High-resolution product quantization for Gaussian processes under sup-norm distortion

Harald Luschgy, Gilles Pagès

To cite this version:

Harald Luschgy, Gilles Pagès. High-resolution product quantization for Gaussian processes under sup-norm distortion. 2005. hal-00013489v1

HAL Id: hal-00013489
https://hal.science/hal-00013489v1
Preprint submitted on 8 Nov 2005 (v1), last revised 5 Sep 2007 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High-resolution product quantization for Gaussian processes under sup-norm distortion

Harald Luschgy* and Gilles Pagès ${ }^{\dagger}$

November 05

Abstract

We derive high-resolution upper bounds for optimal product quantization of pathwise contionuous Gaussian processes respective to the supremum norm on $[0, T]^{d}$. Moreover, we describe a product quantization design which attains this bound. This is achieved under very general assumptions on random series expansions of the process. It turns out that product quantization is asymptotically only slightly worse than optimal functional quantization. The results are applied e.g. to fractional Brownian sheets and the Ornstein-Uhlenbeck process.

Key words: High-resolution quantization, product quantization, Gaussian process, series expansion.
2000 Mathematics Subject Classification: 60G15, 60G35, 41A25.

1 Introduction

We investigate the functional quantization problem for pathwise continuous Gaussian processes $X=\left(X_{t}\right)_{t \in I}, I=[0, T]^{d}$, where the distortion is based on the supremum norm in the path-space $E=\mathcal{C}(I)$. The general Banach space setting reads as follows.

Let $(E,\|\cdot\|)$ be a real separable Banach space and let $X:(\Omega, \mathcal{A}, \mathbb{P}) \rightarrow E$ be a centered Gaussian random vector taking its values in E with distribution \mathbb{P}_{x}. For $N \in \mathbb{N}$ and $r \in(0, \infty)$, the L^{r}-quantization problem for X of level N (or of nat-level $\log N$) consists in minimizing

$$
\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{r}\right)^{1 / r}
$$

over all subsets $\alpha \subset E$ with $\operatorname{card}(\alpha) \leq N$. Such a set is called N-codebook or N-quantizer. The minimal N th quantization error of X is then defined by

$$
\begin{equation*}
e_{N, r}(X, E):=\inf \left\{\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{r}\right)^{1 / r}: \alpha \subset E, \operatorname{card}(\alpha) \leq N\right\} . \tag{1.1}
\end{equation*}
$$

It is still an open question whether L^{r}-optimal N-quantizers for Gaussian random vectors always exist (see [12]). For a given N-quantizer α one defines an associated closest neighbour projection

$$
\pi_{\alpha}:=\sum_{a \in \alpha} a 1_{C_{a}(\alpha)}
$$

[^0]and the Voronoi quantization of X induced by α by
\[

$$
\begin{equation*}
\hat{X}^{\alpha}:=\pi_{\alpha}(X) \tag{1.2}
\end{equation*}
$$

\]

where $\left\{C_{a}(\alpha): a \in \alpha\right\}$ is a Voronoi partition induced by α, that is a Borel partition of E satisfying

$$
C_{a}(\alpha) \subset\left\{x \in E:\|x-a\|=\min _{b \in \alpha}\|x-b\|\right\}
$$

for every $a \in \alpha$. Then one easily checks that

$$
\begin{equation*}
\mathbb{E}\left\|X-\hat{X}^{\alpha}\right\|^{r}=\mathbb{E} \min _{a \in \alpha}\|X-a\|^{r} \tag{1.3}
\end{equation*}
$$

In order to construct good N-quantizations for X we proceed by (scalar) product quantization. Let ξ_{1}, ξ_{2}, \ldots be i.i.d. $\mathcal{N}(0,1)$-distributed random variables and let $\left(f_{j}\right)_{j \geq 1}$ be a sequence in E such that $\sum_{j=1}^{\infty} \xi_{j} f_{j}$ converges a.s. in E and

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{j=1}^{\infty} \xi_{j} f_{j} \tag{1.4}
\end{equation*}
$$

For $m, N_{1}, \ldots N_{m} \in \mathbb{N}$ with $\Pi_{j=1}^{m} N_{j} \leq N$, let $\alpha_{j} \subset \mathbb{R}$ be an L^{r}-optimal N_{j}-quantizer for ξ_{j} and let $\hat{\xi}_{j}=\hat{\xi}_{j}^{\alpha_{j}}$ be the $\left(\mathbb{P}_{\xi_{j}}\right.$-a.s. uniquely defined) Voronoi quantization of ξ_{j} induced by α_{j}. Then, a L^{r}-product N-quantization of X with respect to $\left(f_{j}\right)$ is defined by

$$
\begin{equation*}
\hat{X}^{N}:=\sum_{j=1}^{m} \hat{\xi}_{j} f_{j} \tag{1.5}
\end{equation*}
$$

and the quantization error induced by \hat{X}^{N} reads

$$
\left(\mathbb{E}\left\|\sum_{j=1}^{\infty} \xi_{j} f_{j}-\hat{X}^{N}\right\|^{r}\right)^{1 / r}
$$

The quantizer $\alpha=\hat{X}^{N}(\Omega)$ satisfies $\operatorname{card}(\alpha) \leq N$ and

$$
\left(\mathbb{E} \min _{a \in \alpha}\|X-a\|^{r}\right)^{1 / r} \leq\left(\mathbb{E}\left\|\sum_{j=1}^{\infty} \xi_{j} f_{j}-\hat{X}^{N}\right\|^{r}\right)^{1 / r}
$$

Observe that \hat{X}^{N} is not a Voronoi quantization of X. The minimal N th product quantization error is then defined by

$$
\begin{align*}
e_{N, r}(X, E)^{(p q)}:= & \inf \left\{\left(\mathbb{E}\left\|\sum_{j=1}^{\infty} \xi_{j} f_{j}-\hat{X}\right\|^{r}\right)^{1 / r}: X \stackrel{d}{=} \sum_{j=1}^{\infty} \xi_{j} f_{j},\right. \tag{1.6}\\
& \left.\hat{X} L^{r} \text {-product } N \text {-quantization w.r.t. }\left(f_{j}\right)\right\}
\end{align*}
$$

Clearly, we have

$$
\begin{equation*}
e_{N, r}(X, E) \leq e_{N, r}(X, E)^{(p q)} . \tag{1.7}
\end{equation*}
$$

We address the issue of high-resolution product quantization in $E=\mathcal{C}(I)$ under the sup-norm which concerns the performance of \hat{X}^{N} and the behaviour of $e_{N, r}(X, \mathcal{C}(I))^{(p q)}$ as $N \rightarrow \infty$. For a broad class of Gaussian processes we derive high-resolution upper estimates for $e_{N, r}(X, \mathcal{C}(I))^{(p q)}$. Furthermore, we describe a product quantization design \hat{X}^{N} which attains this bound. Combining
these estimates with precise high-resolution formulas for $e_{N, r}(X, \mathcal{C}(I))$ (see [5], [6], [11]) one may typically conclude

$$
e_{N, r}(X, \mathcal{C}(I))^{(p q)}=O\left((\log \log N)^{c} e_{N, r}(X, \mathcal{C}(I))\right)
$$

for some suitable constant $c>0$. This suggests that the asymptotic quality of product quantization which is based on easy computations is only slightly worse than optimal quantization. However, it also suggests that the optimal rate, i.e. the rate of convergence to zero of $e_{N, r}(X, \mathcal{C}(I))$, cannot be achieved by product quantization.

It should be noticed that the $\mathcal{C}(I)$-setting thus turns out to be different from the Hilbert space setting. For Hilbert spaces E (like $E=L^{2}(I, d t)$), sharp high-resolution formulas for $e_{N, r}(X, E)$ and L^{2}-product quantization have been fully investigated in the past years (see [4], [16], [17], [18]). A typical result is then, at least for $r=2$,

$$
e_{N, r}(X, E)^{(p q)}=O\left(e_{N, r}(X, E)\right)
$$

so that optimal product quantization is in fact rate optimal.
The paper is organized as follows. Section 2 contains a brief survey about expansions of $\mathcal{C}(I)$ valued Gaussian random vectors in the sense of (1.4). This is an important issue for product quantization since $e_{N, r}(X, \mathcal{C}(I))^{(p q)}$ comprises a minimization over such expansions (see (1.6)). In Section 3 we derive high-resolution upper estimates for $e_{N, r}(X, \mathcal{C}(I))^{(p q)}$ under very general assumptions on expansions. Section 4 contains a collection of examples including fractional Brownian sheets, Riemann-Liouville processes and the Ornstein-Uhlenbeck process.

It is convenient to use the symbols \sim and \approx, where $a_{n} \sim b_{n}$ means $a_{n} / b_{n} \rightarrow 1$ and $a_{n} \approx b_{n}$ means $a_{n}=O\left(b_{n}\right)$ and $a_{n}=\Omega\left(b_{n}\right)$. Throughout all logarithms are natural logarithms and $[x]$ denotes the integer part of the real number x.

2 Expansions

We present the basic facts about expansions of Gaussian stochastic processes viewed as random vectors taking values in a Banach (function) space. They are essentially well known and contained more or less explicitely in [3], [14] and [20]. We give some proofs for the reader's convenience. Furthermore, we introduce examples which are investigated for quantization in Section 4.

2.1 The Banach space setting

Let $(E,\|\cdot\|)$ be a real separable Banach space. For $u \in E^{*}$ and $x \in E$, it is convenient to write

$$
\langle u, x\rangle
$$

in place of $u(x)$. Let $X:(\Omega, \mathcal{A}, \mathbb{P}) \rightarrow E$ be a centered Gaussian random vector with distribution \mathbb{P}_{X}. The covariance operator $C=C_{X}$ of X is defined by

$$
\begin{equation*}
C: E^{*} \rightarrow E, C u:=\mathbb{E}\langle u, X\rangle X \tag{2.1}
\end{equation*}
$$

This operator is linear and (norm-)continuous. Let $H=H_{X}$ denote the reproducing kernel Hilbert space (Cameron Martin space) of the symmetric nonnegative definite kernel

$$
E^{*} \times E^{*} \rightarrow \mathbb{R},(u, v) \mapsto\langle u, C v\rangle
$$

Then H is a Hilbert subspace of E, that is $H \subset E$ and the inclusion map is continuous. The reproducing property reads

$$
\begin{equation*}
(h, C u)_{H}=\langle u, h\rangle, u \in E^{*}, h \in H \tag{2.2}
\end{equation*}
$$

where $(\cdot, \cdot)_{H}$ denotes the scalar product on H and the corresponding norm is given by

$$
\begin{equation*}
\|h\|_{H}=\sup \left\{|\langle u, h\rangle|: u \in E^{*},\langle u, C u\rangle \leq 1\right\} . \tag{2.3}
\end{equation*}
$$

In particular, for $h \in H$,

$$
\begin{equation*}
\|h\| \leq \sup _{\|u\| \leq 1}\langle u, C u\rangle^{1 / 2}\|h\|_{H}=\|C\|^{1 / 2}\|h\|_{H} \tag{2.4}
\end{equation*}
$$

The $\|\cdot\|_{H^{-}}$closure of $A \subset H$ is denoted by $\bar{A}^{(H)}$ Furthermore, H is separable, $C\left(E^{*}\right)$ is dense in $\left(H,\|\cdot\|_{H}\right)$, the unit ball

$$
U_{H}:=\left\{h \in H:\|h\|_{H} \leq 1\right\}
$$

of H is a compact subset of E,

$$
\operatorname{supp}\left(\mathbb{P}_{x}\right)=(\operatorname{ker} C)^{\perp}:=\{x \in E:\langle u, x\rangle=0 \text { for every } u \in \operatorname{ker} C\}=\bar{H} \text { in } E
$$

and

$$
\begin{equation*}
H=\left\{x \in E:\|x\|_{H}<\infty\right\} \tag{2.5}
\end{equation*}
$$

where

$$
\|x\|_{H}=\sup \left\{|\langle u, x\rangle|: u \in E^{*},\langle u, C u\rangle \leq 1\right\} .
$$

We are interested in expansions of X of the following type. Let ξ_{1}, ξ_{2}, \ldots be i.i.d. $\mathcal{N}(0,1)$ distributed random variables.

Definition $1 A$ sequence $\left(f_{j}\right)_{j \geq 1} \in E^{\mathbb{N}}$ is called admissible for X if

$$
\sum_{j=1}^{\infty} \xi_{j} f_{j} \text { converges a.s. in } E
$$

and

$$
X \stackrel{d}{=} \sum_{j=1}^{\infty} \xi_{j} f_{j}
$$

By adding zeros finite sequences in E may also serve as admissible sequences.
The key is the following characterization of admissibility. It relies on the Ito-Nisio theorem. Condition (v) is an abstract version of Mercer's theorem. Recall that a subset $G \subset E^{*}$ is said to be separating if for every $x, y \in E, x \neq y$ there exists $u \in G$ such that $\langle u, x\rangle \neq\langle u, y\rangle$.
Lemma 1 Let $\left(f_{j}\right)_{j \geq 1} \in E^{\mathbb{N}}$. The following assertions are equivalent.
(i) The sequence $\left(f_{j}\right)_{j \geq 1}$ is admissible for X.
(ii) There is a separating linear subspace G of E^{*} such that for every $u \in G$,

$$
\left(\left\langle u, f_{j}\right\rangle\right)_{j \geq 1} \text { is admissible for }\langle u, X\rangle \text {. }
$$

(iii) There is a separating linear subspace G of E^{*} such that for every $u \in G$,

$$
\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle^{2}=\langle u, C u\rangle
$$

(iv) For every $u \in E^{*}$,

$$
\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle f_{j}=C u
$$

(v) For every $a>0$,

$$
\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle\left\langle v, f_{j}\right\rangle=\langle u, C v\rangle
$$

uniformly in $u, v \in\left\{y \in E^{*}:\|y\| \leq a\right\}$.
Proof. Set $X_{n}:=\sum_{j=1}^{n} \xi_{j} f_{j}$. (i) $\Rightarrow(\mathrm{v}) . X_{n}$ converges a.s. in E to some E-valued random vector Y, say, with $X \stackrel{d}{=} Y$. It is well known that this implies $X_{n} \rightarrow Y$ in L_{E}^{2}. Therefore,

$$
\begin{aligned}
& \left|\sum_{j=1}^{n}\left\langle u, f_{j}\right\rangle\left\langle v, f_{j}\right\rangle-\langle u, C v\rangle\right|=\left|\mathbb{E}\left\langle u, X_{n}\right\rangle\left\langle v, X_{n}\right\rangle-\mathbb{E}\langle u, Y\rangle\langle v, Y\rangle\right| \\
& \quad=\left|\mathbb{E}\left\langle u, Y-X_{n}\right\rangle\left\langle v, Y-X_{n}\right\rangle\right| \leq a^{2} \mathbb{E}\left\|Y-Y_{n}\right\|^{2} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

uniformly in $u, v \in\left\{y \in E^{*}:\|y\| \leq a\right\} .(v) \Rightarrow(i v) \Rightarrow(i i i)$ is obvious. (iii) $\Rightarrow(i)$. For every $u \in G$,

$$
\mathbb{E} \exp \left(i\left\langle u, X_{n}\right\rangle\right)=\exp \left(-\sum_{j=1}^{n}\left\langle u, f_{j}\right\rangle^{2} / 2\right) \rightarrow \exp (-\langle u, C u\rangle / 2)=\mathbb{E} \exp (i\langle u, X\rangle)
$$

The assertion (i) follows from the Ito-Nisio theorem (cf. [20], p. 271). (i) \Rightarrow (ii) \Rightarrow (iii) is obvious. \diamond

Note that the preceding lemma shows in particular that $\left(f_{j}\right)_{j \geq 1}$ is admissible for X if and only if $\left(f_{\sigma(j)}\right)_{j \geq 1}$ is admissible for X for (some) every permutation σ of \mathbb{N} so that $\sum_{j} \xi_{j} f_{j}$ converges unconditionally a.s. in E for such sequences and all the a.s. limits under permuations of \mathbb{N} have distribution \mathbb{P}_{X}.

It is also an immediate consequence of Lemma $1(\mathrm{v})$ that admissible sequences $\left(f_{j}\right)$ satisfy $\left\|f_{j}\right\| \rightarrow 0$.

The covariance operator admits factorizations $C=S S^{*}$, where $S: K \rightarrow E$ is a linear continuous operator and $\left(K,(\cdot, \cdot)_{K}\right)$ a real separable Hilbert space, which provide an useful tool for expansions. It is convenient to allow that S is not injective. One gets

$$
\begin{align*}
S(K) & =H \tag{2.6}\\
\left(S k_{1}, S k_{2}\right)_{H} & =\left(k_{1}, k_{2}\right)_{K}, k_{1} \in K, k_{2} \in(\operatorname{ker} S)^{\perp}, \\
\|S\| & =\left\|S^{*}\right\|=\|C\|^{1 / 2}, \\
\frac{S^{*}\left(E^{*}\right)}{} & =(\operatorname{ker} S)^{\perp} \text { in } K, \\
\left(\operatorname{ker} S^{*}\right)^{\perp} & :=\left\{x \in E:\langle u, x\rangle=0 \forall u \in \operatorname{ker} S^{*}\right\}=\bar{H} \text { in } E .
\end{align*}
$$

Proposition 1 Let $C=S S^{*}, S: K \rightarrow E$ be a factorization of C and let $\left(e_{j}\right)$ be an orthonormal system in K satisfying $(k e r S)^{\perp} \subset \overline{\operatorname{span}}\left\{e_{j}: j=1,2, \ldots\right\}$. Then $\left(S\left(e_{j}\right)\right)$ is admissible for X.

Proof. Clearly $\left(e_{j}\right)$ is an orthonormal basis of $K_{0}:=\overline{\operatorname{span}}\left\{e_{j}: j=1,2, \ldots\right\}$. Since by (2.6)

$$
S^{*}\left(E^{*}\right) \subset(\operatorname{ker} S)^{\perp} \subset K_{0},
$$

one obtains for every $u \in E^{*}$, by the Parseval identity,

$$
\sum_{j}\left\langle u, S e_{j}\right\rangle^{2}=\sum_{j}\left(S^{*} u, e_{j}\right)_{K}^{2}=\left\|S^{*} u\right\|_{K}^{2}=\langle u, C u\rangle
$$

The assertion follows from Lemma $1 . \diamond$
Examples - Let $S: H \rightarrow E$ be the inclusion map. Then $C=S S^{*}$. Consequently, every orthonormal basis $\left(f_{j}\right)$ of H is admissible for X.

- Let K be the closure of E^{*} in $L^{2}\left(\mathbb{P}_{X}\right)$ and $S: K \rightarrow E, S k=\mathbb{E} k(X) X$. Then S is injective and $S^{*}: E^{*} \rightarrow K$ is the natural embedding. Thus $C=S S^{*}$. (K is sometimes called the energy space of X.) One obtains

$$
H=S(K)=\{\mathbb{E} k(X) X: k \in K\}
$$

and

$$
\left(\mathbb{E} k_{1}(X) X, \mathbb{E} k_{2}(X) X\right)_{H}=\int k_{1} k_{2} d \mathbb{P}_{X} .
$$

- Let E be a Hilbert space, $K=E$ and $S=C^{1 / 2}$. Then $C=S S^{*}=S^{2}$ and $(\operatorname{ker} S)^{\perp}=\bar{H}$. Consequently, if $\left(e_{j}\right)$ is an othonormal basis of the Hilbert subspace \bar{H} of E consisting of eigenvectors of C and $\left(\lambda_{j}\right)$ the corresponding nonzero eigenvalues, then $\left(\sqrt{\lambda_{j}} e_{j}\right)$ is admissible for X and an orthonormal basis of $\left(H,(\cdot, \cdot)_{H}\right)$ (Karhunen-Loève basis).

In the following proposition it is demonstrated that any admissible set for X arises in the manner of Proposition 1.
Proposition 2 Assume that $\left(f_{j}\right)_{j \geq 1}$ is admissible for X. Let K be an infinite dimensional real separable Hilbert space and $\left(e_{j}\right)_{j \geq 1}$ an orthonormal basis of K. Then there is a factorization $C=S S^{*}, S: K \rightarrow E$ such that $S\left(e_{j}\right)=f_{j}$ for every j.
Proof. First, observe that $\sum_{j=1}^{\infty} c_{j} f_{j}$ converges in E for every $\left(c_{j}\right)_{j} \in l_{2}(\mathbb{N})$. In fact, using Lemma 1,

$$
\begin{aligned}
\left\|\sum_{j=n}^{n+m} c_{j} f_{j}\right\|^{2} & =\sup _{\|u\| \leq 1}\left\langle u, \sum_{j=n}^{n+m} c_{j} f_{j}\right\rangle^{2} \\
& \leq \sum_{j=n}^{n+m} c_{j}^{2} \sup _{\|u\| \leq 1} \sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle^{2} \\
& =\sum_{j=n}^{n+m} c_{j}^{2} \sup _{\|u\| \leq 1}\langle u, C u\rangle \\
& =\sum_{j=n}^{n+m} c_{j}^{2}\|C\| \rightarrow 0, n, m \rightarrow \infty
\end{aligned}
$$

and thus the sequence is Cauchy in E. Now define $S: K \rightarrow E$ by

$$
S(k):=\sum_{j=1}^{\infty}\left(k, e_{j}\right)_{K} f_{j}
$$

where $\sum\left(k, e_{j}\right)_{K} f_{j}$ converges in E since $\left(\left(k, e_{j}\right)_{K}\right)_{j} \in l_{2}(\mathbb{N})$. S is obviously linear. Moreover, for $k \in K$, using again Lemma 1 ,

$$
\begin{aligned}
\|S k\|^{2} & =\sup _{\|u\| \leq 1}\langle u, S k\rangle^{2} \\
& =\sup _{\|u\| \leq 1}\left(\sum_{j=1}^{\infty}\left(k, e_{j}\right)_{K}\left\langle u, f_{j}\right\rangle\right)^{2} \\
& \leq\|k\|_{K}^{2}\|C\| .
\end{aligned}
$$

Consequently, S is continuous and $S\left(e_{j}\right)=f_{j}$ for every j. Finally, $S^{*}(u)=\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle e_{j}$ and hence

$$
S S^{*} u=\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle f_{j}=C u
$$

for every $u \in E^{*}$ by Lemma 1 .

Corollary 1 Let $\left(f_{j}\right)_{j \geq 1} \in E^{\mathbb{N}}$ be admissible for X. Then $\left\{f_{j}: j \geq 1\right\} \subset U_{H}, \overline{\operatorname{span}}^{(H)}\left\{f_{j}: j \geq\right.$ $1\}=H, \sum\left(f_{j}, h\right)_{H} f_{j}$ converges in H and

$$
\sum_{j=1}^{\infty}\left(f_{j}, h\right)_{H} f_{j}=h
$$

for every $h \in H$. Furthermore, $\left(f_{j}\right)$ is an orthonormal basis of H if and only if $\left\|f_{j}\right\|_{H}=1$ for every j.

Proof. Choose a factorization $C=S S^{*}, S: K \rightarrow H$ and an orthonormal basis $\left(e_{j}\right)_{j \geq 1}$ of K as in Proposition 2. The inclusion $\left\{f_{j}: j \geq 1\right\} \subset U_{H}$ and the assertion concerning the $\|\cdot\|_{H}$-closed span follow immediately from (2.6). Since S is continuous as operator from K onto $H, \sum\left(e_{j}, k\right)_{K} S e_{j}$ converges in H,

$$
\sum_{j=1}^{\infty}\left(e_{j}, k\right)_{K} f_{j}=S k
$$

and since $\left(e_{j}, k\right)_{K}=\left(f_{j}, S k\right)_{H}$ for every $k \in(\operatorname{ker} S)^{\perp}$, we obtain

$$
\sum_{j=1}^{\infty}\left(f_{j}, h\right)_{H} f_{j}=h
$$

for every $h \in H$. Write $e_{j}=e_{j}^{(1)}+e_{j}^{(2)}$ with $e_{j}^{(1)} \in(\operatorname{ker} S)^{\perp}$ and $e_{j}^{(2)} \in \operatorname{ker} S$. If $\left\|f_{j}\right\|_{H}=1$ for every j, then using (2.6),

$$
\left\|e_{j}^{(1)}\right\|_{K}=\left\|S e_{j}^{(1)}\right\|_{H}=\left\|f_{j}\right\|_{H}=1=\left\|e_{j}\right\|_{K}
$$

and thus $e_{j}^{(2)}=0$ for every j. This implies that S is injective so that for $i \neq j$,

$$
\left(f_{i}, f_{j}\right)_{H}=\left(e_{i}, e_{j}\right)_{K}=0 . \quad \diamond
$$

Let F be a further separable Banach space and $V: E \rightarrow F$ a linear continuous operator. Then $V(X)$ is centered Gaussian with covariance operator

$$
C_{V(X)}=V C_{X} V^{*}
$$

and

$$
\begin{align*}
H_{V(X)} & =V\left(H_{X}\right) \tag{2.7}\\
\left(V h_{1}, V h_{2}\right)_{H_{V(X)}} & =\left(h_{1}, h_{2}\right)_{H_{X}}, h_{1} \in H_{X}, h_{2} \in\left(\operatorname{ker}\left(V \mid H_{X}\right)\right)^{\perp} .
\end{align*}
$$

If $\left(f_{j}\right)_{j \geq 1}$ is admissible for X in E, then clearly $\left(V\left(f_{j}\right)\right)_{j \geq 1}$ is admissible for $V(X)$ in F. The following proposition contains the converse for injective operators V.

Proposition 3 Assume that $V: E \rightarrow F$ is injective. Let $\left(g_{j}\right)_{j \geq 1}$ be an admissible sequence for $V(X)$ in F. Then there exists a sequence $\left(f_{j}\right)_{j \geq 1}$ in E which is admissible for X such that $V\left(f_{j}\right)=g_{j}$ for every j.

Proof. By Corollary 1 and (2.7), we have $\left\{g_{j}: j \geq 1\right\} \subset V\left(H_{x}\right)$ so that $g_{j}=V\left(f_{j}\right)$ with $f_{j} \in H_{X} \subset E$. Using Lemma 1, we obtain for every $y \in F^{*}$,

$$
\sum_{j=1}^{\infty}\left\langle V^{*} y, f_{j}\right\rangle^{2}=\sum_{j=1}^{\infty}\left\langle y, V\left(f_{j}\right)\right\rangle^{2}=\left\langle y, C_{V(X)} y\right\rangle=\left\langle V^{*} y, C_{X} V^{*} y\right\rangle
$$

and hence

$$
\sum_{j=1}^{\infty}\left\langle u, f_{j}\right\rangle^{2}=\left\langle u, C_{X} u\right\rangle
$$

for every $u \in V^{*}\left(F^{*}\right)$. Since $V^{*}\left(F^{*}\right) \subset E^{*}$ is separating if (and only if) V is injective it follows from Lemma 1 that $\left(f_{j}\right)$ is admissible for X. \diamond

Almost sure representations of X can be obtained under a suitable restriction on the admissible sequence.

Proposition 4 Assume that the admissible sequence $\left(f_{j}\right)_{j \geq 1}$ for X in E is an orthonormal basis of H (cf. Corollary 1). Then there exist i.i.d. $\mathcal{N}(0,1)$-distributed random variables $\eta_{1}, \eta_{2}, \ldots$ such that

$$
X=\sum_{j=1}^{\infty} \eta_{j} f_{j} \quad \text { a.s. }
$$

Proof. Choose the energy factorization $C=S S^{*}$ with K the closure of E^{*} in $L^{2}\left(\mathbb{P}_{X}\right)$ and $S k=\mathbb{E} k(X) X$. Let $e_{j}:=S^{-1}\left(f_{j}\right)$ and $\eta_{j}:=e_{j}(X)$. Then $\left(e_{j}\right)_{j \geq 1}$ is an orthonormal basis of K and thus $\eta_{j}, j \geq 1$ are i.i.d. $\mathcal{N}(0,1)$-distributed. Consequently,

$$
\sum_{j=1}^{\infty} \eta_{j} f_{j} \text { converges a.s. in } E .
$$

For every $u \in E^{*}$, we have

$$
\left\langle u, \sum_{j=1}^{\infty} \eta_{j} f_{j}\right\rangle=\sum_{j=1}^{\infty} \eta_{j}\left(S^{*} u, e_{j}\right)_{K}=S^{*} u(X)=\langle u, X\rangle \text { a.s. }
$$

Since there is a countable separating subset of E^{*} this yields

$$
X=\sum_{j=1}^{\infty} \eta_{j} f_{j} \text { a.s. }
$$

2.2 Continuous Gaussian processes

Now let I be a compact metric space and $X=\left(X_{t}\right)_{t \in I}$ be a real pathwise continuous centered Gaussian process. Let $E:=\mathcal{C}(I)$ be equipped with the sup-norm $\|x\|=\sup _{t \in I}|x(t)|$. Then X can be seen as $\mathcal{C}(I)$-valued Gaussian random vector and the covariance operator $C: \mathcal{C}(I)^{*} \rightarrow \mathcal{C}(I)$ takes the form

$$
\begin{align*}
C u(t) & =\left\langle\delta_{t}, C u\right\rangle=\left\langle C \delta_{t}, u\right\rangle \\
& =\left\langle\mathbb{E} X_{t} X, u\right\rangle=\int_{I} \mathbb{E} X_{t} X_{s} d u(s) . \tag{2.8}
\end{align*}
$$

Factorizations of C can be obtained as follows. For Hilbert spaces K_{i}, let $\oplus_{i=1}^{m} K_{i}$ denote the Hilbertian (or $l_{2}-$)direct sum.

Lemma 2 For $i \in\{1, \ldots, m\}$, let K_{i} be a real separable Hilbert space. Assume the representation

$$
\mathbb{E} X_{s} X_{t}=\sum_{i=1}^{m}\left(g_{s}^{i}, g_{t}^{i}\right)_{K_{i}}, s, t \in I
$$

for vectors $g_{t}^{i} \in K_{i}$. Then

$$
S: \oplus_{i=1}^{m} K_{i} \rightarrow \mathcal{C}(I), S k(t):=\sum_{i=1}^{m}\left(g_{t}^{i}, k_{i}\right)_{K_{i}}
$$

is a linear continuous operator, $(k e r S)^{\perp}=\overline{\operatorname{span}}\left\{\left(g_{t}^{1}, \ldots, g_{t}^{m}\right): t \in I\right\}$ and $C=S S^{*}$.
Proof. Let $K:=\oplus_{i=1}^{m} K_{i}$ and $g_{t}:=\left(g_{t}^{1}, \ldots, g_{t}^{m}\right)$. Then $\mathbb{E} X_{s} X_{t}=\left(g_{s}, g_{t}\right)_{K}$ and $S k(t)=\left(g_{t}, k\right)_{K}$. First, observe that

$$
\sup _{t \in I}\left\|g_{t}\right\|_{K} \leq\|C\|^{1 / 2}<\infty
$$

Indeed, for every $t \in I$, by (2.8),

$$
\left\|g_{t}\right\|_{K}^{2}=\mathbb{E} X_{t}^{2}=\left\langle\delta_{t}, C \delta_{t}\right\rangle \leq\|C\| .
$$

The function $S k$ is continuous for $k \in \operatorname{span}\left\{g_{s}: s \in I\right\}$. This easily implies that $S k$ is continuous for every $k \in \operatorname{span}\left\{g_{s}: s \in I\right\}$ and thus for every $k \in K . S$ is obviously linear and

$$
\|S k\|=\sup _{t \in I}\left|\left(g_{t}, k\right)_{K}\right| \leq\|C\|^{1 / 2}\|k\|_{K} .
$$

Finally, $S^{*}\left(\delta_{t}\right)=g_{t}$ so that

$$
S S^{*} \delta_{t}(s)=S g_{t}(s)=\mathbb{E} X_{s} X_{t}=C \delta_{t}(s)
$$

for every $s, t \in I$. Consequently, for every $u \in \mathcal{C}(I)^{*}, t \in I$,

$$
\begin{aligned}
S S^{*} u(t) & =\left\langle S S^{*} u, \delta_{t}\right\rangle=\left\langle u, S S^{*} \delta_{t}\right\rangle \\
& =\left\langle u, C \delta_{t}\right\rangle=\left\langle C u, \delta_{t}\right\rangle=C u(t)
\end{aligned}
$$

and hence $C=S S^{*}$.
Example Let K be the first Wiener chaos, that is $K=\overline{\operatorname{span}}\left\{X_{t}: t \in I\right\}$ in $L^{2}(\mathbb{P})$ and $g_{t}=X_{t}$. Then $S k=\mathbb{E} k X$ and S is injective. If for instance $X=W$ (Brownian motion) and $I=[0, T]$, then

$$
K=\left\{\int_{0}^{T} f(s) d W_{s}: f \in L^{2}([0, T], d t)\right\} .
$$

We derive from the preceeding lemma and Proposition 1 the following corollary.
Corollary 2 Assume the situation of Lemma 2. Let $\left(e_{j}^{i}\right)_{j}$ be an orthonormal system in K_{i} satisfying $\left\{g_{t}^{i}: t \in I\right\} \subset \overline{\operatorname{span}}\left\{e_{j}^{i}: j=1,2, \ldots\right\}$. Then, $\left(S_{i}\left(e_{j}^{i}\right)\right)_{1 \leq i \leq m, j}$ is admissible for X, where $S_{i} k(t)=\left(g_{t}^{i}, k\right)_{K_{i}}$.

The next corollary shows that the Karhunen-Loève expansion of X in some Hilbert space $L^{2}(I, \mu)$ already converges uniformly in $t \in I$. It appears as special case of Proposition 3.

Corollary 3 Let μ be a finite Borel measure on I with supp $(\mu)=I$ and let $V: \mathcal{C}(I) \rightarrow L^{2}(I, \mu)$ denote the natural (injective) embedding. Let $\left(g_{j}\right)_{j \geq 1}$ be admissible for $V(X)$ in $L^{2}(I, \mu)$. Then there exists a sequence $\left(f_{j}\right)_{j \geq 1}$ in $\mathcal{C}(I)$ which is admissible for X such that $V\left(f_{j}\right)=g_{j}$ for every j.

A final corollary is as follows.

Corollary 4 Let $\left(f_{j}\right)_{j \geq 1} \in \mathcal{C}(I)^{\mathbb{N}}$ such that

$$
\sum_{j=1}^{\infty} f_{j}(t)^{2}<\infty \text { for every } t \in I
$$

If the process Y with $Y_{t}=\sum_{j=1}^{\infty} \xi_{j} f_{j}(t)$ has a pathwise continuous modification X, then $\left(f_{j}\right)$ is admissible for X and $X=\sum_{j=1}^{\infty} \xi_{j} f_{j}$ a.s..
Proof. Notice that $\sum \xi_{j} f_{j}(t)$ converges a.s. in \mathbb{R} and Y is a centered Gaussian process. Hence X is centered Gaussian. We have

$$
\left\langle u, \sum_{j=1}^{n} \xi_{j} f_{j}\right\rangle \rightarrow\langle u, X\rangle \text { a.s. }
$$

for every $u \in G:=\operatorname{span}\left\{\delta_{t}: t \in I\right\}$. Since G is a separating subspace of $\mathcal{C}(I)^{*}$ the assertion follows from Lemma 1.

The admissibility feature is stable under tensor products. For $i \in\{1, \ldots, d\}$, let I_{i} be a compact metric space and $X^{i}=\left(X_{t}^{i}\right)_{t \in I_{i}}$ a continuous centered Gaussian process. Set $I:=\Pi_{i=1}^{d} I_{i}$ and let $X=\left(X_{t}\right)_{t \in I}$ be a continuous centered Gaussian process with covariance function

$$
\begin{equation*}
\mathbb{E} X_{s} X_{t}=\Pi_{i=1}^{d} \mathbb{E} X_{s_{i}}^{i} X_{t_{i}}^{i}, s, t \in I \tag{2.9}
\end{equation*}
$$

For instance, $X:=\otimes_{i=1}^{d} X^{i}$ satisfies (2.9) provided X^{1}, \ldots, X^{d} are independent. For real separable Hilbert spaces K_{i}, let $\widehat{\otimes_{i=1}^{d}} K_{i}$ denote the d-fold Hilbertian tensor product.
Proposition 5 For $i \in\{1, \ldots, d\}$, let $\left(f_{j}^{i}\right)_{j \geq 1}$ be an admissible sequence for X^{i} in $\mathcal{C}\left(I_{i}\right)$. Then

$$
\left(\otimes_{i=1}^{d} f_{j_{i}}^{i}\right)_{\underline{j}=\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}^{d}}
$$

is admissible for X with covariance (2.9) in $\mathcal{C}(I)$. Furthermore, if $C_{X^{i}}=S_{i} S_{i}^{*}, S_{i}: K_{i} \rightarrow \mathcal{C}\left(I_{i}\right)$ is a factorization of $C_{X^{i}}$, then $\otimes_{i=1}^{d} S_{i}: \widehat{\otimes_{i=1}^{d}} K_{i} \rightarrow \mathcal{C}(I)$ provides a factorization of C_{X}.

Proof. For $i \in\{1, \ldots, d\}$, let K_{i} be a real separable Hilbert space and $\left(e_{j}^{i}\right)_{j}$ an orthonormal basis of K_{i}. Then $\left(\otimes_{i=1}^{d} e_{j_{i}}^{i}\right)_{\underline{j}}$ is an orthonormal basis of $K:=\widehat{\otimes_{i=1}^{\widehat{d}}} K_{i}$.

If $C_{X^{i}}=S_{i} S_{i}^{*}, S_{i}: K_{i} \rightarrow \mathcal{C}\left(I_{i}\right)$ is a factorization of $C_{X^{i}}$, set $g_{t}^{i}:=S_{i}^{*} \delta_{t}, t \in I_{i}$. Then $\mathbb{E} X_{s}^{i} X_{t}^{i}=$ $\left(g_{s}^{i}, g_{t}^{i}\right)_{K_{i}}$ and hence, by (2.9)

$$
\mathbb{E} X_{s} X_{t}=\Pi_{i=1}^{d}\left(g_{s_{i}}^{i}, g_{t_{i}}^{i}\right)_{K_{i}}=\left(\otimes_{i=1}^{d} g_{s_{i}}^{i}, \otimes_{i=1}^{d} g_{t_{i}}^{i}\right)_{K}, s, t \in I .
$$

Consequently, by Lemma 2

$$
U: K \rightarrow \mathcal{C}(I), U k(t)=\left(\otimes_{i=1}^{d} g_{t_{i}}^{i}, k\right)_{K}
$$

provides a factorization of C_{X}. Since

$$
\begin{aligned}
U\left(\otimes_{i=1}^{d} e_{j_{i}}^{i}\right)(t) & =\prod_{i=1}^{d}\left(g_{t_{i}}^{i}, e_{j_{i}}^{i}\right)_{K_{i}} \\
& =\prod_{i=1}^{d} S_{i} e_{j_{i}}^{i}\left(t_{i}\right)=\otimes_{i=1}^{d}\left(S_{i} e_{j_{i}}^{i}\right)(t) \\
& =\left(\otimes_{i=1}^{d} S_{i}\right)\left(\otimes_{i=1}^{d} e_{j_{i}}^{i}\right)(t), t \in I,
\end{aligned}
$$

we obtain $U=\otimes_{i=1}^{d} S_{i}$ and thus $\otimes_{i=1}^{d} S_{i}$ provides a factorization of C_{X}.

If $\left(f_{j}^{i}\right)_{j \geq 1}$ is admissible for X^{i}, then by Proposition 2 assuming now that K_{i} is infinite dimensional, there is a factorization $C_{X^{i}}=T_{i} T_{i}^{*}, T_{i}: K_{i} \rightarrow \mathcal{C}\left(I_{i}\right)$ such that $T_{i}\left(e_{j}^{i}\right)=f_{j}^{i}$ for every j. Since $\otimes_{i=1}^{d} T_{i}: K \rightarrow \mathcal{C}(I)$ provides a factorization of C_{X} as shown above and $\left(\otimes_{i=1}^{d} T_{i}\right)\left(\otimes_{i=1}^{d} e_{j_{i}}^{i}\right)=\otimes_{i=1}^{d} f_{j_{i}}^{i}$, it follows from Proposition 1 that $\left(\otimes_{i=1}^{d} f_{j_{i}}^{i}\right)_{\underline{j} \in \mathbb{N}^{d}}$ is admissible for X. \diamond

The following examples are further investigated in Section 4.
Examples - Let $W=\left(W_{t}\right)_{t \in[0, T]}$ be a standard Brownian motion. Since $\mathbb{E} W_{s} W_{t}=s \wedge t=$ $\int_{0}^{T} 1_{[0, s]}(u) 1_{[0, t]}(u) d u$, the (injective) operator

$$
S: L^{2}([0, T], d t) \rightarrow \mathcal{C}([0, T]), S k(t)=\int_{0}^{t} k(s) d s
$$

provides a factorization of C_{W} so that we can apply Corollary 2 . The orthonormal basis $e_{j}(t)=$ $\sqrt{2 / T} \cos (\pi(j-1 / 2) t / T), j \geq 1$ of $L^{2}([0, T], d t)$ yields the admissible sequence

$$
\begin{equation*}
f_{j}(t)=S e_{j}(t)=\frac{\sqrt{2 T}}{\pi(j-1 / 2)} \sin \left(\frac{\pi(j-1 / 2) t}{T}\right), j \geq 1 \tag{2.10}
\end{equation*}
$$

for W (Karhunen-Loève basis of H_{W}) and $e_{j}(t)=\sqrt{2 / T} \sin (\pi j t / T)$ yields

$$
\begin{equation*}
f_{j}(t)=\frac{\sqrt{2 T}}{\pi j}\left(1-\cos \left(\frac{\pi j t}{T}\right)\right), j \geq 1 \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{align*}
f_{j}^{1}(t) & =\frac{\sqrt{T}}{\pi(j-1 / 2)} \sin \left(\frac{\pi(j-1 / 2) t}{T}\right), j \geq 1 \tag{2.12}\\
f_{j}^{2}(t) & =\frac{\sqrt{T}}{\pi j}\left(1-\cos \left(\frac{\pi j t}{T}\right)\right), j \geq 1
\end{align*}
$$

is also admissible for W. The trigonometric basis $e_{0}(t)=1 / \sqrt{T}, e_{2 j}(t)=\sqrt{2 / T} \cos (2 \pi j t / T), e_{2 j-1}(t)=$ $\sqrt{2 / T} \sin (2 \pi j t / T)$ yields the admissible sequence

$$
\begin{align*}
& f_{0}(t)=\frac{t}{\sqrt{T}}, f_{2 j}(t)=\frac{\sqrt{T}}{\sqrt{2} \pi j} \sin \left(\frac{2 \pi j t}{T}\right) \tag{2.13}\\
& f_{2 j-1}(t)=\frac{\sqrt{T}}{\sqrt{2} \pi j}\left(1-\cos \left(\frac{2 \pi j t}{T}\right)\right), j \geq 1
\end{align*}
$$

(Paley-Wiener basis of H_{W}).

- We consider the Dzaparidze-van Zanten expansion of the fractional Brownian motion $X=$ $\left(X_{t}\right)_{t \in[0, T]}$ with Hurst index $\rho \in(0,1)$ and covariance function

$$
\mathbb{E} X_{s} X_{t}=\frac{1}{2}\left(s^{2 \rho}+t^{2 \rho}-|s-t|^{2 \rho}\right)
$$

These authors discovered in [8] for $T=1$ a time domain representation

$$
\mathbb{E} X_{s} X_{t}=\left(g_{s}^{1}, g_{t}^{1}\right)_{K}+\left(g_{s}^{2}, g_{t}^{2}\right)_{K}
$$

with $K=L^{2}([0,1], d t)$ and kernels $g_{t}^{i} \in L^{2}([0,1], d t)$. Hence by Lemma 2, the operator

$$
S: L^{2}([0,1], d t) \oplus L^{2}([0,1], d t) \rightarrow \mathcal{C}([0,1]), S\left(k_{1}, k_{2}\right)(t)=\int_{0}^{1} g_{t}^{1}(s) k_{1}(s) d s+\int_{0}^{1} g_{t}^{2}(s) k_{2}(s) d s
$$

provides a factorization of C_{X} so that for every pair of orthonormal bases $\left(e_{j}^{1}\right)_{j \geq 1}$ and $\left(e_{j}^{2}\right)_{j \geq 1}$ of $L^{2}([0,1], d t)$,

$$
f_{j}^{i}(t)=\int_{0}^{1} g_{t}^{i}(s) e_{j}^{i}(s) d s, j \geq 1, i=1,2
$$

is admissible in $\mathcal{C}([0,1])$ for X. By Corollary 2 , this is a consequence of the above representation of the covariance function (and needs no extra work). Then Dzaparidze and van Zanten [8] could calculate f_{j}^{i} explicitely for the Fourier-Bessel basis of order $-\rho$ and $1-\rho$, respectively and arrived at the admissible family in $\mathcal{C}([0,1])$

$$
\begin{aligned}
f_{j}^{1}(t) & =\frac{c_{\rho} \sqrt{2}}{\left|J_{1-\rho}\left(x_{j}\right)\right| x_{j}^{\rho+1}} \sin \left(x_{j} t\right), j \geq 1 \\
f_{j}^{2}(t) & =\frac{c_{\rho} \sqrt{2}}{\left|J_{-\rho}\left(y_{j}\right)\right| y_{j}^{\rho+1}}\left(1-\cos \left(y_{j} t\right)\right), j \geq 1
\end{aligned}
$$

where J_{ν} denotes the Bessel function of the first kind of order $\nu, 0<x_{1}<x_{2}<\ldots$ are the positive zeros of $J_{-\rho}, 0<y_{1}<y_{2}<\ldots$ the positive zeros of $J_{1-\rho}$ and $c_{\rho}^{2}=\Gamma(1+2 \rho) \sin (\pi \rho) / \pi$. Consequently, by self-similarity of X, the sequence

$$
\begin{align*}
f_{j}^{1}(t) & =\frac{T^{\rho} c_{\rho} \sqrt{2}}{\left|J_{1-\rho}\left(x_{j}\right)\right| x_{j}^{\rho+1}} \sin \left(\frac{x_{j} t}{T}\right), j \geq 1 \tag{2.14}\\
f_{j}^{2}(t) & =\frac{T^{\rho} c_{\rho} \sqrt{2}}{\left|J_{-\rho}\left(y_{j}\right)\right| y_{j}^{\rho+1}}\left(1-\cos \left(\frac{y_{j} t}{T}\right)\right), j \geq 1
\end{align*}
$$

in $\mathcal{C}([0, T])$ is admissible for X. Using Lemma 1 , one can deduce (also without extra work)

$$
\mathbb{E} X_{s} X_{t}=\sum_{j=1}^{\infty} f_{j}^{1}(s) f_{j}^{1}(t)+\sum_{j=1}^{\infty} f_{j}^{2}(s) f_{j}^{2}(t)
$$

uniformly in $(s, t) \in[0, T]^{2}$.
In the ordinary Brownian motion case $\rho=1 / 2$, (2.14) coincides with (2.12). The interesting extension of (2.13) to fractional Brownian motions is discussed in [9].

- Let $X=\left(X_{t}\right)_{t \in[0, T]}$ be a Brownian bridge with covariance

$$
\mathbb{E} X_{s} X_{t}=s \wedge t-\frac{s t}{T}=\int_{0}^{T}\left(1_{[0, s]}(u)-\frac{s}{T}\right)\left(1_{[0, t]}(u)-\frac{t}{T}\right) d u .
$$

By Lemma 2, the operator

$$
S: L^{2}([0, T], d t) \rightarrow \mathcal{C}([0, T]), S k(t)=\int_{0}^{t} k(s) d s-\frac{t}{T} \int_{0}^{T} k(s) d s
$$

provides a factorization of C_{X} and $\operatorname{ker} S=\operatorname{span}\left\{1_{[0, T]}\right\}$. The choice $e_{j}(t)=\sqrt{2 / T} \cos (\pi j t / T), j \geq 1$, of an orthonormal basis of $(\operatorname{ker} S)^{\perp}$ yields admissibility of

$$
\begin{equation*}
f_{j}(t)=S e_{j}(t)=\frac{\sqrt{2 T}}{\pi j} \sin \left(\frac{\pi j t}{T}\right), j \geq 1 \tag{2.15}
\end{equation*}
$$

for X (Karhunen-Loève basis of H_{X}).

- One considers the stationary Ornstein-Uhlenbeck process as the solution of the Langevin equation

$$
d X_{t}=-\beta X_{t} d t+\sigma W_{t}, t \in[0, T]
$$

with X_{0} independent of W and $N\left(0, \frac{\sigma^{2}}{2 \beta}\right)$-distributed, $\sigma>0, \beta>0$. It admits the explicit representation

$$
X_{t}=e^{-\beta t} X_{0}+\sigma e^{-\beta t} \int_{0}^{t} e^{\beta s} d W_{s}
$$

and

$$
\mathbb{E} X_{s} X_{t}=\frac{\sigma^{2}}{2 \beta} e^{-\beta|s-t|}=\frac{\sigma^{2}}{2 \beta} e^{-\beta(s+t)}+\sigma^{2} e^{-\beta(s+t)} \int_{0}^{s \wedge t} e^{2 \beta u} d u .
$$

Thus the (injective) operator

$$
S: \mathbb{R} \oplus L^{2}([0, T], d t) \rightarrow \mathcal{C}([0, T]), S(c, k)(t)=\frac{c \sigma}{\sqrt{2 \beta}} e^{-\beta t}+\sigma \int_{0}^{t} e^{-\beta(t-s)} k(s) d s
$$

provides a factorization of C_{X} so that for every orthonormal basis $\left(e_{j}\right)_{j \geq 1}$ of $L^{2}([0, T], d t)$, the functions

$$
\begin{equation*}
f_{0}(t)=\frac{\sigma}{\sqrt{2 \beta}} e^{-\beta t}, f_{j}(t)=\sigma \int_{0}^{t} e^{-\beta(t-s)} e_{j}(s) d s, j \geq 1 \tag{2.16}
\end{equation*}
$$

provide an admissible sequence for X.
Another representation is given by the Lamperti transformation $X=V(W)$ for the linear continuous operator

$$
V: \mathcal{C}\left(\left[0, e^{2 \beta T}\right]\right) \rightarrow \mathcal{C}\left([0, T], V x(t)=\frac{\sigma}{\sqrt{2 \beta}} e^{-\beta t} x\left(e^{2 \beta t}\right)\right.
$$

The admissible sequence $\left(f_{j}\right)$ in $\mathcal{C}\left(\left[0, e^{2 \beta T}\right]\right)$ for $\left(W_{t}\right)_{t \in\left[0, e^{2 \beta T}\right]}$ from (2.10) yields the admissible sequence

$$
\begin{equation*}
\tilde{f}_{j}(t)=V f_{j}(t)=\frac{\sigma}{\sqrt{\beta} \pi(j-1 / 2)} e^{\beta(T-t)} \sin \left(\pi(j-1 / 2) e^{-2 \beta(T-t)}\right), j \geq 1 \tag{2.17}
\end{equation*}
$$

for X.

- Sheet versions can be deduced from Proposition 5.

3 High-resolution product quantization

We investigate product functional quantization of centered continuous Gaussian processes $X=$ $\left(X_{t}\right)_{t \in I}$ on $I=[0, T]^{d}$ in the space $E=\mathcal{C}(I)$ equipped with the sup-norm $\|x\|=\sup _{t \in I}|x(t)|$. Recall that the minimal Nth product quantization error is given by

$$
\begin{aligned}
e_{N, r}(X)^{(p q)}:=e_{N, r}(X, \mathcal{C}(I))^{(p q)}= & \inf \left\{\left(\mathbb{E}\left\|\sum_{j=1}^{\infty} \xi_{j} f_{j}-\hat{X}\right\|^{r}\right)^{1 / r}:\left(f_{j}\right)_{j \geq 1} \in \mathcal{C}(I)^{\mathbb{N}} \text { admissible for } X,\right. \\
& \left.\hat{X} L^{r} \text {-product } N \text {-quantization w.r.t. }\left(f_{j}\right)\right\}
\end{aligned}
$$

where ξ_{1}, ξ_{2}, \ldots are i.i.d. $\mathcal{N}(0,1)$-distributed random variables. The subsequent setting comprises a broad class of processes (see Section 4).

Let $\left(f_{j}\right)_{j \geq 1} \in \mathcal{C}(I)^{\mathbb{N}}$ satisfy the following assumptions.

$$
\begin{equation*}
\left\|f_{j}\right\| \leq C_{1} j^{-\vartheta} \log (1+j)^{\gamma} \text { for every } j \geq 1 \text { with } \vartheta>1 / 2, \gamma \geq 0 \text { and } C_{1}<\infty . \tag{A1}
\end{equation*}
$$

(A2) f_{j} is a-Hölder-continuous and $\left[f_{j}\right]_{a} \leq C_{2} j^{b}$ for every $j \geq 1$ with $a \in(0,1], b \in \mathbb{R}$ and $C_{2}<\infty$, where

$$
[f]_{a}=\sup _{s \neq t} \frac{|f(s)-f(t)|}{|s-t|^{a}}
$$

(and $|t|$ denotes the l_{2}-norm of $t \in \mathbb{R}^{d}$).

In the sequel finite constants depending only on the parameters $T, \vartheta, \gamma, a, b, C_{1}, C_{2}, d$ and r are denoted by C and may be different from one formula to another one. Other dependencies are explicitely indicated.

First observe that Corollary 4 applies. By $(A 1), \sum_{j=1}^{\infty} f_{j}(t)^{2} \leq \sum_{j=1}^{\infty}\left\|f_{j}\right\|^{2}<\infty$ for every $t \in I$, so that we can define a centered Gaussian process Y by $Y_{t}:=\sum_{j=1}^{\infty} \xi_{j} f_{j}(t)$. Using (A1) and (A2) we have for $\rho \in(0,1]$

$$
\begin{aligned}
\left|f_{j}(s)-f_{j}(t)\right| & =\left|f_{j}(s)-f_{j}(t)\right|^{\rho}\left|f_{j}(s)-f_{j}(t)\right|^{1-\rho} \\
& \leq\left(\left[f_{j}\right]_{a}|s-t|^{a}\right)^{\rho}\left(2\left\|f_{j}\right\|\right)^{1-\rho} \\
& \leq C_{\rho} j^{\rho(b+\vartheta)-\vartheta} \log (1+j)^{\gamma(1-\rho)}|s-t|^{a \rho}
\end{aligned}
$$

and hence

$$
\sum_{j=1}^{\infty}\left[f_{j}\right]_{a \rho}^{2}<\infty \text { for every } \rho<\frac{\vartheta-1 / 2}{(b+\vartheta)_{+}}
$$

This yields

$$
\mathbb{E}\left|Y_{s}-Y_{t}\right|^{2}=\sum_{j=1}^{\infty}\left|f_{j}(s)-f_{j}(t)\right|^{2} \leq\left(\sum_{j=1}^{\infty}\left[f_{j}\right]_{a \rho}^{2}\right)|s-t|^{2 a \rho}
$$

and using the Gaussian feature of Y, we obtain from the Kolmogorov-criterion that Y has a continuous modification X. Consequently by Corollary $4,\left(f_{j}\right)$ is admissible for X and

$$
\begin{equation*}
X=\sum_{j=1}^{\infty} \xi_{j} f_{j} \quad \text { a.s. } \tag{3.1}
\end{equation*}
$$

$\left(\mathbb{E}\left|X_{s}-X_{t}\right|^{2}\right)^{1 / 2} \leq C_{\rho}|s-t|^{a \rho}$ for every $s, t \in I$ and every $\rho \in(0,1]$ with $\rho<\frac{\vartheta-1 / 2}{(b+\vartheta)_{+}}$. An immediate consequence is the continuous embedding of the Cameron-Martin space H_{X} into the Hölder-space $\mathcal{C}^{a \rho}(I)$.

Proposition 6 We have $H_{X} \subset \mathcal{C}^{a \rho}(I)$ and the inclusion map is continuous for every $\rho \in(0,1]$ with $\rho<\frac{\vartheta-1 / 2}{(b+\vartheta)_{+}}$, where $\mathcal{C}^{a \rho}(I)$ is equipped with the norm $\mid\|f\|\|=\| f \|+[f]_{a \rho}$.
Proof. Let $h \in H=H_{X}$. By (2.2) and (2.8), we have

$$
h(t)=\left\langle\delta_{t}, h\right\rangle=\left(h, C_{X} \delta_{t}\right)_{H}, C_{X} \delta_{t}=\mathbb{E} X_{t} X
$$

and hence for every $u \in \mathcal{C}(I)^{*}$,

$$
\left|\left\langle u, C_{X}\left(\delta_{s}-\delta_{t}\right)\right\rangle\right|=\left|\mathbb{E}\left(X_{s}-X_{t}\right)\langle u, X\rangle\right| \leq\left(\mathbb{E}\left(X_{s}-\left.X_{t}\right|^{2}\right)^{1 / 2}\left\langle u, C_{X} u\right\rangle^{1 / 2}\right.
$$

Consequently, using (2.3) and (3.1)

$$
\begin{aligned}
|h(s)-h(t)| & =\left|\left(h, C_{X}\left(\delta_{s}-\delta_{t}\right)\right)_{H}\right| \\
& \leq\|h\|_{H}\left\|C_{X}\left(\delta_{s}-\delta_{t}\right)\right\|_{H} \\
& =\|h\|_{H} \sup \left\{\left|\left\langle u, C_{X}\left(\delta_{s}-\delta_{t}\right)\right\rangle\right|:\left\langle u, C_{X} u\right\rangle \leq 1\right\} \\
& \leq\|h\|_{H}\left(\mathbb{E}\left|X_{s}-X_{t}\right|^{2}\right)^{1 / 2} \\
& \leq C_{\rho}\|h\|_{H}|s-t|^{a \rho} .
\end{aligned}
$$

Thus in view of (2.4),

$$
\|h \mid\| \leq\left\|C_{X}\right\|^{1 / 2}\|h\|_{H}+C_{\rho}\|h\|_{H}
$$

The design of a (scalar) product quantization for X is based on optimal quantizing the coefficients ξ_{j} in the expansion (3.1) of X. More precisely this yields product quantization with respect to the admissible sequence $\left(f_{j}\right)$. Let $N \in \mathbb{N}, r \in(0, \infty)$ and fix $m, N_{1}, \ldots, N_{m} \in \mathbb{N}$ with $\Pi_{j=1}^{m} N_{j} \leq N$. Let $\alpha_{j} \subset \mathbb{R}$ be the L^{r}-optimal N_{j}-quantizer for ξ_{j} and let $\hat{\xi}_{j}:=\hat{\xi}_{j}^{\alpha_{j}}$ be the Voronoi quantization of ξ_{j} induced by α_{j}. Then define a L^{r}-product quantization of X by

$$
\begin{equation*}
\hat{X}^{N}:=\sum_{j=1}^{m} \hat{\xi}_{j} f_{j} . \tag{3.2}
\end{equation*}
$$

It is clear that $\operatorname{card}(\hat{X}(\Omega)) \leq N$ so that \hat{X}^{N} is an N-quantization. If

$$
\hat{\xi}_{j}=\sum_{b \in \alpha_{j}} b 1_{C_{b}\left(\alpha_{j}\right)}\left(\xi_{j}\right),
$$

then

$$
\begin{equation*}
\hat{X}^{N}=\sum_{a \in \Pi_{j=1}^{m} \alpha_{j}}\left(\sum_{j=1}^{m} a_{j} f_{j}\right) \Pi_{j=1}^{m} 1_{C_{a_{j}}\left(\alpha_{j}\right)}\left(\xi_{j}\right) \tag{3.3}
\end{equation*}
$$

where $a=\left(a_{1}, \ldots, a_{m}\right) \in \prod_{j=1}^{m} \alpha_{j}$. Observe that \hat{X}^{N} is not a Voronoi quantization since it is based on the (much less complicated) Voronoi partitions for $\xi_{j}, j \leq m$.

For $r \in[1, \infty)$, the quantization error induced by \hat{X}^{N} satisfies

$$
\begin{aligned}
\left(\mathbb{E}\left\|X-\hat{X}^{N}\right\|^{r}\right)^{1 / r} & =\left\|X-\hat{X}^{N}\right\|_{L_{E}^{r}} \\
& \leq\left\|\sum_{j=1}^{m}\left(\xi_{j}-\hat{\xi}_{j}\right) f_{j}\right\|_{L_{E}^{r}}+\left\|\sum_{j \geq m+1} \xi_{j} f_{j}\right\|_{L_{E}^{r}} \\
& \leq \sum_{j=1}^{m}\left\|\xi_{j}-\hat{\xi}_{j}\right\|_{L^{r}}\left\|f_{j}\right\|+\left\|\sum_{j \geq m+1} \xi_{j} f_{j}\right\|_{L_{E}^{r}}
\end{aligned}
$$

so that

$$
\begin{equation*}
\left(\mathbb{E}\left\|X-\hat{X}^{N}\right\|^{r}\right)^{1 / r} \leq \sum_{j=1}^{m}\left\|f_{j}\right\| e_{N_{j}, r}(\mathcal{N}(0,1))+\left(\mathbb{E}\left\|\sum_{j \geq m+1} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \tag{3.4}
\end{equation*}
$$

For $r \in(0,1]$, we have

$$
\mathbb{E}\left\|X-\hat{X}^{N}\right\|^{r} \leq \sum_{j=1}^{m}\left\|f_{j}\right\|^{r} e_{N_{j}, r}(\mathcal{N}(0,1))^{r}+\mathbb{E}\left\|\sum_{j \geq m+1} \xi_{j} f_{j}\right\|^{r} .
$$

Now let us pass to the truncation error.
Theorem 1 Assume that $\left(f_{j}\right)_{j \geq 1} \in \mathcal{C}(I)^{\mathbb{N}}$ satisfies (A1) and (A2). Then we have for every $n \geq 2$ and $r \in(0, \infty)$,

$$
\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \leq \frac{C(\log n)^{\gamma+1 / 2}}{n^{\vartheta-1 / 2}}
$$

and

$$
\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \leq \frac{C(\log n)^{\gamma}}{n^{\vartheta-1 / 2}} \text { if } b+\vartheta \leq 0 .
$$

Proof. By equivalence of Gaussian moments

$$
\begin{equation*}
\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \leq D \mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\| \tag{3.5}
\end{equation*}
$$

for some universal constant D (cf. [14], Corollary 3.2). The upper estimate for $\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|$ is based on corresponding estimates for finite blocks of exponentially increasing length. For $m \geq 1$, set

$$
Z=Z^{(m)}:=\sum_{j=2^{m-1}+1}^{2^{m}} \xi_{j} f_{j}
$$

For a given $N \geq 1$ consider the $\operatorname{grid} G_{N}=\left\{\frac{(2 i-1) T}{2 N}: i=1, \ldots, N\right\}^{d}$. Then

$$
\|Z\| \leq \sup _{t \in G_{N}}\left|Z_{t}\right|+\sup _{|s-t| \leq C N^{-1}}\left|Z_{s}-Z_{t}\right|
$$

It follows from the Gaussian maximal inequality, that

$$
\mathbb{E} \sup _{t \in G_{N}}\left|Z_{t}\right| \leq C \sqrt{\log \left(1+N^{d}\right)} \sup _{t \in G_{N}} \sqrt{\mathbb{E} Z_{t}^{2}}
$$

Using $(A 1)$, we have for every $t \in I$,

$$
\mathbb{E} Z_{t}^{2} \leq \sum_{j=2^{m-1}+1}^{2^{m}}\left\|f_{j}\right\|^{2} \leq C \sum_{j=2^{m-1}+1}^{2^{m}} j^{-2 \vartheta} \log (1+j)^{2 \gamma} \leq C 2^{m(1-2 \vartheta)} m^{2 \gamma}
$$

so that

$$
\mathbb{E} \sup _{t \in G_{N}}\left|Z_{t}\right| \leq C \sqrt{\log (1+N)} 2^{-m(\vartheta-1 / 2)} m^{\gamma}
$$

Moreover, using ($A 2$), we have for $|s-t| \leq C N^{-1}$

$$
\begin{aligned}
\left|Z_{s}-Z_{t}\right| & \leq \sum_{j=2^{m-1}+1}^{2^{m}}\left|\xi_{j}\right|\left|f_{j}(s)-f_{j}(t)\right| \\
& \leq C|s-t|^{a} \sum_{j=2^{m-1}+1}^{2^{m}}\left|\xi_{j}\right|\left[f_{j}\right]_{a} \\
& \leq C N^{-a} \sum_{j=2^{m-1}+1}^{2^{m}}\left|\xi_{j}\right| j^{b}
\end{aligned}
$$

and hence

$$
\mathbb{E} \sup _{|s-t| \leq C N^{-1}}\left|Z_{s}-Z_{t}\right| \leq C N^{-a} \sum_{j=2^{m-1}+1}^{2^{m}} j^{b} \leq C N^{-a} 2^{m(1+b)}
$$

Thus we have established the estimate

$$
\begin{equation*}
\mathbb{E}\left\|Z^{(m)}\right\| \leq C\left(\sqrt{\log (1+N)} 2^{-m(\vartheta-1 / 2)} m^{\gamma}+N^{-a} 2^{m(1+b)}\right) \tag{3.6}
\end{equation*}
$$

As concerns the choice of N, set $N:=\left[2^{u m}\right]+1$ with $u \in(0, \infty)$ satisfying $1+b-a u \leq \frac{1}{2}-\vartheta$. Then (3.6) reads

$$
\begin{equation*}
\mathbb{E}\left\|Z^{(m)}\right\| \leq C 2^{-m(\vartheta-1 / 2)} m^{\gamma+1 / 2} \tag{3.7}
\end{equation*}
$$

One notices that in case $b+\vartheta \leq-1 / 2$ one may choose $N=1$ and obtains a power reduction from $m^{\gamma+1 / 2}$ to m^{γ}. This can be improved. In fact, we have

$$
\begin{aligned}
\mathbb{E}\left|Z_{s}-Z_{t}\right|^{2} & =\sum_{j=2^{m-1}+1}^{2^{m}}\left|f_{j}(s)-f_{j}(t)\right|^{2} \\
& \leq C|s-t|^{2 a} \sum_{j-2^{m-1}+1}^{2^{m}} j^{2 b} \leq C|s-t|^{2 a} 2^{m(1+2 b)}
\end{aligned}
$$

so that

$$
d_{Z}(s, t):=\left(\mathbb{E}\left|Z_{s}-Z_{t}\right|^{2}\right)^{1 / 2} \leq C|s-t|^{a} 2^{m(b+1 / 2)}
$$

If $N\left(\varepsilon, d_{Z}\right)$ denote the covering numbers of I with respect to the intrinsic semimetric d_{Z}, then by chaining

$$
\mathbb{E} \sup _{|s-t| \leq C N^{-1}}\left|Z_{s}-Z_{t}\right| \leq \mathbb{E} \sup _{d_{Z}(s, t) \leq \delta}\left|Z_{s}-Z_{t}\right| \leq C \int_{0}^{\delta} \sqrt{\log N\left(\varepsilon, d_{Z}\right)} d \varepsilon,
$$

where $\delta:=C N^{-a} 2^{m(b+1 / 2)}$ (cf. [21], p. 101). Since

$$
N\left(\varepsilon, d_{Z}\right) \leq C\left(\frac{2^{m(b+1 / 2)}}{\varepsilon}\right)^{d / a}, \varepsilon \leq \varepsilon_{0}
$$

and $\int_{0}^{1} \sqrt{\log (1 / x)} d x<\infty$ one gets for large enough N

$$
\int_{0}^{\delta} \sqrt{\log N\left(\varepsilon, d_{Z}\right)} d \varepsilon \leq C 2^{m(b+1 / 2)} \int_{0}^{1} \sqrt{\log (1 / x)} d x \leq C 2^{m(b+1 / 2)}
$$

Consequently,

$$
\begin{align*}
\mathbb{E}\left\|Z^{(m)}\right\| & \leq C\left(\sqrt{\log (1+N)} 2^{-m(\vartheta-1 / 2)} m^{\gamma}+2^{m(b+1 / 2)}\right. \\
& \leq C 2^{-m(\vartheta-1 / 2)} m^{\gamma} \quad \text { if } \quad b+\vartheta \leq 0 . \tag{3.8}
\end{align*}
$$

Now we complete the proof. For $n \geq 2$, choose $m=m(n) \geq 1$ such that $2^{m-1}<n \leq 2^{m}$. Then

$$
\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\| \leq \sum_{j \geq m+1}\left\|Z^{(j)}\right\|+\left\|\sum_{j=n}^{2^{m}} \xi_{j} f_{j}\right\|
$$

Since $\mathbb{E}\left\|\sum_{j=n}^{2^{m}} \xi_{j} f_{j}\right\| \leq \mathbb{E}\left\|Z^{(m)}\right\|$ by the Anderson inequality (cf. [3], Cor. 3.3.7), we deduce from Equation (3.7)

$$
\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\| \leq C \sum_{j \geq m} \frac{j^{\gamma+1 / 2}}{2^{j(\vartheta-1 / 2)}} \leq \frac{C m^{\gamma+1 / 2}}{2^{m(\vartheta-1 / 2)}} \leq \frac{C(\log n)^{\gamma+1 / 2}}{n^{\vartheta-1 / 2}} .
$$

If $b+\vartheta \leq 0$ then it follows from (3.8) that

$$
\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\| \leq \frac{C(\log n)^{\gamma}}{n^{\vartheta-1 / 2}}
$$

Combining these estimates with (3.5) yields the assertion.
Remarks - The rate for the truncation error only depends on ϑ and γ, that is on the decay of the length of functions f_{j} (as long as $b+\vartheta>0$). The occurence of expansions with $b+\vartheta \leq 0$ seems
to be a rare event and otherwise b plays no rôle (see the subsequent example). The case $\gamma=0$ typically corresponds to 1-parameter processes with $I=[0, T]$.

- The $e_{N, r}^{(p q)}$-problem comprises the optimization of admissible sequences and in view of (3.4) is thus related to the l-numbers of X defined by

$$
\begin{equation*}
l_{n, r}(X)=l_{n, r}(X, \mathcal{C}(I)):=\inf \left\{\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} g_{j}\right\|^{r}\right)^{1 / r}:\left(g_{j}\right) \text { admissible for } X \text { in } \mathcal{C}(I)\right\} \tag{3.9}
\end{equation*}
$$

Rate optimal solutions of the $l_{n, r}$-problem in the sense of $l_{n, r}(X) \approx\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} g_{j}\right\|^{r}\right)^{1 / r}$ as $n \rightarrow \infty$ have recently been investigated (see [13], [7], [8], [9], [1]). Admissible sequences of the type (A1) and $(A 2)$ seem to be promising candidates. For instance, for the Brownian motion W on $I=[0,1]$, it is known that

$$
l_{n, r}(W) \approx\left(\frac{\log n}{n}\right)^{1 / 2}
$$

Hence, by Theorem 1 , any admissible sequence in $\mathcal{C}([0,1])$ for W satisfying ($A 1$) and (A2) with $\vartheta=1$ and $\gamma=0$ (like the Karhunen-Loève basis of H_{W}) is a rate optimal solution of the $l_{n, r}(W)$ problem.
Example (Weierstrass processes): Let

$$
f_{j}(t)=j^{-\vartheta} \sin \left(j^{b+\vartheta} t\right), j \geq 1, \vartheta>1 / 2, b \in \mathbb{R}, t \in[0, T] .
$$

Then $\left\|f_{j}\right\| \leq j^{-\vartheta}$ and $\left[f_{j}\right]_{1}=j^{b}$. Since $f_{j}(0)=0$, we also have $\left\|f_{j}\right\| \leq T j^{b}$ so that (A1) and (A2) are satisfied with $\tilde{\vartheta}=\max \{\vartheta,-b\}$ and $a=1$. The covariance function of $X=\sum_{j=1}^{\infty} \xi_{j} f_{j}$ is given by

$$
\mathbb{E} X_{s} X_{t}=\sum_{j=1}^{\infty} j^{-2 \vartheta} \sin \left(j^{b+\vartheta} s\right) \sin \left(j^{b+\vartheta} t\right)
$$

Now in the "Weierstrass case" $b+\vartheta>0$, we get from Theorem 1

$$
\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \leq \frac{C \sqrt{\log n}}{n^{\vartheta-1 / 2}}
$$

while in the "non-Weierstrass case" $b+\vartheta \leq 0$ appears the better rate

$$
\left(\mathbb{E}\left\|\sum_{j \geq n} \xi_{j} f_{j}\right\|^{r}\right)^{1 / r} \leq \frac{C}{n^{-b-1 / 2}}
$$

We come to the minimal product quantization error $e_{N, r}(X)^{(p q)}$. Let $r \in[1, \infty)$ and set $\nu_{j}:=$ $j_{0}^{-\vartheta} \log \left(1+j_{0}\right)^{\gamma}$ if $j<j_{0}:=\left[e^{\gamma / \vartheta}\right]$ and $\nu_{j}:=j^{-\vartheta} \log (1+j)^{\gamma}$ if $j \geq j_{0}$. Then the sequence $\left(\nu_{j}\right)_{j}$ is decreasing. Since

$$
\lim _{k \rightarrow \infty} k e_{k, r}(\mathcal{N}(0,1)) \text { exists in }(0, \infty)
$$

(cf. [10]), we deduce from (3.4), (A1) and Theorem 1 the estimate

$$
\left(\mathbb{E}\left\|X-\hat{X}^{N}\right\|^{r}\right)^{1 / r} \leq C\left(\sum_{j=1}^{m} \nu_{j} N_{j}^{-1}+\frac{\log (1+m)^{\gamma+1 / 2}}{m^{\vartheta-1 / 2}}\right)
$$

for every $m, N_{1}, \ldots N_{m} \in \mathbb{N}$ with $\prod_{j=1}^{m} N_{j} \leq N$. (The case $b+\vartheta \leq 0$ is treated analogously.) Consequently,

$$
\begin{equation*}
e_{N, r}(X)^{(p q)} \leq C \inf \left\{\sum_{j=1}^{m} \nu_{j} N_{j}^{-1}+\frac{\log (1+m)^{\gamma+1 / 2}}{m^{\vartheta-1 / 2}}: m, N_{1}, \ldots, N_{m} \in \mathbb{N}, \Pi_{j=1}^{m} N_{j} \leq N\right\} . \tag{3.10}
\end{equation*}
$$

For a given $N \in \mathbb{N}$, we may first optimize the integer bit allocation given by the N_{j} 's for fixed m and then optimize m. To this end, note that the continuous allocation problem reads

$$
\inf \left\{\sum_{j=1}^{m} \nu_{j} y_{j}^{-1}: y_{j}>0, \Pi_{j=1}^{m} y_{j} \leq N\right\}=\sum_{j=1}^{m} \nu_{j} z_{j}^{-1}=N^{-1 / m} m\left(\Pi_{j=1}^{m} \nu_{j}\right)^{1 / m}
$$

where

$$
z_{j}=N^{1 / m} \nu_{j}\left(\Pi_{j=1}^{m} \nu_{j}\right)^{-1 / m}
$$

and $z_{1} \geq \ldots \geq z_{m}$. One can produce an (approximate) integer solution by setting

$$
\begin{equation*}
N_{j}=\left[z_{j}\right]=\left[N^{1 / m} \nu_{j}\left(\Pi_{j=1}^{m} \nu_{j}\right)^{-1 / m}\right], j \in\{1, \ldots, m\} \tag{3.11}
\end{equation*}
$$

provided $z_{m} \geq 1$. Then

$$
\sum_{j=1}^{m} \nu_{j} N_{j}^{-1} \leq 2 m N^{-1 / m}\left(\Pi_{j=1}^{m} \nu_{j}\right)^{1 / m} \leq C m N^{-1 / m} \nu_{m}
$$

Since the constraint on m reads $m \in I(N)$ with

$$
\begin{equation*}
I(N):=\left\{m \in \mathbb{N}: N^{1 / m} \nu_{m}\left(\Pi_{j=1}^{m} \nu_{j}\right)^{-1 / m} \geq 1\right\} \tag{3.12}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
e_{N, r}(X)^{(p q)} \leq C \inf _{m \in I(N)}\left(\frac{N^{-1 / m} \log (1+m)^{\gamma}}{m^{\vartheta-1}}+\frac{\log (1+m)^{\gamma+1 / 2}}{m^{\vartheta-1 / 2}}\right) \tag{3.13}
\end{equation*}
$$

for every $N \in \mathbb{N}$. One checks that $I(N)$ is finite, $I(N)=\left\{1, \ldots, m^{*}(N)\right\}, m^{*}(N)$ increases to infinity and

$$
\begin{equation*}
m^{*}(N) \sim \frac{\log N}{\vartheta} \text { as } N \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Finally, after a bit reflection let

$$
\begin{gathered}
m=m(N) \in I(N) \text { with } m(N) \leq \frac{2 \log N}{\log \log N} \text { for } N \geq 3 \\
\text { such that } m(N) \sim \frac{2 \log N}{\log \log N} \text { as } N \rightarrow \infty .
\end{gathered}
$$

This is possible in view of (3.14). The case $r \in(0,1]$ can be treated similarly. We thus obtain the following result.

Theorem 2 Assume that X admits an admissible set $\left(f_{j}\right)_{j \geq 1}$ in $\mathcal{C}(I)$ satisfying (A1) and (A2). Then we have for every $N \geq 3$ and $r \in(0, \infty)$,

$$
\begin{equation*}
e_{N, r}(X)^{(p q)} \leq \frac{C(\log \log N)^{\vartheta+\gamma}}{(\log N)^{\vartheta-1 / 2}} \tag{3.16}
\end{equation*}
$$

and

$$
e_{N, r}(X)^{(p q)} \leq \frac{C(\log \log N)^{\vartheta+\gamma-1 / 2}}{(\log N)^{\vartheta-1 / 2}} \text { if } b+\vartheta \leq 0 .
$$

Furthermore, the L^{r}-product N-quantization \hat{X}^{N} with respect to $\left(f_{j}\right)$ with tuning parameters defined in (3.11) and (3.15) achieves these rates.

We may reasonably conjecture that for many specific processes the above rate is the true one. This would imply that product quantization achieves the optimal rate for quantization, namely the rate of convergence to zero of $e_{N, r}(X):=e_{N, r}(X, \mathcal{C}(I))$, only up to a $\log \log N$-term in the formula (3.16). This is in contrast to the Hilbert space setting where the optimal rate is attained by product quantization (cf. [17]). To be precise we summarize the results on $e_{N, r}(X)$ in the present setting.
Theorem 3 (a) Assume that X admits an admissible sequence in $\mathcal{C}(I)$ satisfying(A1) and (A2). Then

$$
\begin{equation*}
e_{N, r}(X)=O\left(\frac{(\log \log N)^{\gamma+1 / 2}}{(\log N)^{\vartheta-1 / 2}}\right) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{N, r}(X)=O\left(\frac{(\log \log N)^{\gamma}}{(\log N)^{\vartheta-1 / 2}}\right) \text { if } b+\vartheta \leq 0 . \tag{3.18}
\end{equation*}
$$

(b) Assume that X admits an admissible sequence satisfying (A1). Let μ be a finite Borel measure on I and let $V: \mathcal{C}(I) \rightarrow L^{2}(I, \mu)$ denote the natural embedding. Then

$$
e_{N, r}\left(V(X), L^{2}(\mu)\right)=O\left(\frac{(\log \log N)^{\gamma}}{(\log N)^{\vartheta-1 / 2}}\right)
$$

and

$$
e_{N, 2}\left(V(X), L^{2}(\mu)\right)^{(p q)}=O\left(\frac{(\log \log N)^{\gamma}}{(\log N)^{\vartheta-1 / 2}}\right)
$$

Proof. (a) The assertions follow from Theorem 1, Proposition 4.1 in [15] which relates l-numbers (see (3.9)) and small ball probabilities (but this relation being not always sharp) and a precise link between these probabilities and $e_{N, r}(X)$ (cf. [5], [11]).
(b) Let $\left(f_{j}\right)_{j \geq 1}$ be an admissible sequence in $\mathcal{C}(I)$ for X satisfying (A1) and consider an L^{2}-product N-quantization of $V(X)$ based on $\left(V f_{j}\right)$,

$$
\widehat{V(X)}{ }^{N}=\sum_{j=1}^{m} \hat{\xi}_{j} V\left(f_{j}\right)
$$

(see (3.2)). Then using the independence of $\xi_{j}-\hat{\xi}_{j}, j \geq 1$ and the stationary property $\hat{\xi}_{j}=\mathbb{E}\left(\xi_{j} \mid \hat{\xi}_{j}\right)$ of the quantization $\hat{\xi}_{j}$,

$$
\begin{aligned}
\mathbb{E} \| \sum_{j=1}^{\infty} \xi_{j} V\left(f_{j}\right) & -\widehat{V(X)}{ }^{N} \|_{L^{2}(\mu)}^{2} \\
& =\sum_{j=1}^{m} \mathbb{E}\left|\xi_{j}-\hat{\xi}_{j}\right|^{2}\left\|V f_{j}\right\|_{L^{2}(\mu)}^{2}+\sum_{j \geq m+1}\left\|V f_{j}\right\|_{L^{2}(\mu)}^{2} \\
& \leq C\left(\sum_{j=1}^{m} n_{j}^{-2} j^{-2 \vartheta} \log (1+j)^{2 \gamma}+\sum_{j \geq m+1} j^{-2 \vartheta} \log (1+j)^{2 \gamma}\right) .
\end{aligned}
$$

Now argue as in [16] to conclude that

$$
e_{N, 2}\left(V(X), L^{2}(\mu)\right)^{(p q)}=O\left(\frac{(\log \log N)^{\gamma}}{(\log N)^{\vartheta-1 / 2}}\right)
$$

Sometimes (3.17) provides the true rate for $e_{N, r}(X)$ (like for the 2-parameter Brownian sheet), sometimes it yields the best known upper bound (like for the d-parameter Brownian sheet with $d \geq 3$) and sometimes (3.18) provides the true rate (like for the Brownian motion). The latter fact typically occurs when the rate of $e_{N, r}(X)$ and the "Hilbert rate" of $e_{N, r}\left(V(X), L^{2}(d t)\right)$ coincide (see Section 4). It remains an open question to find conditions for this to happen.

The following proposition ensures stability of conditions ($A 1$) and ($A 2$) under tensor products (see Proposition 5).

Proposition 7 For $i \in\{1, \ldots, d\}$, let $\left(f_{j}^{i}\right)_{j \geq 1} \in \mathcal{C}([0, T])^{\mathbb{N}}$ satisfy (A1) and (A2) with parameters $\vartheta_{i}, \gamma_{i}, a_{i}, b_{i}$ such that $\gamma_{i}=0$. Then a suitable arrangement of $\left(\otimes_{i=1}^{d} f_{j_{i}}^{i}\right)_{\underline{j} \in \mathbb{N}^{d}}$ satisfies (A1) and (A2) with parameters $\vartheta=\min _{1 \leq i \leq d} \vartheta_{i}, \gamma=\vartheta(m-1)$, where $m=\operatorname{card}\left\{i \in\{1, \ldots, d\}: \vartheta_{i}=\vartheta\right\}$, $a=\min _{1 \leq i \leq d} a_{i}$ and $b=\left(\max _{1 \leq i \leq d} b_{i}\right)_{+}$.
Proof. For $\underline{j}=\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}^{d}$, set $f_{\underline{j}}=\otimes_{i=1}^{d} f_{j_{i}}^{i}$ so that $f_{\underline{j}}(t)=\Pi_{j=1}^{d} f_{j_{i}}^{i}\left(t_{i}\right), t \in[0, T]^{d}$. We have

$$
\left\|f_{\underline{j}}\right\| \leq \Pi_{i=1}^{d}\left\|f_{j_{i}}^{i}\right\| \leq C \Pi_{i=1}^{d} j_{i}^{-\vartheta_{i}}
$$

and

$$
\left|f_{\underline{j}}(s)-f_{\underline{j}}(t)\right| \leq C \max _{1 \leq i \leq d} j_{i}^{b}|s-t|^{a}
$$

Let $u_{\underline{j}}:=\Pi_{i=1}^{d} j_{i}^{-\vartheta_{i}}$. Choose a bijective map $\psi: \mathbb{N} \rightarrow \mathbb{N}^{d}$ such that $u_{k}:=u_{\psi(k)}$ is decreasing in $k \geq 1$. Set $f_{k}:=f_{\psi(k)}$. Then

$$
u_{k} \approx C k^{-\vartheta}(\log k)^{\vartheta(m-1)} \text { as } k \rightarrow \infty
$$

(cf. [19], Theorem 2.1). Consequently,

$$
\left\|f_{k}\right\| \leq C k^{-\vartheta}(\log k)^{\vartheta(m-1)}
$$

and for $\underline{j}=\psi(k)$,

$$
j_{i} \leq \Pi_{i=1}^{d} j_{i} \leq \Pi_{i=1}^{d} j_{i}^{\vartheta_{i} / \vartheta} \leq C k(\log k)^{-(m-1)} \leq C k
$$

hence

$$
\left|f_{k}(s)-f_{k}(t)\right| \leq C k^{b}|s-t|^{a} . \quad \diamond
$$

4 Examples

4.1 Brownian motion and Brownian sheet

The admissible sequences (2.10)-(2.13) for the standard Brownian motion over $[0, T]$ all satisfy the conditions (A1) and (A2) with parameters $\vartheta=1, \gamma=0, a=1$ and $b=0$. Consequently, by Theorem 2, the performance of product quantization is ruled by

$$
\begin{equation*}
e_{N, r}(B M)^{(p q)}=O\left(\frac{\log \log N}{(\log N)^{1 / 2}}\right) \tag{4.1}
\end{equation*}
$$

while (see [5], [11])

$$
\begin{equation*}
e_{N, r}(B M) \approx(\log N)^{-1 / 2} \tag{4.2}
\end{equation*}
$$

The same result holds for Brownian bridge over $[0, T]$ using e.g. the admissible sequence (2.15).
By Proposition 5 and 7, the tensor products of functions (2.10)-(2.13) are admissible for the Brownian sheet (or Chentsov-Wiener field) X over $[0, T]^{d}$ with covariance function

$$
\mathbb{E} X_{s} X_{t}=\prod_{i=1}^{d} s_{i} \wedge t_{i}
$$

and satisfy $(A 1)$ and $(A 2)$ with $\vartheta=1, \gamma=d-1, a=1$ and $b=0$. Therefore, by Theorems 2 and 3 ,

$$
\begin{equation*}
e_{N, r}(B S)^{(p q)}=O\left(\frac{(\log \log N)^{d}}{(\log N)^{1 / 2}}\right) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{N, r}(B S)=O\left(\frac{(\log \log N)^{d-1 / 2}}{(\log N)^{1 / 2}}\right) \tag{4.4}
\end{equation*}
$$

Using $e_{N, r}(B S) \geq T^{-d} e_{N, r}\left(B S, L^{2}\left([0, T]^{d}, d t\right)\right)$ and employing the sharp rate for the Hilbert space case (see [17]), one obtains the lower estimate

$$
\begin{equation*}
e_{N, r}(B S)=\Omega\left(\frac{(\log \log N)^{d-1}}{(\log N)^{1 / 2}}\right) . \tag{4.5}
\end{equation*}
$$

For $d=2$, the "non-Hilbert-rate" (4.4) is known to be the true one for $e_{N, r}(B S)$ (see [11]) and it is very likely also the true rate for $d \geq 3$. In any case we see no dramatic loss of performance by using product quantization.

4.2 Fractional Brownian motions and fractional Brownian sheets

Consider the admissible familiy (2.14) in $\mathcal{C}([0, T])$ for the fractional Brownian motion over $[0, T]$ with Hurst index $\rho \in(0,1)$. Using the asymptotic properties

$$
x_{j} \sim y_{j} \sim \pi j, J_{1-\rho}\left(x_{j}\right) \sim J_{-\rho}\left(y_{j}\right) \sim \frac{\sqrt{2}}{\pi} j^{-1 / 2} \text { as } j \rightarrow \infty
$$

(cf. [8]), one observes that a suitable arrangement of the functions (2.14) (like $f_{2 j}=f_{j}^{1}, f_{2 j-1}=f_{j}^{2}$) satisfies (A1) and (A2) with parameters $\vartheta=\rho+1 / 2, \gamma=0, a=1$ and $b=1 / 2-\rho$. Consequently,

$$
\begin{equation*}
e_{N, r}(F B M)^{(p q)}=O\left(\frac{(\log \log N)^{\rho+1 / 2}}{(\log N)^{\rho}}\right) \tag{4.6}
\end{equation*}
$$

while (see [6], [11])

$$
\begin{equation*}
e_{N, r}(F B M) \approx(\log N)^{-\rho} . \tag{4.7}
\end{equation*}
$$

The tensor products of functions (2.14) are admissible for the fractional Brownian sheet X over $[0, T]^{d}$ with covariance function

$$
\mathbb{E} X_{s} X_{t}=\left(\frac{1}{2}\right)^{d} \Pi_{i=1}^{d}\left(s_{i}^{2 \rho_{i}}+t_{i}^{2 \rho_{i}}-\left|s_{i}-t_{i}\right|^{2 \rho_{i}}\right),
$$

$\rho_{i} \in(0,1)$, and satisfy conditions (A1) and (A2) with $\vartheta=\rho+1 / 2$, where $\rho=\min _{1 \leq i \leq d} \rho_{i}$, $\gamma=\vartheta(m-1)$, where $m=\operatorname{card}\left\{i \in\{1, \ldots, d\}: \rho_{i}=\rho\right\}, a=1$ and $\left.b=\max _{1 \leq i \leq d}\left(1 / 2-\rho_{i}\right)\right)_{+}$. Therefore, by Theorems 2 and 3,

$$
\begin{equation*}
e_{N, r}(F B S)^{(p q)}=O\left(\frac{(\log \log N)^{m(\rho+1 / 2)}}{(\log N)^{\rho}}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{N, r}(F B S)=O\left(\frac{(\log \log N)^{m(\rho+1 / 2)-\rho}}{(\log N)^{\rho}}\right) \tag{4.9}
\end{equation*}
$$

The Hilbert space setting $E=L^{2}\left([0, T]^{d}, d t\right)$ provides the lower estimate

$$
\begin{equation*}
e_{N, r}(F B S)=\Omega\left(\frac{(\log \log N)^{(m-1)(\rho+1 / 2)}}{(\log N)^{\rho}}\right) \tag{4.10}
\end{equation*}
$$

(see [16], [17]). The true rate of $e_{N, r}(F B S)$ is known only for the case $m=1$ where the true rate is the "Hilbert rate" (4.10) (see [5]) and in case $m=2$ where (4.9) is the true rate (see [2], [11]). A reasonable conjecture is that (4.9) is also the true rate for $m \geq 3$.

4.3 Riemann-Liouville and other moving average processes

For $\psi \in L^{2}([0, T], d t)$ and a standard Brownian motion W, let

$$
X_{t}=\int_{0}^{t} \psi(t-s) d W_{s}, t \in[0, T]
$$

and assume that X has a pathwise continuous modification. Since

$$
\mathbb{E} X_{s} X_{t}=\int_{0}^{s \wedge t} \psi(s-u) \psi(t-u) d u
$$

the operator $S: L^{2}([0, T], d t) \rightarrow \mathcal{C}([0, T]), S k(t)=\int_{0}^{t} \psi(t-s) k(s) d s$ provides a factorization of C_{X} so that

$$
\begin{align*}
f_{j}(t) & =\sqrt{\frac{2}{T}} \int_{0}^{t} \psi(t-s) \cos \left(\frac{\pi(j-1 / 2) s}{T}\right) d s \tag{4.11}\\
& =\sqrt{\frac{2}{T}} \int_{0}^{t} \psi(s) \cos \left(\frac{\pi(j-1 / 2)(t-s)}{T}\right) d s, j \geq 1,
\end{align*}
$$

is an admissible sequence for X. Observe that (4.11) provides well defined continuous functions even for $\psi \in L^{1}([0, T], d t)$.
Lemma 3 Let $\psi \in L^{1}([0,1], d t)$.
(a) If $\varphi(t)=\int_{0}^{t}|\psi(s)| d s$ is β-Hölder continuous with $\beta \in(0,1]$, then the sequence $\left(f_{j}\right)$ from (4.11) satisfies (A2) with $a=\beta$ and $b=1$. In particular, if $\psi \in L^{2}([0, T], d t)$, then (A2) is satisfied with $a=1 / 2$ and $b=1$.
(b) If ψ has finite variation over $[0, T]$, then (A1) is satisfied with $\vartheta=1$ and $\gamma=0$.

Proof. Let $\lambda_{j}=(\pi(j-1 / 2) / T)^{-2}$. (a) For $s<t$, we have
$f_{j}(s)-f_{j}(t)=\sqrt{\frac{2}{T}}\left\{\int_{0}^{s} \psi(u)\left(\cos \left((s-u) / \sqrt{\lambda_{j}}\right)-\cos ((t-u) / \sqrt{\lambda j})\right) d u-\int_{s}^{t} \psi(u) \cos \left((t-u) / \sqrt{\lambda_{j}}\right) d u\right\}$
so that

$$
\left|f_{j}(s)-f_{j}(t)\right| \leq \sqrt{\frac{2}{T}}\left(\frac{|s-t|}{\sqrt{\lambda_{j}}}\|\psi\|_{L^{1}(d t)}+\int_{s}^{t}|\psi(u)| d u\right) .
$$

(b) We have

$$
\begin{aligned}
f_{j}(t) & =-\sqrt{2 \lambda_{j} / T} \int_{0}^{t} \psi(s) d\left(\sin \left((t-s) / \sqrt{\lambda_{j}}\right)\right) \\
& =\sqrt{2 \lambda_{j} / T}\left(\psi(0) \sin \left(t / \sqrt{\lambda_{j}}\right)+\int_{0}^{t} \sin \left((t-s) / \sqrt{\lambda_{j}}\right) d \psi(s)\right)
\end{aligned}
$$

so that

$$
\left\|f_{j}\right\| \leq \sqrt{2 \lambda_{j} / T}(|\psi(0)|+\operatorname{Var}(\psi,[0, T]))
$$

This lemma yields an universal upper bound

$$
e_{N, r}(X)^{(p q)}=O\left(\frac{\log \log N}{(\log N)^{1 / 2}}\right)
$$

for functions ψ having finite variation.
In the sequel we do not care about improvements of parameter b in (A2) since the condition $b+\vartheta \leq 0$ cannot be achieved in this setting (cf. Theorems 2 and 3).

Lemma 4 Let $\psi \in L^{1}([0, T], d t)$.
(a) If ψ is positive and decreasing on $(0, T]$ and $\varphi(t)=\int_{0}^{t} \psi(s) d s$ is β-Hölder continuous with $\beta \in(0,1]$, then the sequence $\left(f_{j}\right)$ from (4.11) satisfies $\left\|f_{j}\right\| \leq C j^{-\beta}$. If $\beta>1 / 2$, then (A1) is satisfied with $\vartheta=\beta$ and $\gamma=0$.
(b) If $\psi(0)=0, \psi$ is β-Hölder continuous with $\beta \in(0,1], \psi$ is differentiable on $(0, T]$ such that ψ^{\prime} is positive and decreasing on $(0, T]$, then (A1) is satisfied with $\vartheta=1+\beta$ and $\gamma=0$.

Proof. Let $\lambda_{j}=(\pi(j-1 / 2) / T)^{-2}$. (a) For $t \leq \sqrt{\lambda_{j}}$, we have

$$
\left|f_{j}(t)\right| \leq \sqrt{2 / T} \varphi\left(\sqrt{\lambda_{j}}\right)
$$

Using the second integral mean value formula we obtain for $t \in\left[\sqrt{\lambda_{j}}, T\right]$ and some $\delta_{j} \in\left[\sqrt{\lambda_{j}}, t\right]$

$$
\begin{aligned}
\mid f_{j}(t) & \leq \sqrt{2 / T}\left(\left|\int_{0}^{\sqrt{\lambda_{j}}} \psi(s) \cos \left((t-s) / \sqrt{\lambda_{j}}\right) d s\right|+\left|\int_{\sqrt{\lambda_{j}}}^{t} \psi(s) \cos \left((t-s) / \sqrt{\lambda_{j}}\right) d s\right|\right) \\
& =\sqrt{2 / T}\left(\left|\int_{0}^{\sqrt{\lambda_{j}}} \psi(s) \cos \left((t-s) / \sqrt{\lambda_{j}}\right) d s\right|+\psi\left(\sqrt{\lambda_{j}}\right)\left|\int_{\sqrt{\lambda_{j}}}^{\delta_{j}} \cos \left((t-s) / \sqrt{\lambda_{j}}\right) d s\right|\right) \\
& \leq \sqrt{2 / T}\left(\varphi\left(\sqrt{\lambda_{j}}+2 \sqrt{\lambda_{j}} \psi\left(\sqrt{\lambda_{j}}\right)\right)\right. \\
& \leq 3 \sqrt{2 / T} \varphi\left(\sqrt{\lambda_{j}}\right) .
\end{aligned}
$$

Consequently,

$$
\left\|f_{j}\right\| \leq 3 \sqrt{2 / T} \varphi\left(\sqrt{\lambda_{j}}\right) \leq C \lambda_{j}^{\beta / 2}
$$

(b) The function ψ is absolutely continuous on $[0, T]$ so that an integration by parts yields

$$
f_{j}(t)=\sqrt{2 \lambda_{j} / T} \int_{0}^{t} \psi^{\prime}(s) \sin \left((t-s) / \sqrt{\lambda_{j}}\right) d s
$$

Arguing like in (a) (with ψ replaced by ψ^{\prime}) one derives that

$$
\left\|f_{j}\right\| \leq 3 \sqrt{2 \lambda_{j} / T} \psi\left(\sqrt{\lambda_{j}}\right) \leq C \lambda_{j}^{(1+\beta) / 2}
$$

Now let $\psi(t)=t^{\rho-1 / 2}$ with $\rho \in(0, \infty)$. Then

$$
\begin{equation*}
X_{t}=X_{t}^{\rho}=\int_{0}^{t}(t-s)^{\rho-1 / 2} d W_{s}, t \in[0, T] \tag{4.12}
\end{equation*}
$$

so that X^{ρ} is a Riemann-Liouville process of order ρ. Using the ($\rho \wedge \frac{1}{2}$)-Hölder continuity of the application $t \mapsto X_{t}^{\rho}$ from $[0, T]$ into $L^{2}(\mathbb{P})$ and the Kolmogorov criterion one checks that X^{ρ} has a pathwise continuous modification.

Lemma 5 Let $\psi(t)=t^{\rho-1 / 2}, \rho \in(0, \infty)$. Then the sequence $\left(f_{j}\right)$ from (4.11) satisfies (A2) with $a=\min \{1, \rho+1 / 2\}, b=1$ and $(A 1)$ for $\rho \in(0,3 / 2]$ with $\vartheta=\rho+1 / 2$ and $\gamma=0$.
Proof. Immediate consequence of Lemma 3 and Lemma 4.
We deduce for Riemann-Liouville processes of order $\rho \in(0,3 / 2]$

$$
\begin{equation*}
e_{N, r}(R L)^{(p q)}=O\left(\frac{(\log \log N)^{\rho+1 / 2}}{(\log N)^{\rho}}\right) \tag{4.13}
\end{equation*}
$$

while for every $\rho \in(0, \infty)$ (see [15], [11])

$$
\begin{equation*}
e_{N, r}(R L) \approx(\log N)^{-\rho} \tag{4.14}
\end{equation*}
$$

For $\beta \in(0, \infty)$, define the fractionally integrated Brownian motion by

$$
\begin{equation*}
Y_{t}^{\beta}=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} W_{s} d s \tag{4.15}
\end{equation*}
$$

The Ito formula yields $Y_{t}^{\beta}=\Gamma(1+\beta)^{-1} X_{t}^{\beta+1 / 2}$ so that for $\beta \in(0,1]$

$$
e_{N, r}(F I B M)^{(p q)}=O\left(\frac{(\log \log N)^{\beta+1}}{(\log N)^{\beta+1 / 2}}\right)
$$

and for $\beta \in(0, \infty)$

$$
e_{N, r}(F I B M) \approx(\log N)^{-(\beta+1 / 2)}
$$

To go beyond $\rho=3 / 2$ needs to slightly change the way we quantize. Let $\psi(t)=t^{\rho-1 / 2}$ with $\rho>3 / 2$ and choose $k \in \mathbb{N}$ such that $k+1 / 2<\rho \leq k+3 / 2$. Set $\lambda_{j}=(\pi(j-1 / 2) / T)^{-2}$. For $k \in\{2 n-1,2 n\}, n \in \mathbb{N}$ integration by parts yields the expansion

$$
\begin{aligned}
f_{j}(t) & =\sum_{m=1}^{n}(-1)^{m-1} \lambda_{j}^{m} \sqrt{2 / T} \psi^{(2 m-1)}(t)+(-1)^{n} \lambda_{j}^{n} \sqrt{2 / T} \int_{0}^{t} \psi^{(2 n)}(s) \cos \left((t-s) / \sqrt{\lambda_{j}}\right) d s \\
& =: g_{j}(t)+h_{j}(t), t \in[0, T]
\end{aligned}
$$

Since $\psi^{(2 n)}(t)=C t^{\beta-1}$ if $k=2 n-1$ and $\psi^{(2 n)}(t)=C t^{\beta}$ if $k=2 n$ with $\beta=\rho-k-1 / 2 \in(0,1]$ we deduce from Lemma 3 and Lemma 4 that the sequence $\left(h_{j}\right)$ in $C([0, T])$ satisfies (A1) with $\vartheta=\rho+1 / 2, \gamma=0$ and (A2) with $a=\rho-k-1 / 2, b=-k$ if $k=2 n-1$ and $a=1, b=-k+1$ if $k=2 n$. Clearly, the sequence (g_{j}) also satisfies the conditions (A1) and (A2) (with $\vartheta=2, \gamma=0, b=-2$ and $a=\rho-k-1 / 2$ if $k=2 n-1$ and $a=1$ if $k=2 n$). Consequently, there exist centered continuous Gaussian processes $U=\left(U_{t}\right)_{t \in[0, T]}$ and Z such that $U=\sum_{j=1}^{\infty} \xi_{j} g_{j}$ a.s., $Z=\sum_{j=1}^{\infty} \xi_{j} h_{j}$ a.s.,

$$
\begin{equation*}
X=X^{\rho} \stackrel{d}{=} U+Z \tag{4.16}
\end{equation*}
$$

and $U \in \operatorname{span}\left\{\psi^{(2 m-1)}: m=1, \ldots, n\right\}$ a.s. Observe that

$$
U=\sum_{m=1}^{n}(-1)^{m-1} \sqrt{2 / T} \psi^{(2 m-1)} \eta_{m}
$$

where $\eta_{m}=\sum_{j=1}^{\infty} \lambda_{j}^{m} \xi_{j}$ is $N\left(0, \sum_{j=1}^{\infty} \lambda_{j}^{2 m}\right)$-distributed.
Now use e.g. $\left[N^{1 / 2 n}\right]$-quantizations of η_{m} and a $[\sqrt{N}]$-product quantization of Z for the quantization of X (which is clearly not optimal in practice but remains rate optimal). Let $\alpha_{m} \subset \mathbb{R}$ be the L^{r}-optimal $\left[N^{1 / 2 n}\right]$-quantizer for $\eta_{m}, \hat{\eta}_{m}:=\hat{\eta}_{m}^{\alpha_{m}}$,

$$
\hat{U}^{\sqrt{N}}:=\sum_{m=1}^{n}(-1)^{m-1} \sqrt{2 / T} \psi^{(2 m-1)} \hat{\eta}_{m}
$$

and let $\hat{Z}^{\sqrt{N}}$ be the L^{r}-product $[\sqrt{N}]$-quantization of Z from Theorem 2. Then, a (modified) L^{r}-product N-quantization of X with respect to $\left(f_{j}\right)$ is defined by

$$
\begin{equation*}
\hat{X}^{N}:=\hat{U}^{\sqrt{N}}+\hat{Z}^{\sqrt{N}} \tag{4.17}
\end{equation*}
$$

Using Theorem 2 one shows for the quantization error

$$
\begin{aligned}
\left\|U+Z-\hat{X}^{N}\right\|_{L_{E}^{r}} & \leq C\left(\left\|U-\hat{U}^{\sqrt{N}}\right\|_{L_{E}^{r}}+\left\|Z-\hat{Z}^{\sqrt{N}}\right\|_{L_{E}^{r}}\right) \\
& \leq C\left(\sum_{m=1}^{n} \sqrt{2 / T}\left\|\psi^{(2 m-1)}\right\|\left\|\eta_{m}-\hat{\eta}_{m}\right\|_{L^{r}}+\left\|Z-\hat{Z}^{\sqrt{N}}\right\|_{L_{E}^{r}}\right. \\
& \leq \frac{C}{N^{1 / 2 n}}+\frac{C(\log \log \sqrt{N})^{\rho+1 / 2}}{(\log \sqrt{N})^{\rho}} \\
& \leq \frac{C(\log \log N)^{\rho+1 / 2}}{(\log N)^{\rho}}
\end{aligned}
$$

so that with the above modification (4.13) remains true for $\rho>3 / 2$.

4.4 Ornstein-Uhlenbeck process

By Lemma 3, the admissible sequence

$$
f_{0}(t)=\frac{\sigma}{\sqrt{2 a}} e^{-\beta t}, f_{j}(t)=\sigma \sqrt{\frac{2}{T}} \int_{0}^{t} e^{-\beta(t-s)} \cos \left(\frac{\pi(j-1 / 2) s}{T}\right) d s, j \geq 1
$$

(see (2.16)) for the stationary Ornstein-Uhlenbeck process $\left(X_{t}\right)_{t \in[0, T]}$ with covariance

$$
\mathbb{E} X_{s} X_{t}=\frac{\sigma^{2}}{2 \beta} e^{-\beta|s-t|}
$$

satisfies conditions ($A 1$) and (A2) with $\vartheta=1, \gamma=0, a=1$ and $b=1$. Consequently,

$$
\begin{equation*}
e_{N, r}(O U)^{(p q)}=O\left(\frac{\log \log N}{(\log N)^{1 / 2}}\right) \tag{4.18}
\end{equation*}
$$

while (see [11])

$$
\begin{equation*}
e_{N, r}(O U) \approx(\log N)^{-1 / 2} \tag{4.19}
\end{equation*}
$$

References

[1] Ayache, A., Taqqu, M.S., Rate optimality of Wavelet series approximations of fractional Brownian motion, J. of Fourier Analysis and Applications 9 (2003), 451-471.
[2] Belinsky, E., Linde, W., Small ball probabilities of fractional Brownian sheets via fractional integration operators, J Theoret. Probab. 15 (2002), 589-612.
[3] Bogachev, V.I., Gaussian Measures, AMS, 1998.
[4] Dereich, S., High resolution coding of stochastic processes and small ball probabilities, PhD thesis, TU Berlin, 2003.
[5] Dereich, S., Fehringer, F., Matoussi, A., Scheutzow, M., On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces, J. Theoret. Probab. 16 (2003), 249-265.
[6] Dereich, S., Scheutzow, M., High resolution quantization and entropy coding for fractional Brownian motions, Preprint, 2005.
[7] Dzhaparidze, K., van Zanten, H., Optimality of an explicit series expansion of the fractional Brownian sheet, Preprint, 2003.
[8] Dzhaparidze, K., van Zanten, H., A series expansion of fractional Brownian motion, Probab. Theory Relat. Fields 130 (2004), 39-55.
[9] Dzhaparidze, K., van Zanten, H., Krein's spectral theory and the Paley-Wiener expansion of fractional Brownian motion, Ann. Probab. 33 (2005), 620-644.
[10] Graf, S., Luschgy, H., Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, Vol. 1730, Springer, Berlin, 2000.
[11] Graf, S., Luschgy, H., Pagès, G., Functional quantization and small ball probabilities for Gaussian processes, J. Theoret. Probab. 16 (2003), 1047-1062.
[12] Graf, S., Luschgy, H., Pagès, G., Optimal quantizers for Radon random vectors in a Banach space, Preprint, 2005.
[13] Künn, T., Linde, W., Optimal series representation of fractional Brownian sheets, Bernoulli 8 (2002), 669-696.
[14] Ledoux, M., Talagrand, M., Probability in Banach Spaces, Springer, Berlin, 1991.
[15] Li, W. V., Linde, W., Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27 (1999), 1556-1578.
[16] Luschgy, H., Pagès, G., Functional quantization of stochastic processes, J. Funct. Anal. 196 (2002), 486-531.
[17] Luschgy, H., Pagès, G., Sharp asymptotics of the functional quantization problem for Gaussian processes, Ann. Probab. 32 (2004), 1574-1599.
[18] Pagès, G., Printems, J., Functional quadratic quantization for pricing derivatives, Preprint LMPA 930, Université Paris 6, 2004.
[19] Papageorgiou, A., Wasilkowski, G.W., On the average complexity of multivariate problems. J. Complexity 6 (1990), 1-23.
[20] Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A., Probability Distributions on Banach Spaces, Kluwer, Boston, 1987.
[21] Van der Waart, A.W., Wellner, J.A., Weak Convergence and Empirical Processes, Springer, Berlin, 1996.

[^0]: *Universität Trier, FB IV-Mathematik, D-54286 Trier, Germany. E-mail: luschgy@uni-trier.de
 ${ }^{\dagger}$ Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5. E-mail:gpa@ccr.jussieu.fr

