover,
for 6 > 0 and p > 2 satisfying (31) (here we use the stronger constraint), i.e. for Cd <
e btain
eprr We O
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1\ n(1+7)
MceX XY (5) -2t el e -2
25g<p  nEpHl pitetpg=n L
1<p;<p

p+1 n(1+7)
Sy 2 (G) e -2 e, - 2,

2<q<p n>p+l pi+-+pg=n

IN
o
A

®
-
\1

1<p;<p
1 \P*H! P 1 .
= C< T+r PR DY < 1+7’) GhrG -2t
e 0 \p
1 \p+l 1 p—1\1
o (o2
el+7 2@21) p1+7' pT+2

IN
o

1 \PH g2 1
< C(em) prer 1 2

since # < 1. Hence, for every § > 0 and every p, 2 < p < K satisfying (31),

2 +1
) p 1 1 1 \?
A7 < 4e <ac @) e <€1+T) : (34)
ac

Step 4. Upper bound for Az. Observing that with our choice of © given by (26), for
every § > 0 and every p, 2 < p < K satistying (27), we obtain

\/E5< p 1

<
p T 2acOptT T 12

and thus,

q p+1
p+1<q P 9 P

> (51)

q>3

Hence, for every 6 > 0 and every p, 2 < p < K satisfying (27),

A g%(z)%@@)”“_ 35)

3
P =49 \ 54 9

Step 5. Upper bound for ||R,(Y)||. Gathering the upper bounds for All), AI%, Ag
given by (33), (34), (35), that with our choice of © given by (26),

m

S ) 6 S

Wl
(Sl )

P
ac®
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we obtain that for every ¢ > 0 and every p, 2 < p < K satisfying (31)

51
IR, (V)| < —(A;+A§+A§:)

< = (Cé)m—l( )1+r+&L (L)p+l+% <£>3 (E@)pﬂ

27 9 p2t2r \eltr 49 \ 54 9 »p

490 /5\3 10c 1 1 \Pt!
< o b A p+1 1+7 e
- <27+49 (54) ) (COF )+ p*eT (eHT)

since with our choice of © given by (26),

10ym 10 p o<W o
9p 9 acO 27

Llen

3
Hence, since | = + 2 < 10 for every § > 0 and every p, 2 < p < K satisfyin
27 T 49 9 Y y ymg

(31) we have

10 ; 1 1\t
iR, < e (1o i ()
for every Y € R™ with ||Y|| < 6. O

+1
The upper bound of |R,(Y)|| contains two terms. The second one, Iﬁ (#)p

tends to 0 as p tends to infinity whereas the first one (C§)P*1(p!)!*7 tends to infinity. The
1 147
key idea is to choose an optimal p for which (C)P+!(p!)*+7 = <(C5)117+_Tp!) is minimal

and prove that this minimal value is exponentially small with respect to §. This results
from the following lemma :

Lemma 2.17 Choose ¢ > 0 and let us define f-(p) := ePT'p! for p € N. Moreover, for
x € R, denote by [z] its entire part.

Then, for popt = [eie}, Je(Popt) is exponentially small with respect to €. Indeed,

1 2
([2]) mfE b
ge e
e? p!
where m = sup ————
peN pp+2e 2

Remark 2.18 Stirling’s formula ensure that M is finite.

/(1) « :fexp{%;]+;>m{;]+{;}mz}7

Proof.

IN
3
©]
>

o]
—
N

M
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0

Using this lemma we finally obtain the desired exponentially small upper bound for
Rp(Y).

Lemma 2.19 If there exits K > 2, a > 0 and 7 > 0 such that aj, := H|:4:|;i\||2 < ak™ for
every k with 2 < k < K, then for every 6 > 0 such that K > popt > 2, the remainder R,
given by the Normal Form Theorem 1.1 for p = popt satisfies

SUp. Ry (V)] < M% exp (— )
Yll<é
with
147
1 1 1 10 27
b= —— Popt = | —— = —, M==—cC? V= 2¢)2t27
14 Dot [e(Cé)b]’ T ech 3° {(m 86) + (2¢)

where C = f{(2m+2) ac—|—3p} andm—iggp%

Proof. Let § > 0 be such that popy = {@} satisfies K > popy > 2. Observe that
condition (31) reads §p < ﬁ and thus that pp; satisfies it. Then since,

1 1

1> > > 9 d < 2 ¢e(CH)°
Popt +1 = 6(05)b = Popt = an Popt e( )
lemmas 2.15 and 2.17 with £ = (C6)® ensure that
10 S
sup |[Rp,, (V) < S m (2e(C6)%)*H?T ¢ elCOP
= 9
10 1+71 al 147
< ( 06 e e(Cé 2 e e(C5) +4 ,
< 10 cle 1+TC5 e e(as {( ) Jr41+T}
— 9 )
I+r 1471
10 27 -
= ECCQ { (m %> + (2e)2+27} 6% e e(CO"
since x%e_gﬁ < \/%e_% for any = > 0. ]
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2.4 Computations of the norm of the pseudo inverse of the homological
operator for non semi simple-matrices.

This subsection is devoted to the computation of the norm of Zui for various examples

of non semi simple operator L. We begin with the 0% singularity. All these computations
of the norm of the pseudo inverse of the homological operator are performed via lemma
2.7. Hence, in all this subsection we denote by X (L) C RT the spectrum of the positive
self adjoint operator (A, |, )" A, |,, =A,.

o Arl, -

Lemma 2.20 (Norm of the pseudo inverse :l;|;1 for L = 02)
k

For L = 0% and for every k > 2, we have ~_min  {\} > 1 and thus
AEX(L)\{0}

ai(L) = |4, 1ll, < 1.

0 1
0 0
lower bound of the non zero eigenvalues of A, , A, in the subspace H}; of homogeneous
polynomials of degree k. We recall that

Proof. We are in dimension 2, with Y = (z,y) and L = ( . We intend to give a

A, ®(Y) = DO(Y)LY — L&(Y).
Thus, denoting ® = (¢1, ¢2) in Hy, we have

0 0 _
AL ® = (y% - <b2,y%) and ker A, = span{(y*,0), (zy" ", y*)}.

Now we look for the eigenvalues A (A > 0) of A, . A, in the subspace Hj,. They are given
by
PO 96 06
y@xay

Tor " oy = A9
¢y | Dby O _
xyax(?y + “or  Yor Toz = Ao

(36)

We check that
i) ® = (0,2%) gives A\ =k + 1
i) ® = (y*,0) gives A =0
iil) ® = (2%, 22 1y gives A = (a — 1)(B+ 1) witha+ 8=k, a=1,..k
iv) ® = ((8 + 12y’ —az* 1y 1) gives A\ = a(B+2) witha + 8=k, a=1,..k.

These are the 2(k + 1) eigenvalues of the operator A*A in the subspace Hy, corre-

sponding to a family of orthogonal eigenvectors. It is clear that min  {A} > 1 and
AEXL(L)\{0}

thus, -
ar = AL, < 1.

Lemma 2.21 (Norm of the pseudo inverse :4VL|;1 for L = 03)
k

For L = 03 and for every k > 2, we have _min  {\} > 1 and thus
Aex(L)\{0}

ai(L) = [IA, [ 1ll, < 1.
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Proof. We are in dimension 3, with Y = (z,y,2), ® = (¢1, ¢2, ¢3) and

L =

o O O
o = O

1
0
0

Here again, we intend to give a lower bound of the non zero eigenvalues of A, , A, in Hy.
This is performed in several steps.

Step 1. Splitting of the operators. We define differential operators D and D* by

0 0
D = y— —
Yor * Z@y
0 0
D* = x— —
Tay Yz
then
A® = DO - LD
AU = DU - L"Y,
and
D* (D1 — ¢2)

.AL*.AL(I) = D*(D¢2 — (bg) — D¢1 + ¢2
D*D¢3 — Do + ¢3

Moreover, we check that ker A, is spanned by

2

2% (xz — %)ﬁ yz*(xz — %2)5 zz%(vz — L)P
2

0 | 2ot (22 — %2)6 |y — %2)6

0 0 Za+1(£CZ _ %)ﬁ

In what follows we use the properties

Dx = y, Dy==z Dz=0, D(mz—%)zo,

D'z = 0, D'y=x, D'z=y, D*(xz—;):O.

Step 2. Splitting of Hg. Using the basis of monomials, for a, 3,7 integers > 0
y? 2
Papy = 22 (22 — 5 and dapy = a%yzP (2 — 7)“’.

we split Hj, into the direct sum
Hip = H) ©HY

where

a+B+2v=k a+B+2v+1=k

H, = { = (¢1,02,¢3)/d1,¢3 € span  {Pa gy}, ¢2 € span {¢a,ﬁ,'y}},

Hy = {‘1>=(¢1,¢2,¢3)/¢1,¢3€ span  {Va.84} ¢2€Span {%57}

a+f+2y+1=k B+2v=k
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Then, using the identities

D¢a,ﬁ,7 = Cm/JCV*LBy’Y’

Diopy = (1+20)dap+1y — 200a—167+1
D*¢apry = BYap-11
D*%apy = (1+28)bat1,8y — 200a,6-17+15
D*Déapy = a(l +28)¢apy — 2000a—1,5-1+1;
D*DYapy = (a+1)(B+1)Yasy —2006%a—1,5-1+1

we observe that H), and H} are both invariant under A,. A, . Hence, the spectrum of the
operator A,. A, in Hy, is the union of its spectrum when restricted to Hj, and to Hj..

Step 3. Spectrum of A,. A, in H;. We also split H}, into subspaces invariant by
A LA,

Step 3.1. Splitting of H}, . First observe that for a4 4+ 2y = k, the subspace 5(;7677
of Hj, gathering the polynomials ® of the form

¢ = Zap@ba—p,ﬁ—pﬁﬂ”
P

¢2 = prwa*pfl,ﬁfp,wp?
p

¢3 = Zcp¢a—p—1,6—p+1,v+p’
P

where
for a < (3, 0<p<a, by=c,=0,
for B+1<a, 0<p<pB+1, agy1=bg11 =0 andcgy =0ifa=pF+1.

is invariant under the operator A, , A, . Indeed, we have

Doy — 2 = Z{(a = P)ap = bp}a—p—1,8-py+p;
D¢y — 93 = Z{(Qa = 2p = 1)bp — cp}da—p-1,8-p+iy+p
—2(a = p = Dbpda—p—2,8-pyt+p+1s
D*(Dg1 — ¢2) = 2(25 = 2p+ D{(a = p)ap — bp}da—p,s—pytp
—2(8 — p){(a = plap — bp}Pa—p—1,8—p—1,7+p+1;
D*(Dga — ¢3) = Z(ﬁ —p+ D{2a—2p—1)b, — Cp}wa—p—lﬂ—pn/—l—p
=2(8 = p)(a = p — Dbptpa—p-2,8-p-1,7+p+1,
D*Dg¢3 = Z(a —p—1)(28 = 2p + 3)cpda—p-1,8-p+1,9+p
—2(a —p—=1)(B = p+ 1)pda—p—2,8-py+p+1-

Moreover, ®;. = (0,0, ¢y,0,0) is an eigenvector of A, .. A, in Hj, belonging to the eigenvalue
A=k+1.

Then, since ® = (¢a,,8,77070)7 ¢ = (Oawafl,ﬁ,’w()% ¢ = (0707¢a71,ﬁ+1,7) and & =
(0,0, a—23,~+1) belong to &, 5.~ Tespectively for o > 0, > 1, a>1and a > 2, we
have the splitting of M), into the non direct sum

Hy=Co+ > sy
a+B+2v=k
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Hence, the spectrum spec(A, . A, |,, ) of the operator A . A, in Hy is given by the union
with possibly many overlaps

SpeC(AL* AL‘Hk) ={k+1}uU U spec(.AL* A, ’5/ )-
a1 27=k By

Step 3.2. Spectrum of A , A, in Séﬁ,,y. The spectral equation A,, A, ® = A®, for
NS 5;7677 can be written as a hierarchy of systems of equation (37), where for p = 0 we

have

(28 + 1)(aap — bo) = Aap,
B+ D{(2a—1)bg—co} +by —aay = by, (37)o
(@=1)(28+3)co +co— (2a—1)by = Aco,

and for 1 < p < min{a, § + 1},

Aap = (28 —2p+ 1){(a — p)a, — by}
2B —p+1{(a—p+1)ap-1—by-1}
(B=p+1{Q2a—2p—1)b, — ¢y} — (@ —p)ay, + by
=2(8—p+1)(a—p)bp-1,
Xep = (a—p—1)(26—2p+3)cy — 2o —2p—1)bp, + ¢,
—2(a—p)(B—p+2)cp-1 +2(a — p)bp_1.

Ab,

In particular, when a < (3 the last system of the hierarchy is obtained for p = « (b, =
¢o = 0) and it reads

)\aa = —z(ﬁ — o+ 1)(aa—1 - boc—l)7

0 = 0, (87)a

while for f < a — 1 the last system is obtained for p = 8+ 1 (agy1 = bgy1 = 0, and
cgy1 = 0if @ = B+ 1) and it reads

A\ — (a—fB—1)egps —2(a—B—1){csg—b
c,@Jré _ éa B )c,@Jrl ((X ﬁ ){Cg ,3}7 (37)5+1

The system with p = 0 gives the eigenvalues:

A= (a—=1)28+1), ag=by=co=1,
A2 = a(208 +3), ap=(B+1)(26+1), bp = —-2a(8+1), ¢o = a2a — 1),
)\3:(2(1—1)(B—|—1), CL(]:—(Qﬂ—Fl), b(]:()é—ﬁ—l, o =2a—1.

We check that for for @« = 0 or 1, we recover known eigenvectors belonging to the 0
eigenvalue, all other eigenvalues are positive integers.

For proving that they indeed give eigenvalues of A, , A, it is needed to check that for
1 <p < min{e, f+ 1} the determinant A, does not cancel for A = A\; or A2 or A3 where

(26" 4+ 1)/ — A —-(268'+1) 0
Ap = —a (' +1)(20' =1) +1-A —(B'+1)
0 -2/ +1 (@ =1)(20"+3)+1—- A

with o/ = a —p, f/ = 3 — p. It results that

Ap = (A1 = NN = N(A3 = A)
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with
Moo= (@ —1)@F +1) =M —p(2a+28-2p—1)

Ny = o268 +3) =Xy —p(2a + 26 —2p + 3)
Az = (2 =1 +1) = —p2a+28-2p+1).

It is then easy to see (using the fact that 1 < p < min{a — 1, 3}) that the only case when
Ap(Aj) =01is when p=1and Ay = A; :

Ny — A= (1-p)(2a+23—2p+1).
The case p=1, A = A\ = (o — 1)(26 + 1) leads to

—2(a—1)a; — (26-1)b = 28(a—-1)
—(a=1a; — (a+ 5 —=2)by — fc; = 20(a—1)
—(2a—3)by —20c; = 2B6(a—1)

where the compatibility condition is satisfied, hence giving a one parameter family of
eigenvectors.

Finally, it remains to study the cases when the limiting equations cannot be solved,
i.e. the two cases

i) when a < G, A =0 (i.e. a =0, or 1), p = «; the case a = 0, p =0, A = 0 gives a
known eigenvector, while a = p =1, A = 0 gives ag = by = ¢p = 1 and the equation for a;
gives 0.a; = —2(ag — bg) = 0, hence the compatibility condition is satisfied.

ii) When 6 <a—-2, A\=a— -1, p= [+ 1. The only possibility is \y =a -3 —1
which happens if § = 0. Then p = 1, and we need to solve ¢; = ¢; — 2(cy — by) where
ag = bp = ¢p = 1. Hence the compatibility condition is satisfied. This ends the study in
the first invariant subspace.

In conclusion, all the eigenvalues of A, A, in 5&7677 and thus in Hj, are non negative
integers.

Step 4. Spectrum of A, , A, in H;}/. We also split H}/ into subspaces invariant by
A LA,

Step 4.1. Splitting of M}/ . For a + 3+ 2y + 1=k, let us denote &} 5 the subspace
of H}, gathering the polynomials ® of the form

¢ = Zapwa—pﬂ—pﬂﬂ)
p

¢2 = prqﬁafpﬁfpntl,%tp
p

¢3 = Zcpﬂ)a—p—lﬂ—pﬂﬂﬂ)
p

where

B, 0<p<a, ca=0

fora <
for 3 < a—-1, 0<p<pB+1, ag41 =0, and g1 =0if a =[G+ 1.
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The following identities

D¢ — ¢ = Z{(2a = 2p+1)ap — bp}da—p,B—ptiy+p
—2(a = p)apda—p—1,5-—p+ptl
Do — ¢3 = Z{(O‘ —D)bp — p}a—p-18-priytp
D*(D¢1 — ¢2) = Z(ﬂ —p+D{(2a —2p+ L)ap — by}ba—ps—prtp +
—2(a = p)(B = P)apPa—p-1,8-p—19+p+1
D*(Dga — ¢3) = 2(25 —2p+3){(a —p)b, — Cp}¢oz—pﬂ—p+1ﬁ+p +
=2(8 —p+ D{(@ = p)bp — &} Pa—p-1,8-prtp+1
D*D¢3 = 2(204 =2p = 1)(B —p+2)cpta—p-1,8-ptiyt+p T
—2(a—p—=1)(8 = p+1)cptha—p-28-py+p+1

wooa s .
ensure that subspace &; 5. is invariant under A, . A, .

Moreover, the two dimensional subspace P; = span{®}, ¥}'} where ®} = (0, ¢1,0,0,0)
and ¥}/ = (0,0, ¢x_1,0,0) is stable by A, , A, since

A A DL = (k+1)P7 — kU7, and A A, @] = -0 + 2k

Then, since ¢ = (wa,ﬁ,'ya 0,0), ® = (0, ¢a,5+1,77 0), ® = (07 (bafl,,@ﬁﬂrla 0)7 ¢ = (07 0, wafl,,@ﬂLL’Y)

and ® = (0,0,%4—23~+1) belong to ggﬁw respectively fora >0, a >0, a>1,a>1
and o > 2, we have the splitting of H} into the non direct sum

Hy =Py + Z .y with P} = span{®}, ¥}/}.
a+06+2v=k

Hence, the spectrum spec(A, . A, |,, ) of the operator A,. A, in Hy is given by the union
with possibly many overlaps

spec(A, . A, |, ) =spec(A . A |,) U U spec(AL ALl )
E o atBtay=k .7
Step 4.2. Spectrum of A, A, in P}/. In the basis {®}, ¥/} the matrix of A, . A, |
reads
k+1 —k
-1 2k |-

Hence, the spectrum of A . A, in P} is given by

73//

spec(AL*.AL|Pl,(,) = {2k + 1,k}.

Step 4 3. Spectrum of A, ., A, in 8”ﬁ,7 The spectral equation A,, A, & = \®, for

e, 5 , can be written as a hierarchy of systems of equation (38), Where for p =0 we
have
(B4 1{(2cc + L)ag — bo} = Aag
(Qﬁ + 3)(04[)0 - Co) + by — (2a + 1)@0 = by, (38)0
(2a = 1)(B +2)co + co — aby = Aco,
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for 1 <p < min{a, 5+ 1}

Aay = (B-p+D{2a—-2p+1)a, —bp} = 2(a—p+1)(B—p+1)ap-,
Abpy = (28 =2p+3){(a—p)by — p} — (2a —2p+ 1)a, + b+

=2(B8-p+2){(a =p+1bp-1 —cp-1} +2(a —p+ L)ap1, (38)p
Aep = (2a—=2p—1)(B—p+2)ep — (o —p)by + cp+

—2(a = p)(B —p+2)cp-1.

In particular, when o < 3 the last system of the hierarchy is reached for p = o (¢, = 0)
and it reads

Mo = (B—a+1)(ag —by) —2(8—a+1)ag_1,
Mo = —aa+ba—2(6—a+2)(ba1— Ca1)+ 2001,
0 = 0.

This last system enables to compute aqn, by if A # 0 and X\ # 6 — a + 2.

When 3 < o — 1, the last system of the hierarchy is reached for p=3+1 (agy; =0
and cgy1 = 0if f = a — 1) and it reads

0 = 0,
Abgi1 = (a—B)bgr1 — e + 2{(a — B)(ag — bg) + ca},
Acgpr = (=B —1){2cp11 — bg41 — 2cp}-

This last system enables to compute b,, ¢, if A# 1, when f=a—1landif \#£#a—F—1
and A # 2a— 206 — 1 when 6 < a — 2.

The system for p = 0 gives the eigenvalues Ai, A2, A3 where

A1:04(2ﬁ—i_3) G,O:ﬁ—i-l, 60:/3_04+17 ) = —q,

Ae=(f+1)2a—=1) ag=1 by=2 co=1,

A3=(+2)2a+1) a=F+1)26+3), bp=—-2a+1)(26+3), co =a(2a+1).
Notice that Ay = 0 for « = 0, which corresponds to a already known eigenvector in the

kernel of A, . The coeflicients ay, by, c, can be computed by induction provided that for
A = A or Ay or A3 the determinant

Ap(A) = (A1 = )Xy = ) (A5 = A)
does not cancel, where
N = M —pR2a+28-2p+3),
Ny = Xo—pRa+28-2p+1),
Ay = A3—p(2a+28—2p+5).
Using the fact that 1 < p < min{a, 3+ 1}, we can see that the only problem comes when
L=y
3 2
Ny — A2 = (1—p)(2a + 28+ 3 —2p)
which occurs when p = 1. This case p =1, A = (8 + 1)(2ac — 1) gives the system
= —(2a — 1)a1 — ﬁbl — 2aﬁao
—2a—1Da1+(1—a—0)b — (264 1)c1 —2(8 + 1)(abg — o) + 2aag
= 1—-a)by — 28+ 1)1 —2(a—1)(B+ 1)
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where the compatibility condition is satisfied with the values we found for ag, bg, co (ag —
bo + ¢ = 0).

Finally, it then remains to study the last equation of the hierarchy:

i) when « < 3, p =, A =0 (i.e. @« =p = 0 leading to the know eigenvector in the
kernel) or A = f —a + 2, i.e. A = Ay, @ = 1 = p where the compatibility condition is
satisfied due to ag — bg + cg = 0.

ii) When < a—1,p= (+1. Then for § = a—1, Ay =1 (the bad case) for & = 1 and
this is again the case seen above. For 8 < a — 2, the bad cases are when \; =a -3 -1
or 2a — 23 — 1, i.e. Adg = 2a —203 — 1 for f = 0. We are again in the case p = 1 (notice
that a; = 0) :

= (1—a)by —c1 —2(aby — co) + 2aag
= 1—a)by —c1 —2(a— 1)
which is admits solutions since ag — bg + ¢g = 0.

In conclusion, all the eigenvalues of A, A, in 536 . and thus in Hj, are non negative
integers. Gathering the results of step 8 and 4 we finally conclude that for every k > 2 all
non zero eigenvalues of A, . A, in Hy, are positive integers. Hence, for every k > 2,

ar = 14,11, < 1

Lemma 2.22 (Norm of the pseudo inverse :l;|;1 for L = 0%iw|,_,. )
k

For L = 0%iw d k>2, weh i A} > min{1, w? d th
or looee and for every k > 2, we have AeES%ILI)l\{O}{ } > min{l,w*} and thus

a(L) = [, [}, < max{1,o71}.

Proof. Since the real Jordan matrix 0%iw|, is conjugated to the complex Jordan matrix
0%iw|. via the unitary map

1 0 0 O
01 0 O
1|,
OOEZ5
0 0% &

Remark 2.4 ensures that ax(0%iw|.) = ax(0%iw|,) for every k > 2. Thus, we make only
the proof for L = 0%jw|.. Here again, we intend to give a lower bound of the non zero
eigenvalues of A, , A, in Hj. We proceed in several steps.

Step 1. Splitting of the homological operators. We are in dimension 4, with
X =(A4,B,C,C) and

01 O 0

0 0 O 0
L= 0 0 iw 0

00 0 —w
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In this case we have ® = (¢4, B, dc, ¢5) and

0pa Opa

~0pa

Ba—A + ZWC% — ZWC% — ¢B
B8 e85 ,5%0
Av=| She  dbe b
S N LCCRRPCLIICRRY, LI
9A + iwC 3C wC 26 woe
0z 0d5 . ~0d5
4 Jrsz’% — sz’% +iwdy
A%04 000 ,e00a
5 0B 5 oC 5 aC
Aﬂ — iwcﬂ +iw5’i~3 — A
A W= 0B aoC C
v A% 0% 02 e |
(e e s L
35 w 5C + iwC e W

(B*(CC),0,0,0),

B+ 2y =k,

ker A, = ¢ (ABS(CC)7, B+ (CC),0,0), B+1+2y=Fk,
(0,0, BPC(CC)Y,BSC(CC)Y), B+1+2y=k.

Let us introduce some notations which simplify the writing of A, . A, :

0%p O0da 0ép
ABaéxaB tA51 48
0“9 0¢p O0pa
AB A - B
ro_) “Pomon T oa T Poa T O
0“9c O0éc
AB(’)élaB A%
o 0o
ABgrap T 494
82 . 82 82 - 82
5=4 {05380 - CaBaé} - {Cc’?A@C - CaAaé}
2 ., 0 o ~ 0 _ 2
P=C’—+C?’—+C—+4+C—= — _
0C? 9C? oC aC aCcaC
then we can write A, . A, as
oB
- - o =0 —¢a
_ 2 9 A9
A A QP = LOP+iwSP+w P‘I>—i—zw{C’aC Caé} i
—22@)(?5
0 0
0 0 0 0
B— —A— )
+ { DA aB} iwoc * w?pc
— Wy w2q§5

Step 2. Splitting of Hy. We observe that the subspace &, of linear combinations of
monomials A*BPCYC? where the powers of C' and C satisfy 1 := v — § fixed is invariant
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under A, |, ~and A . In &,, we have

0 0
P® = 7n?d.

o b

and

N oA
_ , 0 0 n B
m+1)os
B n? ¢a
—0a 2 n? ¢
0 (n—1)%¢c
0 (n+1)*05

+iw(y — 0) +w

Moreover the three subspaces

H,p = {® € Hi/P = (¢4,98,0,0)},
HC = {(I) € Hk:/q) = (0’0’ gbCaO)}’
H“’ = {(I) 6 Hk:/q) = (0’0?05¢5)}5

are also invariant under A, |, and A, .|, and
Hi = @ (577 ﬁHAB) @ (577 ch) ©® (5?7 mHg) :
—k<n<k
Hence, the spectrum of A, ., A, in H}, is the union of its spectrum in each subspaces of the
direct sum.

Step 3. Spectrum of A, A, in &, N'H ,,. For computing the spectrum of A, . A, in
H 5 NEy, we identify the operators L, and A, A, |, _ with their restriction £,, and
(A,.A,) s to the two first components. With this identification the spectral equation

A A D=\ (39)
in 'H,, N&, reads

L, +iwnB® = (A —w’n?)® (40)

[0 50 ba ¢B
5o = {475 BaA}<¢B>+<—¢A>'

Step 3.1. Spectrum of A, A, in & NH ,,. Observing that for n = 0 the spectral
equation (39) reads £,,® = A® and that £, is the same operator as the one involved in
the 0 singularity studied in Lemma 2.20 (see (36)), we get that all eigenvalues of A, , A,
in & N'H ,,, are positive integers and thus

where

inf  {A\} >1
p AL |500HAB )
A£0

A€spec(A
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Step 3.2. Spectrum of A, A, in £, N"H ,, for n # 0. In this case, observing that
L, is a positive self adjoint operator and that for any ® = (¢4, ¢5) we have (BP, @) = 0,
it then results from (40) that

A > w2772 > w2,

since n =y — § # 0 is an integer. Hence, for every 7,

inf  {A\} > min{w? 1}.
Aespec(A; A “SWOHAB
A0

Step 4. Spectrum of A, A, in &, NH,. In H, NE,, the spectral equation (39)
reads

0% _(x—(n—1P)de. (41

2
0dc . 4

, 0 0
1w{A——B—}(77—1)<I>C—|—ABaAaB 5A

0B 0A
Step 4.1. Spectrum of A , A, in & NH,. In H, N &y, the spectral equation (39)

reduces to 52 5
e e
A =
oaop T aa =M
which gives A\ = a(f + 1) , with oo + 5 + 2y — 1 = k, with eigenvectors belonging to the
canonical basis. This leads again to

AB

inf {A} >1.
A€spec(A; A |51ﬁ71c )
A0

Step 4.1. Spectrum of A, A, in £, NH, with n # 1. For n — 1 # 0, we observe
again that {Aa% — Ba%} ¢¢ is orthogonal to ¢ and that &¢ — AB gz(g% —i—A%LA = \pc

is self adjoint and positive. Hence, we deduce from (41) that

A > w2(77— 1)2 > w?
since n =y — § # 1 is an integer. Hence, for every 7,
inf  {\} > min{w? 1}.
Aespec(A; , A “SWOHC )

A#£0

Proceeding similarly, we get the same result for Hg' Collecting all the results, this shows
that for every k > 2, we have ~ min  {A\} > min{1,w?} and thus
AETE(L)\{0}

ap(L) = [lA, [ I, < max{1,w™"}.
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Lemma 2.23 (Norm of the pseudo inverse :l;|;1 for L = 0%.iw;. - dwgly,.c )
k

(a) For L = 0%iwy. - dwgly.,. where w = (w1, " ,wg —wi, +,—w,;) € R4

is v, T-homologically diophantine, we have for every k > 2, mln {A} >
)\Ezk {0}

min{1, I;YTQT} and thus
ar(L) = |4, [ I, < max{1,77kT} < ak”

where a = max{2~7,y"1}.
(b) If w is v, K-homologically nonresonant, then there exist a’ > 0 such that for every
k>2,
-1
ar(L) = (A, ], I, < o

Proof. As for L = 0%iw|,__ ., since the real Jordan matrix L = 0%.iw;. - - - .iwg], is con-
jugated to the complex Jordan matrix L = 0%.jws.--- .iwg|. via a unitary map, Remark
2.4 ensures that aj(0%.iwy. -+ dwgl,) = ax(02.iws. - -+ .iwg|.) for every k > 2. Thus, we
make only the proof for L = 0%.jws.--- .iwg|.. Here again, we intend to give a lower
bound of the non zero eigenvalues of A, . A, in Hj. We make the proof only when w is
v, 7-homologically diophantine. When w is v, K-homologically nonresonant, the proof is
very similar and the details are left to the reader.

So, we are in dimension 2¢ + 2, with X = (A, B, C1, ...Cy, Cy, ...C~'q) and

01 0 0 0
0 0 O 0
0 0 iw 0 .
L= 0 0 0 iwy O .
0 0 0
. 0 7iwq71 0
0 . . . 0 0  —iw
The homological operator A, reads
5¢A 0da =~ 0ga
op + > iw;(C Jac J@Cj)
<9¢B 09 dpp
B@A + > w;(C j@C 080)
5¢c dpc .. .
AL¢ — 1 1 _ C 1 _
+ Z ( J ac aCJ ) ZW1¢CI
aqﬁgq _ 0d

+ > iw;(C; ac, *Cjﬁ)ﬂ%wwa}
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Let us introduce notations which simplify the writing of A, .. A,. We define operators L,
S,Q by

0%p O0da 0¢p
AB(,%ZWB+Aaaq;4 Agf
B A
AB@élaB oA ~Ba tom
L = oc,
ABaAaB aA
Pog 5(155
ABo o T4 04
0 ~ 0 0 0
S= > wiCjz5-Ci—=), Q=A—-B-—
155 oC; oC; 0B 0A
then we have
0 b5 0
0 —¢a 0

; ; 2
ALA D=L 1iQSD+8— Q| ™o | 4is| 2Zwide | 4| wide
*qu(’bgq 72iwq¢5q wg¢5q

The kernel of A, , which is also the kernel of A, . A, is formed by the following vectors

(BA(C1CL) -+ (C4Cy)1,0,0, -+, 0)
(ABB(ClCl)’“ (C C )’Yq BBJFI(ClCl)% i (C C )’Yq 0, - O)
(0,0, BAC, (CLCy ) - (CyCy) e, 0, - Bﬁcl(c cm (C Cy)74,0,--- ,0)

(0,0,---,0, BPC,(CLC1)" - (CyCy) 2,0, ,0, BIC,(CLC)M, - -+, (CyCy) ).
Let us proceed as for L = 0%iw|., and observe that here again, the subspaces

HAB - {(b S Hk/q) = (¢A7¢B,07"' 70)}7
HC = {(ber/@:((LOa'“707¢CJ‘707"'70)}7
H. = {q)er/(I):(0,0,“‘,0,¢5j,0,"',0)},

are invariant under AL\Hk and A, . ’Hk7 and that Hy=H,, @ H. P H-..

1<j<q J1<J<q G

For computing the spectrum of A , A, in H,,, denote by L, the restriction of L to

the two first components. We observe that Q<¢A> and < o5 ) are orthogonal to <¢A).
¢B —¢a ¢B

Hence the method used for L = 02iw](C applies and shows, using the reduced operator
L, + S? that the eigenvalues of A, A, inH,, satisfy

2

min {\} > min {1, (Z(Wj — 0j)wj ) } > min{1, ;2,,}

A€spec(Ap . A |HAB ) > vi+6;<k
A£0 1<j<q

Now in H_, , the spectral equation A , A, & = \® reads
C‘] L L

2
79, 0%, . V20, —
ABg o T4 04 +1iQ(S — wj)dc; + (S —wj)"¢o; = Ag;-
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Looking at the eigenvalues of the selfadjoint operator AB % + Aa% + (8 — w;)?, and
applying the same method as for L = 0%iw, we find in this subspace

2
2
min {A\} > min 1, ( Z (e — dp)wy £ wj) > min{1, #}

A€spec(A; . Ap ‘HC- ) Z v+ <k 1<t<q
j 1<j<q -
A£0
The same inequalities holds in HE . Collecting all the results, this shows that for every
j
k> 2, we have  min {A} > min{l, IJTQT} and thus

A€ (L)\{0}

ax(L) = |4, 1ll, < max{1,77'k"}.

Lemma 2.24 (Norm of the pseudo inverse :l;|;1 for L = (iw)?|,,.c )
k

For L = (iw)? and for every k > 2, we have min A} > min{l,w?} and thus
()2 s pc and for cvery k> amin () = min{1e?)

a(L) = [, [}l < max{1,o71}.

Proof. As for the (iw)?|,,.. singularity, since the real Jordan matrix L = (iw)?|, is
conjugated to the complex Jordan matrix L = (iw)?|. via a unitary map, Remark 2.4
ensures that ag((iw)?],) = ar((iw)?|.) for every k > 2. Thus, we make only the proof
for L = (iw)?|.. Here again, we intend to give a lower bound of the non zero eigenvalues
of A . A, in Hj. So we are in dimension 4, with X = (A,B,A,E), ® = (¢4, 98,07, 05)
and

o
-~
&
)
o o

0 0 0 —iw
Step 1. Splitting of the homological operators. Denoting ®45 = (¢4, ¢p) and

P75 = (¢7,95), the homological operators read

iw(S —1)Pap + BPyp — <¢OB>

A ®= :
. * 0
—ZW(S—[)\I/AB—i-B U — <¢A>
AU = .
iw(S—I)\I’ZE—FB*\Pg'é— <¢~>
A
where
0 ~ 0 0 ~ 0
0 ~ 0
b= Poat P
0 ~ 0
= A— 4+ A—.
B 8B+ OB
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Step 2. Splitting of Hy. Observe that the two supplementary subspaces
HAB - {¢ S Hk/(b - (¢A7¢Bao70)}7 H:{E - {(b S Hk/(b - (0707¢Z7 ¢§)}7

are both invariant by A, and A, .. Hence the spectrum of A , A, in Hj, is the union of
its spectrum in each subspaces. So we begin with the computation of the spectrum of
ApAp. inH ;. The computation in H_is totally similar since A, A, . is equal to

AA,.
Step 3. Spectrum of A, A, in H ,,. For computing the spectrumof A, , A, inH,,

we identify ® and the operator A,. A, |, _ with their restrictions ®4p and (A,.A,),,
to the two first components. With this identification A, . A, ’HAB reads

Ho~
AB

., UP to the change of the sign of w.

ApA e @ = WS = 1)’ + B'BP +iw{B (S —I) — (S — )B}® +
— o \ [ B*¢s 0
oo )-8 ) ()

Due to the selfadjointness of S, we observe that {B*(S—1)—(S—1)B}® and (S—1) (fA)

are orthogonal to ®. Then, the minmax principle ensures that
spec(A, . A |HAB ) = spec(7T) (42)

where 7 : 'H ,, — H ,, is the selfadjoint reduced operator

T® = w*(S —1)°® + B'BD — ( lz;‘ff ) - ( ¢OB ) : (43)

Moreover the kernel of A, and A, A, in H ,, is formed with the vectors

(B(BB)?(AB — BA)?,0)

(A(BB)?(AB — BA)", B(BB)?(AB — BA)")
where we notice that all eigenvectors satisfy (S —I)® =0, and (S — I)B® = 0, and thus
belong to the kernel of 7.

Step 4. Spectrum of 7. The problem is then reduced to the computation of the minimum
of nonzero eigenvalues of T in'H , .

Step 4.1 Splitting of H ,,. To compute the spectrum of 7, we use the non canonical
basis of monomials given by

(baﬁl Beyy A*pP pPe (AE - Bg)fya
wal,o@ﬂﬁ = Aalﬁo@éﬁ(z‘lé — BE)V,
¢a=0767’y = ¢a’,0,ﬁ7’y'
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Using the following properties for the derivation operators S, B, B*

S(AB— BA) = 0,
B(AB—BA) = 0, B(B)=0,
B*(AB— BA) = 0, B*(A)=0,
S(B) = B, S(A)=A,
S(B) = —B, S(4)=-A4,
B(4) = B, B(A) =B,
B*(B) = A, B*B)=A4,
we obtain
WS = 1) Pap gy = W+ Br—B2—1)Pas g
wz(S — 1)21/)0(170(275,v = wg(al —ay—f— 1)21/)&170427577,
Boapi oy = OPa—18+16275
Basaspy = (014 @2)Varas—1,8417 — A%ar—1,a5—1,8,7+15
B*bap 8y = (B1+ B2)bat1,p1-1,827 — B2Pa,81—1,8—1,7+1

B*wahamﬁﬁ = ﬁ¢a1,a2+175*1,’77

B*B(bauﬁluﬁQf\/ = a(/Bl + ﬁQ + 1)¢a7617ﬁ277 - aﬁ2¢a717617ﬁ27177+17
B*Bwal7a27677 = (al + aQ)(ﬁ + 1)¢a1,a2757’7 - al/ﬁwalilyc‘{?uﬁ*lfy"’l'

Let introduce the two supplementary subspaces

H;‘B - {( (¢A’¢B)/(I)A € span {¢0617ﬁ27’7} ®p € span {‘baﬁhﬁ%’y}}
atBrtfz+2y=k a+B+B2+27=k
£1>1
H, = {(<1> = (¢4,0B)/Pa € span  {Vqa, 008}, PB € span {¢Oz1,a2,ﬁ;y}}
a+p1+062+2y=k o1 +as+B+y=k
az>1

and observe that H’, . and H'/ . are both invariant under 7. Hence, the spectrum of the
operator T in 'H ,p, is the union of its spectrum when restricted to H' . and to H" .

Step 4.2. Spectrum of 7 in ’H; 5 We also split H; ,, into subspaces invariant by 7.
Step 4.2.1. Splitting of ’H;B . First observe that for a4 31 + 82+ 2+ = k, the subspace
Ea p1.pay Of M, gathering the polynomials ¢ of the form

a,

oA = Zap‘ﬁa—pﬂlﬂrpm-p (44)
P

¢ = pr‘ﬁafpfl,ﬁﬁrl,ﬁrpmw
P

where
for o <a—1, 0<p< [y,
for a < B 0<p<a, withb, =

is invariant under the operator 7. Indeed we have

Boa— o5 = {(a—p)ay — bptba—p-1,6+1,8—pr+p
p
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B*(Boa — ¢p) = Z{(OC —Dplap — bp}(ﬁl + B2 —p+ 1)¢a7p751,ﬁ2*p,’“{+p +

P
- Z{(a —plap — bp (B2 — P)Pa—p—1,61,8:—p—1,7+p+15
P

BBop = > (a—p—1)(B1+ B2 —p+2)bpba—p-1,6+1,8—prip +
P
- Z(a —p—1)(B2 — P)bpPa—p—2,81+1,82—p—1,4+p+1:
P

where we observe that the last terms of the second sums cancel (for p = (2, or for p = a,
and by, = 0). Then, since ® = (da,8,,8,7,0); P = (0, Pa—1,8,+1,8,v), belong to 5(;76176277

respectively for o > 0 and o > 1 we have the splitting of ' . into the non direct sum

/ /
HAB = Z ga“Bl 7/8277.
a+p1+B2+2v=k

Hence, the spectrum spec(T|,, ) of the operator T in H' , is given by the union with

_ ON®
possibly many overlaps

spec(71,, )= U spec(T|,, ).
AB a+P1+B2+2v=k @B1:B2,y

Step 4.2.2 Spectrum of 7 in 8(’1’&’&’7. Denoting
N=X-wa+p— B —1)

the spectral equation 7® = \®, for ¢ € 5(;7 31,82, Can be written as a hierarchy of systems
of equations (45), where for p = 0 we have

—Nag + (aag — bo) (61 + P2 + 1) =0 (45)
—)\,bo—Fbo—aao—F(a—l)(ﬂl +B2+2)b0 =0 0
and for 1 < p < min{a, 2}
—Na, +{(a=pla, —bp}(B1 + P2 —p+1)
—{(a=p+1ap1 —bp1}(B2—p+1)=0, (45),

—Nby 4+ by — (=plap + (. —p—1)(B1 + B2 —p+2)b,
—(a=p)(B2—p+1)bp—1 = 0.

In the case B3 < a — 1,the last system is obtained for p = (35 and it reads

_)‘,aﬁz + {(a - 62)6%2 - bBQ}(ﬁl + 1) - {(a — B2+ 1)a52*1 - bﬁ2*1} = 0,
—)\'b52 +bg, — (@ — fa)ag, + (. — fo — 1)(B1 + 2)bg, — (v — B2)bg,—1 = 0,

whereas in the case a < (35 the last system is obtained for p = «, imposing b, = 0 and it
reads

_A/aa - (aafl - bafl)(ﬁ2 —a—+ 1) =
0 =
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For |ag| + |bo| # 0, the system (45)¢ gives two eigenvalues

N =(@=1)(f1+P2+1), ag=0by=1,
Xy =B + P2 + 2), ap =1+ P2+1, by=—a.

Let us show that for e > 2 ( which gives non zero eigenvalues \’) one can solve the above
system in (ap,bp). The determinant of the system (45), is given by
D, = {-N+(@=p)Bi+B—p+DH{-N+1+(a—p-1)Bi+B—p+2)}+
—(a=p)(Bi+B2—p+1)

where

(=N 4B+ B+ DH-N+1+ (a=1)(B1 + P2 +2)} —a(B1 + F2+1) = 0.

Hence

D;; = pBr+Get+a+1—p{2N —a(Bi+B+1)+
—(a=1)(B1+Ba+2)+p(Br+ P2 +a+1-p)}.

The first factor (81 + 2 + a+ 1 —p) is > 0 in all cases. For \] = (a — 1)(81 + B2 + 1),
the second factor is

(P =B+ P2+ a—p),
while for Ay = a(B1 + B2 + 2), the second factor is

Br+G+a+24+p(fi+Pr+a+1—p)>0.

Finally, the determinant is different from 0 except for p = 1 when X = \| and when
a = (1 = P = p = 0. It then remains to study these cases and the case when X = 0,
a < By with a =0, or 1 (for computing a,).

The case av = 0 corresponds to an eigenvector of the form (p = 0)

Pa = 00,818,
o = 0.

Indeed this is an eigenvector of 7 belonging to A = w?(B; — B2 — 1)? ie. N =0.
We can also check that the case a = 1 corresponds to an eigenvector of 7 of the form

A = O181,620
B = Q051+1,0:
belonging to the eigenvalue A = w?(B; — B2)? i.e. X = 0. The above system reduces to

ag = by = 1 and the equation for a; is then Oa; = 0.
The system (45), for p =1 and X' = A} reads

—(a—=1)a1 — (B1 + B2)br = [Pa(aag — bo)
—(a=1)ay — (B1 + f2)b1 = Ba(a—1)bg

which satisfies the compatibility condition, since ag = bg. Hence we can indeed compute
all coefficients a,, by. This means that the eigenvalue A} is at least double, which does not
give any trouble here (selfadjoint operator).
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In conclusion, the above study allows to obtain all possible eigenvalues of T in H;B
Since we proved that the only possible values for X' are nonnegative integers, we get that

min {\} > min{1,w?}.
)\Espec(’T|

AB
A#£0
Step 4.3. Spectrum of 7 in ’HZB . We now proceed in the same way in the subspace
HZ , and we also split HZ ,, into subspaces invariant by 7.
Step 4.2.2. Splitting of ’HZB . First observe that for ay +as+3+2v = k, the subspace
e of H', . gathering the polynomials ® of the form

QI,QQ,B,'}/
Ya = Zap¢a1—p7a2,ﬁ—p,v+p (46)
P

Yp = prwarp,azflﬁfpﬂmw
P

with ay > 1 and where

for <01 -1, 0<p<B+1, withagi; =0
for oy < 8 0<p<a,

is invariant under the operator 7. Indeed we have

Ba—yp = Z{(al + a2 = p)ap — bp}a;—pas—1,8-p+1y+p

—Z o1 — a;ﬂbm —p—1l,az—1,8—p,y+p+1

B*(Bys —p) = Z{(Oél + oz — p)ap - bp}(ﬁ —p+ 1)1/}a17p,az,5*p7“/+p +

—Z a1 = p)(B = P)ap¥Pa;—p-1,a2,8-p—1y+p+1

B*Byp = Z(Oél T a2 —p—1)(B =P+ 2)bpYa;—pas—1,8-p+iy+p T
—Z (1 =p)(B =D+ Dbp¥a;—p-1,00-1,8-prtpti-

Moreover, @3 . = (0,%a, a,,00) is an eigenvector of A, , A, belonging to the eigenvalue

)\—(4)2(0[1—0[2—1)2—|—k‘—|—1.

Then7 Since @ = (’lpal7a2767770)7 @ = (1/}0{17a2717:6+17770)7 and qj = (¢al7a2717ﬁ7ﬁ/+170)
belong to 5&75175277 respectively for a; > 0,07 > 0 and a3 > 1 we have the splitting of
H',,, into the non direct sum

I "
HAB - Z 50417042,[37“/ + span {(1)(11 a2}
a+f1+B2+2y=k a1taz=k

Hence, the spectrum spec(T|,, ) of the operator T in H', is given by the union with
AB

possibly many overlaps

2 2
speC(T’HAB) = U {w (041 — Q9 — 1) + k4 1} @] U spec(’]"g” )
o1toz=k o1tz +B+2y=k o1,02:67
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Step 4.2.2 Spectrum of 7 in &

aa,02,8,7y

.Denoting

N=X—w(ag—a1+p+1)72

the spectral equation 7® = \®, for ¢ € £” can be written as a hierarchy of systems

a17a27137fy
of equations (45), where for p = 0 we have

0 = —Nag+ {(a1+a2)ag —bo}(B +1)
0 = —Nbg+by— (041 + ag)ap + (041 +ar — 1)(B+ 2)b0

and for 1 < p < min{aq, 3 + 1},

0 = ~Nay+{(e+az~p)ay ~b,}(B—p+1)
—(a1 =p+1)(B —p+ Dap—y
0 = —Nby+by— (g +az—play+ (a1 +as —p—1)(—p+2)b,

+(o1 —p+ 1){%—1 -(B-p+ Q)bp—l}

(47)o

(47)p

In the case f < aj — 1, the last equation is obtain for p = 4+ 1 and it reads (using

ag+1 = 0)
= —Nag+{(a1 +a2—B)ag —bg} — (a1 — B+ 1)ag_1
= —)\/bﬁ +bg — (o + a2 — Blag + (a1 +ag — f — 1)2bg +
+(a1 — B+ 1){(15,1 — ngfl},
which should be completed by (using ag41 = 0)
= 0
= —Nbg1+ (1 + a2 = B—1Dbgy1 — (1 = B)(bs — ap),
and the last equation (p = «a1), obtained in the case a; < 3 is
- _)‘,am + {a2aa1 - boq}(ﬁ — a1+ 1) - (ﬁ —ap + 1)aa1—1
= —Nbay + ba, — @204, + (g — 1)(B — a1 + 2)ba, +
+aa—1 = (B — a1 +2)ba; 1.

If |ag| + |bo| # 0, the system ((47)g) gives two eigenvalues

N = B+1D)(ar+az—1)>0
)\12 = (ﬁ+2)(0¢1+0¢2)>0

corresponding respectively to the two eigenvectors

ag = bp=1,
ap = B+1, byp=—(1+a).

Notice that even in the case when A = 0, one has A > 4w?. Let us show that we can now
determine the components ay, b, for p > 0. The determinant of the system ((47),) is given

by

Dy = {-N+(m+a-—p)B-p+DH{-N+1+ (a1 +a—p-1)(8-p+2)}+

—(B-p+D(ar+az—p)
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where
0={-N+ (1 +a)B+HH-N+1+ (a1 +as—1)(B+2)} — (B+1)(e1 + a2).
Hence

Dy = p(B+ar+az+1-p){2N — (a1 +a2)(B+1) +
—(ar+ o =1(E+2)+p(B+a+az+1-p)}.

The first factor is positive for p < 8+ 1 < aq, and for p < a3 < 3. For X' = ], the second
factor is

(p— (1 +az+ 6 —p)

while for A, the second factor is
Bt+ar+ay+2+p(B+ar+ay+1-p)>0.

The determinants are then different from 0 except for p = 1, with A’ = A}, and in the
special cases when a; = as = 8 = p = 0. This last case was already seen since it
corresponds to the eigenvector.

o4 = Poooy, @B =0.

The equation ((47),) for p =1 and X = \] leads to

—(o1 +az—1)a; — Bby = aifag
—(1+az—1)ay = Bby = —ai{ap — (B+ 1)bo}

where the compatibility condition is satisfied due to ap = by. This means that \] is at
least a double eigenvalue and that we can compute all coefficients ay, b,.

In conclusion, the above study allows to obtain all possible eigenvalues of T in H' ..
Since we proved that the only possible values for X' are nonnegative integers, we get that

min {\} > min{1,w?}.
)‘ESPeC(TLH// )
AB’
A0

Finally since H,, = H',, ® 1", we get that

min {\} > min{1,w?}.
)\Espec(T|HAB

A#£0

The same estimates holds in H . Hence we can conclude that ~ min  {\} > min{1,w?}
AB AT (L)\{0}
and thus

ap(L) = [l [} I, < max{1,w™"}.
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3 Exponential estimates for perturbed vector fields

Pour finir je donnerai ici les résultats pour le cas des champ de vecteurs avec parameétres.

A Properties of the normalized euclidian norm

A.1 Comparison of the euclidian and the sup norm

We begin with two technical lemmas which will be used several times

Lemma A.1 Let k,m be two positive integers and {uj}lgjgm be m complex numbers. Then

TP L T O
k! ok oq! !

Proof. We proceed by induction. For m = 1 this is trivial and for m = 2 this is true
because of the binomial formula. Assume now that it is true for m > 2, then

Qm41 k Qm+1

o aq
) L= W o 4 )3 uy Ut
| | | | |
\a|:k 7. Op+1- Qmg1=0 Ompt-1- a1+~~~+am:k—o¢m+1 7. (677
k Am+1 _
_ um+ﬁ (ul + e + um)k Am41
a0 Qpt1! (k — am1)!
(it Fugg)”
- k! '

Lemma A.2 Let k,m be two positive integers and

Ebm={8=(Br.- . Bm) €N™.3; > 1,]5] = k},

Em ={a = (o1, om) €N™ aj 2 0,|a| = k}.
Then, the cardinals d{;’m of 5/1,7717 j=0,1, are given by
divm = 0121_117 dgym = C]Z}F_W"ll—l'

. n!
where Cn = m

Proof. The cardinal of d}ﬁ’m is equal to the number of ways for placing (m — 1) distinct
separators among k — 1 possible locations, the order of the separators being meaningless.
For instance, the cardinal of d,1§73, is equal to the number of ways for placing 2 distinct
separators among k — 1 possible locations, the order of the separators being meaningless.

(€51 Qa2 Q3

Hence, d,lg 3= C’,%_l and more generally, d,lg m = C’lzn:ll.
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Finally, the map 518,m — 5,%+m7m (o, am) = (fri=ar+ 1, B = + 1)
is one to one. Hence

0 _ 71 _ rm—1
dk,m - dm-l—k - Cerkfl‘

Lemma A.3 For every ® € Hy, \@\Ok <l|®,, = # |, -

Proof. For ® € H;, with ® = > &;,Y*' - Y9 ¢; where {¢;}i1<j<m is the canonical

1<j<m
|a|=n
basis of R™ we have .
"I)‘ = —F Z ‘q)j,oz’2a1!-"' .am!
2h VR 1<5<m
laf=k
and
|2(Y)]? - Y Yo 2
I=A2 /1 D e _m
TP PR vt v
m Y2a1 y2am
< D, |2a1!...a ! 1 m
2 (2 e (X aves - aave)
by the Cauchy Schwarz formula. Then using Lemma A.1 we get
v y;2am 1 v? vz \° 1
Z 1 m S e I N [
e alllY [P anlffyPem k! (HYH2 HYH2> k!

Hence,

2|l 1 & 1
[®[ = sup <. |= 1Bial2 a1l am!) = —— O], = |¢]. .
Ok yeomgoy NYIF k!z (Z ! ) S 2k

=1 o=k
O
We now prove a Parseval like formula :
Lemma A.4 For every ® € Hy,
9 1 2T 2T +o0 +o00 ” 0 9
| |2 = @ 0d91--- Odﬂm ; dry - ; drpy, ||®(y/rie™t, - \/Tme”™)||%e” " e ™
Proof. We have
0 0 9 m a1+B8; am~+Bm 0 0

[B(TE - )2 = 3 S @By T e ® @) L imlom )

j=1 |a|=k

|81=Fk
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Hence,

1 27 +o00 )
(271) d01 d@ Odrl /drmeb \/_e”’1 ,\/mewm)H2 e ...e7Tm
m
= Z Z [P al /drl drm riteerm e e
J=1 |a|=k
G 2
= Z Z \@]a\Qal CQyy! = ]@\2
J=1 |a|=k
O
Finally, we ready to prove the opposite comparison of the two norms in Hy.
Lemma A.5 For every ® € Hy, |<I>|2Jg < k+m 1 |<I>|
Proof. Using the Lemmas A.1, A.4 we get
+o00 +o00 (7“ 4+t )k
2 2 1 _ v
o, < I0f, [dri- [ar, R
+OO —+o00 a1 Qm
= |(b|2 drl drm Z LTL eirl...eirm,
0,k 0 0 |o¢\:k Oé1! Oém!
- Ok > L
lo|=k
= ’ ’ Cm-l—k 1’
O

A.2 Multiplicativity of the normalized Euclidian Norm

To handle the computations, we need in this subsection more compact notations. For
Y=Y, ,Y,) €C”and a= (a1, - ,a,,) € N let us denote

al =gl ! and  YY=Y"...Yom

With these notations, for ® € H,, with ®(Y) = . &,Y“ where &, € R™, we have

|a|=n
@], = —— [ 2l o
lal=n
We start with two technical lemmas which will be used several times.

Lemma A.6 For o € N™ and n € N let us denote

Then for every positive integers q and {pe}1<e<q and everyy € N™ with |y| = p1 + -+ + pqg,
we have o "
q
%ler +pg Z %gl o ‘%;q :

a(f) eN™ ,‘a(f) |:pz
aW o qald=y
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Proof. Using Lemma A.1 we get that for every u = (uy, -+ ,uy) € C™,

(ug + -+ um)p1+---+pq — Z %;1+"'+pq u?,
I7|=p1++pq
— (ul++um)p1(u1++um)pq’

B o) a@ ool
- Z %pl e %pq u .
a(Z)ENmJa(@)\:pg

Identifying the powers of u we get the desired result. O

Lemma A.7 Let k > 0,p > 0 be two integers. Then for every v € N with |y| = n with
n:=k—1+p
m
K+ m-1Dk) B, =>" Y (a)® By B
7=1|a|=k,|8|=p
a—oj+Hi=y
where oj = (0,---,0,1,0,---,0) € N™ with the coefficient 1 placed at the j-th position.

Proof. Observe that for every u = (uy,--- ,uy) € C™,

S 82 9 k 2 n
(w4 +upm)? <uj—2+%> ((ur 4 +um)®) = &+ (m—=1)k)(ug +- - +up)™
j

: 9? 9 a _ 1\2, 00—0;
Hence, since (uja—u? + a—uj) u® = (a?)*u*"%, we get

(kQ + (m - 1)k) Z %3 u’ = Z Z (aj)Z %g %Iﬁ) ua+ﬁ_gj

Iyl=n I=1a|=k,
181=p
Identifying the powers of u we immediately get the desired result. O

We are now ready to prove the multiplicativity of the normalized euclidian norm in

H,,.

Lemma A.8 Let q and {ps}1<i<q be positive integers and let R, € L,(R™) be g-linear.
Then for every ®,, € Hy,,, 1 < € < q, the polynomial Ry[®,,,---, P, ] lies in H, with
n=p+---+pg and

’Rq[(bpp T 7q)pq”27n < |HRQ|H£q(Rm) ‘q)pl ’271)1 T ‘q)pq‘zpq .
Proof. For 1 < /¢ < g, let us denote
q)pz(y) = Z q)&pe) Ye
|a|=pe
Since R, is g-linear we get
W) a...1q@
Rq[q)pu"' ’(I)pq] = Z | Fotart Rq[q)((f(llg, a‘l>ip((22],

(O eNm Jal®)|=p,

= Z Y7 Z Rq[(bip(llgv'“’q)((;%]'

= a®eNm |ald|=p,
aW4pa@=x
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Hence,

2
2
Rl 0l = At X R a0
7 I'YI (l)eNm,‘a(Z”_pl
a® g o@D =y

)

1
< XX MR 1)
l=n a®enm |al)|=p,
a .. +a(q)—’y
1
< R, gy 2 [@( S (@@B)2)- - (@ @rel|?) )

Iv[=n na(z) eN™ |a®|=p,
a4 qalD=y

1 1
(X WW)}

a(l)ENm,\a(z)\Zpg
a(1)+...+a(Q):7

by the Cauchy-Schwarz formula. Then since Lemma A.6 ensures that

L 1 1 M @
Z = maLomae? = B
(1)1 (@) l.o.p | Z p1 Pq o P
a(‘)eNm,la“)gpe : a\l pirieccpg O N [0 =py Pl pg!
ot tald=y a@ foga(@ =y
we obtain
s IR _— .
| B[y ’q)quQ = | | Z Z ( @ (1)|| ) (a ||‘I)a<q>|| ),
,n prle-- pq.

IYI=n @ eN™ |al®|=p,
aW gD =

IR, o

= ——— > (@B |2) - (@1l |2),

l... |
P Pat 0 enm [a®)|=p,

1
= MBI oy IG5 X a2 1P).
(=

|
1 be: a(f)eNm,\a(Z)\fW
- 2 2 . 2
L s L O

Lemma A.9 Let k > 0, p > 0 be two integers and let @5, N,, lie respectively in Hy, and
H,. Then D®y.N, lies in H,, withn =k —1+p and

DBLN, |, | < \K 4 (m =Dk |91, N,

Proof. Let us denote
= > YV, N,(Y)= Y YPNg
lo|=k 181=p

where ®,, Ng € C™, and Ng = (Ng1, -, Ng,m). Then,

Dd,. Np—z Z a; yo- 0']+/8Nﬁ] o= Z Y“/Z Z ajNg ;jP,.

=1 =k h=n  i=1|al=k,|8|=p
\ﬁ|:p 04_0'j+ﬁ:’y
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where 0; = (0,---,0,1,0,---,0) with the coefficient 1 placed at the j-th position. Hence,

Do < D& (Z ST Nall|Dal)?
’ 7= B2 Lja]=k,|8|=p
a— a]+5 =
< 2 g [(Z > alBNg;l|2al?).

n
J=1la|=k,|5|=p

a0 +i=y

Iv|=n

.- el 1
X(azw;wp(%) ol ﬂ!)}
a—o;+p=y

by the Cauchy-Schwarz formula. Then, since Lemma A.7 ensures that

s 11
_ amiB __ 2
Z > aj Eﬁ_kvplz > of BEBY k,,(k; + (m —1)k)®B)
=1 al=k,|8|=p 7=1|a|=k,|B|=p

a—oj+B=y a—o;+B8=y

we finally obtain

m
DN, < im0 T3S el P
|=n3=1|a|=k,|8|=p
a—o;+p=y
m
= (B = DB Y 3 alateal N,
lo|=k, =1
|B8l=p
— B+ n = DR S alBlea N R
ol =k,
|8|=p

2 2
= (=R (D42, N2

O

A.3 Invariance of the euclidian norm under unitary linear change of
coordinates

Lemma A.10 Let Q be a unitary linear map in R™ or C™ and denote T, : H — H,® —
Q lod®oQ. Then 7, is a unitary linear operator in H, i.e. for every ® € H,

’TQCDL = |o|,.

Proof. Using lemma A.4 we get that

2 1 2m 2m +o00 +o00 . .
‘TQq)‘ — d91 A0y [dry - [dry, |PoQ(\/1e®, - | frme?m) |2 e m,

2 (2m)m o Jo 0
Then performing the change of coordinates (r1, -+ , 7y, 01, ,0m) — (1, 7,01, ,00)
with

. , .
( /Tiezel . /T‘/ 16;,, 1 291,.”’ Tmewm)
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the Jacobian of which is equal to 1 and observing that

et = QW e =
we get the desired result. O
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