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Abstract

We derive high-resolution upper bounds for optimal product quantization of pathwise con-
tionuous Gaussian processes respective to the supremum norm on [0, T ]d. Moreover, we describe
a product quantization design which attains this bound. This is achieved under very general
assumptions on random series expansions of the process. It turns out that product quantiza-
tion is asymptotically only slightly worse than optimal functional quantization. The results are
applied e.g. to fractional Brownian sheets and the Ornstein-Uhlenbeck process.
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1 Introduction

We investigate the functional quantization problem for pathwise continuous Gaussian processes
X = (Xt)t∈I , I = [0, T ]d, where the distortion is based on the supremum norm in the path-space
E = C(I). The general Banach space setting reads as follows.

Let (E, ‖ · ‖) be a real separable Banach space and let X : (Ω,A,P) → E be a centered
Gaussian random vector taking its values in E with distribution P

X
. For N ∈ N and r ∈ (0,∞),

the Lr-quantization problem for X of level N (or of nat-level logN) consists in minimizing

(Emin
a∈α

‖X − a‖r)1/r

over all subsets α ⊂ E with card(α) ≤ N . Such a set is called N -codebook or N -quantizer. The
minimal Nth quantization error of X is then defined by

e
N,r

(X,E) := inf{(Emin
a∈α

‖X − a‖r)1/r : α ⊂ E, card(α) ≤ N}. (1.1)

It is still an open question whether Lr-optimal N -quantizers for Gaussian random vectors always
exist (see [12]). For a given N -quantizer α one defines an associated closest neighbour projection

πα :=
∑

a∈α
a1Ca(α)
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and the Voronoi quantization of X induced by α by

X̂α := πα(X), (1.2)

where {Ca(α) : a ∈ α} is a Voronoi partition induced by α, that is a Borel partition of E satisfying

Ca(α) ⊂ {x ∈ E : ‖x− a‖ = min
b∈α

‖x− b‖}

for every a ∈ α. Then one easily checks that

E‖X − X̂α‖r = Emin
a∈α

‖X − a‖r. (1.3)

In order to construct good N -quantizations for X we proceed by (scalar) product quantization.
Let ξ1, ξ2, . . . be i.i.d. N (0, 1)-distributed random variables and let (fj)j≥1 be a sequence in E such

that
∞∑
j=1

ξjfj converges a.s. in E and

X
d
=

∞∑

j=1

ξjfj. (1.4)

For m,N1, . . . Nm ∈ N with Πm
j=1Nj ≤ N , let αj ⊂ R be an Lr-optimal Nj-quantizer for ξj and

let ξ̂j = ξ̂
αj

j be the (Pξj -a.s. uniquely defined) Voronoi quantization of ξj induced by αj . Then, a
Lr-product N -quantization of X with respect to (fj) is defined by

X̂N :=
m∑

j=1

ξ̂jfj (1.5)

and the quantization error induced by X̂N reads

(E‖
∞∑

j=1

ξjfj − X̂N‖r)1/r.

The quantizer α = X̂N (Ω) satisfies card(α) ≤ N and

(Emin
a∈α

‖X − a‖r)1/r ≤ (E‖
∞∑

j=1

ξjfj − X̂N‖r)1/r.

Observe that X̂N is not a Voronoi quantization of X. The minimal Nth product quantization error
is then defined by

e
N,r

(X,E)(pq) := inf{(E‖
∞∑

j=1

ξjfj − X̂‖r)1/r : X
d
=

∞∑

j=1

ξjfj, (1.6)

X̂ Lr-product N -quantization w.r.t. (fj)}

Clearly, we have
e
N,r

(X,E) ≤ e
N,r

(X,E)(pq). (1.7)

We address the issue of high-resolution product quantization in E = C(I) under the sup-norm
which concerns the performance of X̂N and the behaviour of e

N,r
(X, C(I))(pq) as N → ∞. For a

broad class of Gaussian processes we derive high-resolution upper estimates for e
N,r

(X, C(I))(pq).

Furthermore, we describe a product quantization design X̂N which attains this bound. Combining
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these estimates with precise high-resolution formulas for e
N,r

(X, C(I)) (see [5], [6], [11]) one may
typically conclude

e
N,r

(X, C(I))(pq) = O((log logN)ce
N,r

(X, C(I)))

for some suitable constant c > 0. This suggests that the asymptotic quality of product quantization
which is based on easy computations is only slightly worse than optimal quantization. However, it
also suggests that the optimal rate, i.e. the rate of convergence to zero of e

N,r
(X, C(I)), cannot be

achieved by product quantization.
It should be noticed that the C(I)-setting thus turns out to be different from the Hilbert space

setting. For Hilbert spaces E (like E = L2(I, dt)), sharp high-resolution formulas for e
N,r

(X,E)
and L2-product quantization have been fully investigated in the past years (see [4], [16], [17], [18]).
A typical result is then, at least for r = 2,

e
N,r

(X,E)(pq) = O(e
N,r

(X,E))

so that optimal product quantization is in fact rate optimal.
The paper is organized as follows. Section 2 contains a brief survey about expansions of C(I)-

valued Gaussian random vectors in the sense of (1.4). This is an important issue for product quanti-
zation since e

N,r
(X, C(I))(pq) comprises a minimization over such expansions (see (1.6)). In Section

3 we derive high-resolution upper estimates for e
N,r

(X, C(I))(pq) under very general assumptions
on expansions. Section 4 contains a collection of examples including fractional Brownian sheets,
Riemann-Liouville processes and the Ornstein-Uhlenbeck process.

It is convenient to use the symbols ∼ and ≈, where an ∼ bn means an/bn → 1 and an ≈ bn
means an = O(bn) and an = Ω(bn). Throughout all logarithms are natural logarithms and [x]
denotes the integer part of the real number x.

2 Expansions

We present the basic facts about expansions of Gaussian stochastic processes viewed as random
vectors taking values in a Banach (function) space. They are essentially well known and contained
more or less explicitely in [3], [14] and [20]. We give some proofs for the reader’s convenience.
Furthermore, we introduce examples which are investigated for quantization in Section 4.

2.1 The Banach space setting

Let (E, ‖ · ‖) be a real separable Banach space. For u ∈ E∗ and x ∈ E, it is convenient to write

〈u, x〉

in place of u(x). Let X : (Ω,A,P) → E be a centered Gaussian random vector with distribution
P

X
. The covariance operator C = C

X
of X is defined by

C : E∗ → E, Cu := E〈u,X〉X. (2.1)

This operator is linear and (norm-)continuous. Let H = H
X

denote the reproducing kernel Hilbert
space (Cameron Martin space) of the symmetric nonnegative definite kernel

E∗ × E∗ → R, (u, v) 7→ 〈u,Cv〉.

Then H is a Hilbert subspace of E, that is H ⊂ E and the inclusion map is continuous. The
reproducing property reads

(h,Cu)
H

= 〈u, h〉, u ∈ E∗, h ∈ H (2.2)
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where (·, ·)
H

denotes the scalar product on H and the corresponding norm is given by

‖h‖
H

= sup{|〈u, h〉| : u ∈ E∗, 〈u,Cu〉 ≤ 1}. (2.3)

In particular, for h ∈ H,

‖h‖ ≤ sup
‖u‖≤1

〈u,Cu〉1/2‖h‖
H

= ‖C‖1/2‖h‖
H
. (2.4)

The ‖ · ‖H− closure of A ⊂ H is denoted by A
(H)

Furthermore, H is separable, C(E∗) is dense in
(H, ‖ · ‖

H
), the unit ball

UH := {h ∈ H : ‖h‖
H
≤ 1}

of H is a compact subset of E,

supp(P
X

) = (kerC)⊥ := {x ∈ E : 〈u, x〉 = 0 for every u ∈ ker C} = H in E

and
H = {x ∈ E : ‖x‖

H
<∞} (2.5)

where
‖x‖

H
= sup{|〈u, x〉| : u ∈ E∗, 〈u,Cu〉 ≤ 1}.

We are interested in expansions of X of the following type. Let ξ1, ξ2, . . . be i.i.d. N (0, 1)-
distributed random variables.

Definition 1 A sequence (fj)j≥1 ∈ EN is called admissible for X if

∞∑

j=1

ξjfj converges a.s. in E

and

X
d
=

∞∑

j=1

ξjfj.

By adding zeros finite sequences in E may also serve as admissible sequences.
The key is the following characterization of admissibility. It relies on the Ito-Nisio theorem.

Condition (v) is an abstract version of Mercer’s theorem. Recall that a subset G ⊂ E∗ is said to
be separating if for every x, y ∈ E, x 6= y there exists u ∈ G such that 〈u, x〉 6= 〈u, y〉.

Lemma 1 Let (fj)j≥1 ∈ EN. The following assertions are equivalent.

(i) The sequence (fj)j≥1 is admissible for X.

(ii) There is a separating linear subspace G of E∗ such that for every u ∈ G,

(〈u, fj〉)j≥1 is admissible for 〈u,X〉.

(iii) There is a separating linear subspace G of E∗ such that for every u ∈ G,

∞∑

j=1

〈u, fj〉2 = 〈u,Cu〉.

(iv) For every u ∈ E∗,
∞∑

j=1

〈u, fj〉fj = Cu.
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(v) For every a > 0,
∞∑

j=1

〈u, fj〉〈v, fj〉 = 〈u,Cv〉

uniformly in u, v ∈ {y ∈ E∗ : ‖y‖ ≤ a} .

Proof. Set Xn :=
n∑
j=1

ξjfj. (i) ⇒ (v). Xn converges a.s. in E to some E-valued random vector Y ,

say, with X
d
= Y . It is well known that this implies Xn → Y in L2

E. Therefore,

|
n∑

j=1

〈u, fj〉〈v, fj〉 − 〈u,Cv〉| = |E〈u,Xn〉〈v,Xn〉 − E〈u, Y 〉〈v, Y 〉|

= |E〈u, Y −Xn〉〈v, Y −Xn〉| ≤ a2
E‖Y − Yn‖2 → 0 as n→ ∞

uniformly in u, v ∈ {y ∈ E∗ : ‖y‖ ≤ a}. (v) ⇒ (iv) ⇒ (iii) is obvious. (iii) ⇒ (i). For every u ∈ G,

E exp(i〈u,Xn〉) = exp(−
n∑

j=1

〈u, fj〉2/2) → exp(−〈u,Cu〉/2) = E exp(i〈u,X〉).

The assertion (i) follows from the Ito-Nisio theorem (cf. [20], p. 271). (i) ⇒ (ii) ⇒ (iii) is obvi-
ous. ♦

Note that the preceding lemma shows in particular that (fj)j≥1 is admissible for X if and only
if (fσ(j))j≥1 is admissible for X for (some) every permutation σ of N so that

∑
j ξjfj converges

unconditionally a.s. in E for such sequences and all the a.s. limits under permuations of N have
distribution P

X
.

It is also an immediate consequence of Lemma 1(v) that admissible sequences (fj) satisfy
‖fj‖ → 0.

The covariance operator admits factorizations C = SS∗, where S : K → E is a linear continuous
operator and (K, (·, ·)

K
) a real separable Hilbert space, which provide an useful tool for expansions.

It is convenient to allow that S is not injective. One gets

S(K) = H, (2.6)

(Sk1, Sk2)H = (k1, k2)K , k1 ∈ K,k2 ∈ (kerS)⊥,

‖S‖ = ‖S∗‖ = ‖C‖1/2,

S∗(E∗) = (kerS)⊥ in K,

(kerS∗)⊥ := {x ∈ E : 〈u, x〉 = 0 ∀u ∈ kerS∗} = H in E.

Proposition 1 Let C = SS∗, S : K → E be a factorization of C and let (ej) be an orthonormal
system in K satisfying (kerS)⊥ ⊂ span{ej : j = 1, 2, . . .}. Then (S(ej)) is admissible for X.

Proof. Clearly (ej) is an orthonormal basis of K0 := span{ej : j = 1, 2, . . .}. Since by (2.6)

S∗(E∗) ⊂ (kerS)⊥ ⊂ K0,

one obtains for every u ∈ E∗, by the Parseval identity,

∑

j

〈u, Sej〉2 =
∑

j

(S∗u, ej)
2
K

= ‖S∗u‖2
K

= 〈u,Cu〉.
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The assertion follows from Lemma 1. ♦

Examples • Let S : H → E be the inclusion map. Then C = SS∗. Consequently, every
orthonormal basis (fj) of H is admissible for X.
• Let K be the closure of E∗ in L2(P

X
) and S : K → E,Sk = Ek(X)X. Then S is injective and

S∗ : E∗ → K is the natural embedding. Thus C = SS∗. (K is sometimes called the energy space
of X.) One obtains

H = S(K) = {Ek(X)X : k ∈ K}
and

(Ek1(X)X,Ek2(X)X)
H

=

∫
k1k2dPX

.

• Let E be a Hilbert space, K = E and S = C1/2. Then C = SS∗ = S2 and (kerS)⊥ = H. Con-
sequently, if (ej) is an othonormal basis of the Hilbert subspace H of E consisting of eigenvectors
of C and (λj) the corresponding nonzero eigenvalues, then (

√
λjej) is admissible for X and an

orthonormal basis of (H, (·, ·)
H

) (Karhunen-Loève basis).

In the following proposition it is demonstrated that any admissible set for X arises in the
manner of Proposition 1.

Proposition 2 Assume that (fj)j≥1 is admissible for X. Let K be an infinite dimensional real
separable Hilbert space and (ej)j≥1 an orthonormal basis of K. Then there is a factorization
C = SS∗, S : K → E such that S(ej) = fj for every j.

Proof. First, observe that
∞∑
j=1

cjfj converges in E for every (cj)j ∈ l2(N). In fact, using Lemma 1,

‖
n+m∑
j=n

cjfj‖2 = sup‖u‖≤1〈u,
n+m∑
j=n

cjfj〉2

≤
n+m∑
j=n

c2j sup‖u‖≤1

∞∑
j=1

〈u, fj〉2

=
n+m∑
j=n

c2j sup‖u‖≤1〈u,Cu〉

=
n+m∑
j=n

c2j‖C‖ → 0, n,m→ ∞

and thus the sequence is Cauchy in E. Now define S : K → E by

S(k) :=
∞∑

j=1

(k, ej)Kfj

where
∑

(k, ej)Kfj converges in E since ((k, ej)K )j ∈ l2(N). S is obviously linear. Moreover, for
k ∈ K, using again Lemma 1,

‖Sk‖2 = sup‖u‖≤1〈u, Sk〉2

= sup‖u‖≤1(
∞∑
j=1

(k, ej)K 〈u, fj〉)2

≤ ‖k‖2
K
‖C‖.

Consequently, S is continuous and S(ej) = fj for every j. Finally, S∗(u) =
∞∑
j=1

〈u, fj〉ej and hence

SS∗u =
∞∑

j=1

〈u, fj〉fj = Cu

for every u ∈ E∗ by Lemma 1. ♦
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Corollary 1 Let (fj)j≥1 ∈ EN be admissible for X. Then {fj : j ≥ 1} ⊂ UH , span
(H){fj : j ≥

1} = H,
∑

(fj, h)Hfj converges in H and

∞∑

j=1

(fj , h)Hfj = h

for every h ∈ H. Furthermore, (fj) is an orthonormal basis of H if and only if ‖fj‖H
= 1 for every

j.

Proof. Choose a factorization C = SS∗, S : K → H and an orthonormal basis (ej)j≥1 of K as in
Proposition 2. The inclusion {fj : j ≥ 1} ⊂ UH and the assertion concerning the ‖ · ‖

H
-closed span

follow immediately from (2.6). Since S is continuous as operator from K onto H,
∑

(ej , k)KSej
converges in H,

∞∑

j=1

(ej , k)Kfj = Sk

and since (ej , k)K = (fj, Sk)H for every k ∈ (kerS)⊥, we obtain

∞∑

j=1

(fj , h)Hfj = h

for every h ∈ H. Write ej = e
(1)
j + e

(2)
j with e

(1)
j ∈ (kerS)⊥ and e

(2)
j ∈ kerS. If ‖fj‖H

= 1 for every
j, then using (2.6),

‖e(1)j ‖
K

= ‖Se(1)j ‖
H

= ‖fj‖H
= 1 = ‖ej‖K

and thus e
(2)
j = 0 for every j. This implies that S is injective so that for i 6= j,

(fi, fj)H = (ei, ej)K = 0. ♦

Let F be a further separable Banach space and V : E → F a linear continuous operator. Then
V (X) is centered Gaussian with covariance operator

CV (X) = V C
X
V ∗

and

HV (X) = V (H
X

), (2.7)

(V h1, V h2)HV (X)
= (h1, h2)H

X
, h1 ∈ H

X
, h2 ∈ (ker(V |H

X
))⊥.

If (fj)j≥1 is admissible for X in E, then clearly (V (fj))j≥1 is admissible for V (X) in F . The
following proposition contains the converse for injective operators V .

Proposition 3 Assume that V : E → F is injective. Let (gj)j≥1 be an admissible sequence
for V (X) in F . Then there exists a sequence (fj)j≥1 in E which is admissible for X such that
V (fj) = gj for every j.

Proof. By Corollary 1 and (2.7), we have {gj : j ≥ 1} ⊂ V (H
X

) so that gj = V (fj) with
fj ∈ H

X
⊂ E. Using Lemma 1, we obtain for every y ∈ F ∗,

∞∑

j=1

〈V ∗y, fj〉2 =
∞∑

j=1

〈y, V (fj)〉2 = 〈y,CV (X)y〉 = 〈V ∗y,C
X
V ∗y〉
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and hence ∞∑

j=1

〈u, fj〉2 = 〈u,C
X
u〉

for every u ∈ V ∗(F ∗). Since V ∗(F ∗) ⊂ E∗ is separating if (and only if) V is injective it follows
from Lemma 1 that (fj) is admissible for X. ♦

Almost sure representations of X can be obtained under a suitable restriction on the admissible
sequence.

Proposition 4 Assume that the admissible sequence (fj)j≥1 for X in E is an orthonormal basis
of H (cf. Corollary 1). Then there exist i.i.d. N (0, 1)-distributed random variables η1, η2, . . . such
that

X =
∞∑

j=1

ηjfj a.s.

Proof. Choose the energy factorization C = SS∗ with K the closure of E∗ in L2(P
X

) and
Sk = Ek(X)X. Let ej := S−1(fj) and ηj := ej(X). Then (ej)j≥1 is an orthonormal basis of
K and thus ηj, j ≥ 1 are i.i.d. N (0, 1)-distributed. Consequently,

∞∑

j=1

ηjfj converges a.s. in E.

For every u ∈ E∗, we have

〈u,
∞∑

j=1

ηjfj〉 =
∞∑

j=1

ηj(S
∗u, ej)K = S∗u(X) = 〈u,X〉 a.s.

Since there is a countable separating subset of E∗ this yields

X =
∞∑

j=1

ηjfj a.s. ♦

2.2 Continuous Gaussian processes

Now let I be a compact metric space and X = (Xt)t∈I be a real pathwise continuous centered
Gaussian process. Let E := C(I) be equipped with the sup-norm ‖x‖ = supt∈I |x(t)|. Then X can
be seen as C(I)-valued Gaussian random vector and the covariance operator C : C(I)∗ → C(I) takes
the form

Cu(t) = 〈δt, Cu〉 = 〈Cδt, u〉
= 〈EXtX,u〉 =

∫

I
EXtXsdu(s). (2.8)

Factorizations of C can be obtained as follows. For Hilbert spaces Ki, let ⊕m
i=1Ki denote the

Hilbertian (or l2−)direct sum.

Lemma 2 For i ∈ {1, . . . ,m}, let Ki be a real separable Hilbert space. Assume the representation

EXsXt =
m∑

i=1

(gis, g
i
t)Ki

, s, t∈ I,

8



for vectors git ∈ Ki. Then

S : ⊕m
i=1Ki → C(I), Sk(t) :=

m∑

i=1

(git, ki)Ki

is a linear continuous operator, (kerS)⊥ = span{(g1
t , . . . , g

m
t ) : t ∈ I} and C = SS∗.

Proof. Let K := ⊕m
i=1Ki and gt := (g1

t , . . . , g
m
t ). Then EXsXt = (gs, gt)K and Sk(t) = (gt, k)K .

First, observe that
sup
t∈I

‖gt‖K
≤ ‖C‖1/2 <∞.

Indeed, for every t ∈ I, by (2.8),

‖gt‖2
K = EX2

t = 〈δt, Cδt〉 ≤ ‖C‖.

The function Sk is continuous for k ∈ span {gs : s ∈ I}. This easily implies that Sk is continuous
for every k ∈ span{gs : s ∈ I} and thus for every k ∈ K. S is obviously linear and

‖Sk‖ = sup
t∈I

|(gt, k)K | ≤ ‖C‖1/2‖k‖
K
.

Finally, S∗(δt) = gt so that

SS∗δt(s) = Sgt(s) = EXsXt = Cδt(s)

for every s, t ∈ I. Consequently, for every u ∈ C(I)∗, t ∈ I,

SS∗u(t) = 〈SS∗u, δt〉 = 〈u, SS∗δt〉
= 〈u,Cδt〉 = 〈Cu, δt〉 = Cu(t)

and hence C = SS∗. ♦

Example Let K be the first Wiener chaos, that is K = span{Xt : t ∈ I} in L2(P) and gt = Xt.
Then Sk = E kX and S is injective. If for instance X = W (Brownian motion) and I = [0, T ], then

K =

{∫ T

0
f(s)dWs : f ∈ L2([0, T ], dt)

}
.

We derive from the preceeding lemma and Proposition 1 the following corollary.

Corollary 2 Assume the situation of Lemma 2. Let (eij)j be an orthonormal system in Ki satis-

fying {git : t ∈ I} ⊂ span {eij : j = 1, 2, . . .}. Then, (Si(e
i
j))1≤i≤m,j is admissible for X, where

Sik(t) = (git, k)Ki
.

The next corollary shows that the Karhunen-Loève expansion of X in some Hilbert space
L2(I, µ) already converges uniformly in t ∈ I. It appears as special case of Proposition 3.

Corollary 3 Let µ be a finite Borel measure on I with supp(µ) = I and let V : C(I) → L2(I, µ)
denote the natural (injective) embedding. Let (gj)j≥1 be admissible for V (X) in L2(I, µ). Then
there exists a sequence (fj)j≥1 in C(I) which is admissible for X such that V (fj) = gj for every j.

A final corollary is as follows.
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Corollary 4 Let (fj)j≥1 ∈ C(I)N such that

∞∑

j=1

fj(t)
2 <∞ for every t ∈ I.

If the process Y with Yt =
∞∑
j=1

ξjfj(t) has a pathwise continuous modification X, then (fj) is

admissible for X and X =
∞∑
j=1

ξjfj a.s..

Proof. Notice that
∑
ξjfj(t) converges a.s. in R and Y is a centered Gaussian process. Hence X

is centered Gaussian. We have

〈u,
n∑

j=1

ξjfj〉 → 〈u,X〉 a.s.

for every u ∈ G := span{δt : t ∈ I}. Since G is a separating subspace of C(I)∗ the assertion follows
from Lemma 1. ♦

The admissibility feature is stable under tensor products. For i ∈ {1, . . . , d}, let Ii be a compact
metric space and Xi = (Xi

t)t∈Ii a continuous centered Gaussian process. Set I := Πd
i=1Ii and let

X = (Xt)t∈I be a continuous centered Gaussian process with covariance function

EXsXt = Πd
i=1EX

i
si
Xi
ti , s, t ∈ I. (2.9)

For instance, X := ⊗d
i=1X

i satisfies (2.9) provided X1, . . . ,Xd are independent. For real separable

Hilbert spaces Ki, let ⊗̂d
i=1Ki denote the d-fold Hilbertian tensor product.

Proposition 5 For i ∈ {1, . . . , d}, let (f ij)j≥1 be an admissible sequence for Xi in C(Ii). Then

(⊗d
i=1f

i
ji)j=(j1,...,jd)∈Nd

is admissible for X with covariance (2.9) in C(I). Furthermore, if CXi = SiS
∗
i , Si : Ki → C(Ii) is

a factorization of CXi, then ⊗d
i=1Si : ⊗̂d

i=1Ki → C(I) provides a factorization of C
X
.

Proof. For i ∈ {1, . . . , d}, let Ki be a real separable Hilbert space and (eij)j an orthonormal basis

of Ki. Then (⊗d
i=1e

i
ji
)j is an orthonormal basis of K := ⊗̂d

i=1Ki.

If CXi = SiS
∗
i , Si : Ki → C(Ii) is a factorization of CXi , set git := S∗

i δt, t ∈ Ii. Then EXi
sX

i
t =

(gis, g
i
t)Ki

and hence, by (2.9)

EXsXt = Πd
i=1(g

i
si
, giti)Ki

= (⊗d
i=1g

i
si
,⊗d

i=1g
i
ti)K , s, t ∈ I.

Consequently, by Lemma 2

U : K → C(I), Uk(t) = (⊗d
i=1g

i
ti , k)K

provides a factorization of C
X

. Since

U(⊗d
i=1e

i
ji)(t) = Πd

i=1(g
i
ti , e

i
ji)Ki

= Πd
i=1Sie

i
ji(ti) = ⊗d

i=1(Sie
i
ji)(t)

= (⊗d
i=1Si)(⊗d

i=1e
i
ji)(t), t ∈ I,

we obtain U = ⊗d
i=1Si and thus ⊗d

i=1Si provides a factorization of C
X

.
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If (f ij)j≥1 is admissible for Xi, then by Proposition 2 assuming now that Ki is infinite dimen-

sional, there is a factorization CXi = TiT
∗
i , Ti : Ki → C(Ii) such that Ti(e

i
j) = f ij for every j. Since

⊗d
i=1Ti : K → C(I) provides a factorization of C

X
as shown above and (⊗d

i=1Ti)(⊗d
i=1e

i
ji
) = ⊗d

i=1f
i
ji
,

it follows from Proposition 1 that (⊗d
i=1f

i
ji
)j∈Nd is admissible for X. ♦

The following examples are further investigated in Section 4.

Examples • Let W = (Wt)t∈[0,T ] be a standard Brownian motion. Since EWsWt = s ∧ t =∫ T
0 1[0,s](u)1[0,t](u)du, the (injective) operator

S : L2([0, T ], dt) → C([0, T ]), Sk(t) =

∫ t

0
k(s)ds

provides a factorization of CW so that we can apply Corollary 2. The orthonormal basis ej(t) =√
2/T cos(π(j − 1/2)t/T ), j ≥ 1 of L2([0, T ], dt) yields the admissible sequence

fj(t) = Sej(t) =

√
2T

π(j − 1/2)
sin(

π(j − 1/2)t

T
), j ≥ 1 (2.10)

for W (Karhunen-Loève basis of HW ) and ej(t) =
√

2/T sin(πjt/T ) yields

fj(t) =

√
2T

πj
(1 − cos(

πjt

T
)), j ≥ 1. (2.11)

Then

f1
j (t) =

√
T

π(j − 1/2)
sin(

π(j − 1/2)t

T
), j ≥ 1 (2.12)

f2
j (t) =

√
T

πj
(1 − cos(

πjt

T
)), j ≥ 1

is also admissible forW . The trigonometric basis e0(t) = 1/
√
T , e2j(t) =

√
2/T cos(2πjt/T ), e2j−1(t) =√

2/T sin(2πjt/T ) yields the admissible sequence

f0(t) =
t√
T
, f2j(t) =

√
T√

2πj
sin(

2πjt

T
), (2.13)

f2j−1(t) =

√
T√

2πj
(1 − cos(

2πjt

T
)), j ≥ 1

(Paley-Wiener basis of HW ).

• We consider the Dzaparidze-van Zanten expansion of the fractional Brownian motion X =
(Xt)t∈[0,T ] with Hurst index ρ ∈ (0, 1) and covariance function

EXsXt =
1

2
(s2ρ + t2ρ − |s− t|2ρ).

These authors discovered in [8] for T = 1 a time domain representation

EXsXt = (g1
s , g

1
t )K + (g2

s , g
2
t )K

with K = L2([0, 1], dt) and kernels git ∈ L2([0, 1], dt). Hence by Lemma 2, the operator

S : L2([0, 1], dt) ⊕ L2([0, 1], dt) → C([0, 1]), S(k1 , k2)(t) =

∫ 1

0
g1
t (s)k1(s)ds +

∫ 1

0
g2
t (s)k2(s)ds

11



provides a factorization of C
X

so that for every pair of orthonormal bases (e1j )j≥1 and (e2j )j≥1 of
L2([0, 1], dt),

f ij(t) =

∫ 1

0
git(s)e

i
j(s)ds, j ≥ 1, i = 1, 2

is admissible in C([0, 1]) for X. By Corollary 2, this is a consequence of the above representation
of the covariance function (and needs no extra work). Then Dzaparidze and van Zanten [8] could
calculate f ij explicitely for the Fourier-Bessel basis of order −ρ and 1− ρ, respectively and arrived
at the admissible family in C([0, 1])

f1
j (t) =

cρ
√

2

|J1−ρ(xj)|xρ+1
j

sin(xjt), j ≥ 1

f2
j (t) =

cρ
√

2

|J−ρ(yj)|yρ+1
j

(1 − cos(yjt)), j ≥ 1

where Jν denotes the Bessel function of the first kind of order ν, 0 < x1 < x2 < . . . are the
positive zeros of J−ρ, 0 < y1 < y2 < . . . the positive zeros of J1−ρ and c2ρ = Γ(1 + 2ρ) sin(πρ)/π.
Consequently, by self-similarity of X, the sequence

f1
j (t) =

T ρcρ
√

2

|J1−ρ(xj)|xρ+1
j

sin(
xjt

T
), j ≥ 1 (2.14)

f2
j (t) =

T ρcρ
√

2

|J−ρ(yj)|yρ+1
j

(1 − cos(
yjt

T
)), j ≥ 1

in C([0, T ]) is admissible for X. Using Lemma 1, one can deduce (also without extra work)

EXsXt =
∞∑

j=1

f1
j (s)f

1
j (t) +

∞∑

j=1

f2
j (s)f

2
j (t)

uniformly in (s, t) ∈ [0, T ]2.
In the ordinary Brownian motion case ρ = 1/2, (2.14) coincides with (2.12). The interesting

extension of (2.13) to fractional Brownian motions is discussed in [9].

• Let X = (Xt)t∈[0,T ] be a Brownian bridge with covariance

EXsXt = s ∧ t− st

T
=

∫ T

0
(1[0,s](u) −

s

T
)(1[0,t](u) −

t

T
)du.

By Lemma 2, the operator

S : L2([0, T ], dt) → C([0, T ]), Sk(t) =

∫ t

0
k(s)ds − t

T

∫ T

0
k(s)ds

provides a factorization of C
X

and kerS = span{1[0,T ]}. The choice ej(t) =
√

2/T cos(πjt/T ), j ≥ 1,

of an orthonormal basis of (ker S)⊥ yields admissibility of

fj(t) = Sej(t) =

√
2T

πj
sin(

πjt

T
), j ≥ 1, (2.15)

for X (Karhunen-Loève basis of H
X

).
• One considers the stationary Ornstein-Uhlenbeck process as the solution of the Langevin equation

dXt = −βXtdt+ σWt, t ∈ [0, T ]

12



with X0 independent of Wand N(0, σ
2

2β )-distributed, σ > 0, β > 0. It admits the explicit represen-
tation

Xt = e−βtX0 + σe−βt
∫ t

0
eβsdWs

and

EXsXt =
σ2

2β
e−β|s−t| =

σ2

2β
e−β(s+t) + σ2e−β(s+t)

∫ s∧t

0
e2βudu.

Thus the (injective) operator

S : R ⊕ L2([0, T ], dt) → C([0, T ]), S(c, k)(t) =
cσ√
2β
e−βt + σ

∫ t

0
e−β(t−s)k(s)ds

provides a factorization of C
X

so that for every orthonormal basis (ej)j≥1 of L2([0, T ], dt), the
functions

f0(t) =
σ√
2β
e−βt, fj(t) = σ

∫ t

0
e−β(t−s)ej(s)ds, j ≥ 1, (2.16)

provide an admissible sequence for X.
Another representation is given by the Lamperti transformation X = V (W ) for the linear

continuous operator

V : C([0, e2βT ]) → C([0, T ], V x(t) =
σ√
2β
e−βtx(e2βt).

The admissible sequence (fj) in C([0, e2βT ]) for (Wt)t∈[0,e2βT ] from (2.10) yields the admissible
sequence

f̃j(t) = V fj(t) =
σ√

βπ(j − 1/2)
eβ(T−t) sin(π(j − 1/2)e−2β(T−t)), j ≥ 1 (2.17)

for X.
• Sheet versions can be deduced from Proposition 5.

3 High-resolution product quantization

We investigate product functional quantization of centered continuous Gaussian processes X =
(Xt)t∈I on I = [0, T ]d in the space E = C(I) equipped with the sup-norm ‖x‖ = supt∈I |x(t)|.
Recall that the minimal Nth product quantization error is given by

e
N,r

(X)(pq) := e
N,r

(X, C(I))(pq) = inf{(E‖
∞∑
j=1

ξjfj − X̂‖r)1/r : (fj)j≥1 ∈ C(I)N admissible for X,

X̂ Lr-product N -quantization w.r.t. (fj)}

where ξ1, ξ2, . . . are i.i.d. N (0, 1)-distributed random variables. The subsequent setting comprises
a broad class of processes (see Section 4).

Let (fj)j≥1 ∈ C(I)N satisfy the following assumptions.

(A1) ‖fj‖ ≤ C1j
−ϑ log(1 + j)γ for every j ≥ 1 with ϑ > 1/2, γ ≥ 0 and C1 <∞.

(A2) fj is a-Hölder-continuous and [fj]a ≤ C2j
b for every j ≥ 1 with a ∈ (0, 1], b ∈ R and C2 <∞,

where

[f ]a = sup
s 6=t

|f(s) − f(t)|
|s− t|a

(and |t| denotes the l2-norm of t ∈ Rd).
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In the sequel finite constants depending only on the parameters T, ϑ, γ, a, b, C1, C2, d and r are
denoted by C and may be different from one formula to another one. Other dependencies are
explicitely indicated.

First observe that Corollary 4 applies. By (A1),
∞∑
j=1

fj(t)
2 ≤

∞∑
j=1

‖fj‖2 < ∞ for every t ∈ I, so

that we can define a centered Gaussian process Y by Yt :=
∞∑
j=1

ξjfj(t). Using (A1) and (A2) we

have for ρ ∈ (0, 1]

|fj(s) − fj(t)| = |fj(s) − fj(t)|ρ|fj(s) − fj(t)|1−ρ

≤ ([fj ]a|s− t|a)ρ(2‖fj‖)1−ρ

≤ Cρj
ρ(b+ϑ)−ϑ log(1 + j)γ(1−ρ)|s− t|aρ

and hence ∞∑

j=1

[fj]
2
aρ <∞ for every ρ <

ϑ− 1/2

(b+ ϑ)+
.

This yields

E|Ys − Yt|2 =
∞∑

j=1

|fj(s) − fj(t)|2 ≤ (
∞∑

j=1

[fj]
2
aρ)|s − t|2aρ

and using the Gaussian feature of Y , we obtain from the Kolmogorov-criterion that Y has a
continuous modification X. Consequently by Corollary 4, (fj) is admissible for X and

X =
∞∑

j=1

ξjfj a.s., (3.1)

(E|Xs − Xt|2)1/2 ≤ Cρ|s − t|aρ for every s, t ∈ I and every ρ ∈ (0, 1] with ρ < ϑ−1/2
(b+ϑ)+

. An
immediate consequence is the continuous embedding of the Cameron-Martin space H

X
into the

Hölder-space Caρ(I).

Proposition 6 We have H
X

⊂ Caρ(I) and the inclusion map is continuous for every ρ ∈ (0, 1]

with ρ < ϑ−1/2
(b+ϑ)+

, where Caρ(I) is equipped with the norm |‖f‖| = ‖f‖ + [f ]aρ.

Proof. Let h ∈ H = H
X

. By (2.2) and (2.8), we have

h(t) = 〈δt, h〉 = (h,C
X
δt)H , CX

δt = EXtX

and hence for every u ∈ C(I)∗,

|〈u,C
X

(δs − δt)〉| = |E(Xs −Xt)〈u,X〉| ≤ (E(Xs −Xt|2)1/2〈u,CX
u〉1/2.

Consequently, using (2.3) and (3.1)

|h(s) − h(t)| = |(h,C
X

(δs − δt))H |
≤ ‖h‖

H
‖C

X
(δs − δt)‖H

= ‖h‖
H

sup{|〈u,C
X

(δs − δt)〉| : 〈u,C
X
u〉 ≤ 1}

≤ ‖h‖
H

(E|Xs −Xt|2)1/2

≤ Cρ ‖h‖H
|s− t|aρ.
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Thus in view of (2.4),

|||h||| ≤ ‖C
X
‖1/2‖h‖

H
+ Cρ‖h‖H

. ♦

The design of a (scalar) product quantization for X is based on optimal quantizing the coeffi-
cients ξj in the expansion (3.1) ofX. More precisely this yields product quantization with respect to
the admissible sequence (fj). Let N ∈ N, r ∈ (0,∞) and fix m,N1, . . . , Nm ∈ N with Πm

j=1Nj ≤ N .

Let αj ⊂ R be the Lr-optimal Nj-quantizer for ξj and let ξ̂j := ξ̂
αj

j be the Voronoi quantization of
ξj induced by αj . Then define a Lr-product quantization of X by

X̂N :=
m∑

j=1

ξ̂jfj. (3.2)

It is clear that card(X̂(Ω)) ≤ N so that X̂N is an N -quantization. If

ξ̂j =
∑

b∈αj

b1Cb(αj)(ξj),

then

X̂N =
∑

a∈Πm
j=1αj

(
m∑

j=1

ajfj)Π
m
j=11Caj

(αj)(ξj) (3.3)

where a = (a1, . . . , am) ∈ ∏m
j=1 αj . Observe that X̂N is not a Voronoi quantization since it is based

on the (much less complicated) Voronoi partitions for ξj, j ≤ m.
For r ∈ [1,∞), the quantization error induced by X̂N satisfies

(E‖X − X̂N‖r)1/r = ‖X − X̂N‖Lr
E

≤ ‖
m∑

j=1

(ξj − ξ̂j)fj‖Lr
E

+ ‖
∑

j≥m+1

ξjfj‖Lr
E

≤
m∑

j=1

‖ξj − ξ̂j‖Lr‖fj‖ + ‖
∑

j≥m+1

ξjfj‖Lr
E

so that

(E‖X − X̂N‖r)1/r ≤
m∑

j=1

‖fj‖eNj ,r(N (0, 1)) + (E‖
∑

j≥m+1

ξjfj‖r)1/r. (3.4)

For r ∈ (0, 1], we have

E‖X − X̂N‖r ≤
m∑

j=1

‖fj‖reNj ,r(N (0, 1))r + E‖
∑

j≥m+1

ξjfj‖r.

Now let us pass to the truncation error.

Theorem 1 Assume that (fj)j≥1 ∈ C(I)N satisfies (A1) and (A2). Then we have for every n ≥ 2
and r ∈ (0,∞),

(E‖
∑

j≥n
ξjfj‖r)1/r ≤

C(log n)γ+1/2

nϑ−1/2

and

(E‖
∑

j≥n
ξjfj‖r)1/r ≤

C(log n)γ

nϑ−1/2
if b+ ϑ ≤ 0.
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Proof. By equivalence of Gaussian moments

(E‖
∑

j≥n
ξjfj‖r)1/r ≤ D E ‖

∑

j≥n
ξjfj‖ (3.5)

for some universal constant D (cf. [14], Corollary 3.2). The upper estimate for E‖ ∑
j≥n

ξjfj‖ is based

on corresponding estimates for finite blocks of exponentially increasing length. For m ≥ 1, set

Z = Z(m) :=
2m∑

j=2m−1+1

ξjfj.

For a given N ≥ 1 consider the grid G
N

= { (2i−1)T
2N : i = 1, . . . , N}d. Then

‖Z‖ ≤ sup
t∈GN

|Zt| + sup
|s−t|≤CN−1

|Zs − Zt|.

It follows from the Gaussian maximal inequality, that

E sup
t∈GN

|Zt| ≤ C
√

log(1 +Nd) sup
t∈GN

√
EZ2

t .

Using (A1), we have for every t ∈ I,

EZ2
t ≤

2m∑

j=2m−1+1

‖fj‖2 ≤ C
2m∑

j=2m−1+1

j−2ϑ log(1 + j)2γ ≤ C2m(1−2ϑ)m2γ

so that
E sup
t∈GN

|Zt| ≤ C
√

log(1 +N)2−m(ϑ−1/2)mγ .

Moreover, using (A2), we have for |s− t| ≤ CN−1

|Zs − Zt| ≤
2m∑

j=2m−1+1

|ξj | |fj(s) − fj(t)|

≤ C|s− t|a
2m∑

j=2m−1+1
|ξj|[fj ]a

≤ CN−a 2m∑
j=2m−1+1

|ξj |jb

and hence

E sup
|s−t|≤CN−1

|Zs − Zt| ≤ CN−a
2m∑

j=2m−1+1

jb ≤ CN−a2m(1+b).

Thus we have established the estimate

E‖Z(m)‖ ≤ C(
√

log(1 +N)2−m(ϑ−1/2)mγ +N−a2m(1+b)). (3.6)

As concerns the choice of N , set N := [2um] + 1 with u ∈ (0,∞) satisfying 1 + b − au ≤ 1
2 − ϑ.

Then (3.6) reads
E‖Z(m)‖ ≤ C2−m(ϑ−1/2)mγ+1/2. (3.7)
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One notices that in case b + ϑ ≤ −1/2 one may choose N = 1 and obtains a power reduction
from mγ+1/2 to mγ . This can be improved. In fact, we have

E|Zs − Zt|2 =
2m∑

j=2m−1+1
|fj(s) − fj(t)|2

≤ C|s− t|2a
2m∑

j−2m−1+1

j2b ≤ C|s− t|2a2m(1+2b)

so that
dZ(s, t) := (E|Zs − Zt|2)1/2 ≤ C|s− t|a2m(b+1/2).

If N(ε, dZ) denote the covering numbers of I with respect to the intrinsic semimetric dZ , then by
chaining

E sup
|s−t|≤CN−1

|Zs − Zt| ≤ E sup
dZ (s,t)≤δ

|Zs − Zt| ≤ C

∫ δ

0

√
logN(ε, dZ )dε,

where δ := CN−a2m(b+1/2) (cf. [21], p. 101). Since

N(ε, dZ) ≤ C

(
2m(b+1/2)

ε

)d/a
, ε ≤ ε0

and
∫ 1
0

√
log(1/x)dx <∞ one gets for large enough N

∫ δ

0

√
logN(ε, dZ)dε ≤ C2m(b+1/2)

∫ 1

0

√
log(1/x)dx ≤ C2m(b+1/2).

Consequently,

E‖Z(m)‖ ≤ C(
√

log(1 +N)2−m(ϑ−1/2)mγ + 2m(b+1/2)

≤ C2−m(ϑ−1/2)mγ if b+ ϑ ≤ 0. (3.8)

Now we complete the proof. For n ≥ 2, choose m = m(n) ≥ 1 such that 2m−1 < n ≤ 2m. Then

‖
∑

j≥n
ξjfj‖ ≤

∑

j≥m+1

‖Z(j)‖ + ‖
2m∑

j=n

ξjfj‖.

Since E‖
2m∑
j=n

ξjfj‖ ≤ E‖Z(m)‖ by the Anderson inequality (cf. [3], Cor. 3.3.7), we deduce from

Equation (3.7)

E‖
∑

j≥n
ξjfj‖ ≤ C

∑

j≥m

jγ+1/2

2j(ϑ−1/2)
≤ Cmγ+1/2

2m(ϑ−1/2)
≤ C(log n)γ+1/2

nϑ−1/2
.

If b+ ϑ ≤ 0 then it follows from (3.8) that

E‖
∑

j≥n
ξjfj‖ ≤ C(log n)γ

nϑ−1/2
.

Combining these estimates with (3.5) yields the assertion. ♦

Remarks • The rate for the truncation error only depends on ϑ and γ, that is on the decay of the
length of functions fj (as long as b + ϑ > 0). The occurence of expansions with b + ϑ ≤ 0 seems
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to be a rare event and otherwise b plays no rôle (see the subsequent example). The case γ = 0
typically corresponds to 1-parameter processes with I = [0, T ].

• The e
(pq)
N,r -problem comprises the optimization of admissible sequences and in view of (3.4) is thus

related to the l-numbers of X defined by

ln,r(X) = ln,r(X, C(I)) := inf{(E‖
∑

j≥n
ξjgj‖r)1/r : (gj) admissible for X in C(I)}. (3.9)

Rate optimal solutions of the ln,r-problem in the sense of ln,r(X) ≈ (E‖ ∑
j≥n

ξjgj‖r)1/r as n → ∞
have recently been investigated (see [13], [7], [8], [9], [1]). Admissible sequences of the type (A1)
and (A2) seem to be promising candidates. For instance, for the Brownian motion W on I = [0, 1],
it is known that

ln,r(W ) ≈
(

log n

n

)1/2

.

Hence, by Theorem 1, any admissible sequence in C([0, 1]) for W satisfying (A1) and (A2) with
ϑ = 1 and γ = 0 (like the Karhunen-Loève basis of HW ) is a rate optimal solution of the ln,r(W )-
problem.

Example (Weierstrass processes): Let

fj(t) = j−ϑ sin(jb+ϑt), j ≥ 1, ϑ > 1/2, b ∈ R, t∈ [0, T ].

Then ‖fj‖ ≤ j−ϑ and [fj ]1 = jb. Since fj(0) = 0, we also have ‖fj‖ ≤ Tjb so that (A1) and (A2)

are satisfied with ϑ̃ = max{ϑ,−b} and a = 1. The covariance function of X =
∞∑
j=1

ξjfj is given by

EXsXt =
∞∑

j=1

j−2ϑ sin(jb+ϑs) sin(jb+ϑt).

Now in the ”Weierstrass case” b+ ϑ > 0, we get from Theorem 1

(E‖
∑

j≥n
ξjfj‖r)1/r ≤

C
√

log n

nϑ−1/2

while in the ”non-Weierstrass case” b+ ϑ ≤ 0 appears the better rate

(E‖
∑

j≥n
ξjfj‖r)1/r ≤

C

n−b−1/2
.

We come to the minimal product quantization error e
N,r

(X)(pq). Let r ∈ [1,∞) and set νj :=

j−ϑ0 log(1 + j0)
γ if j < j0 := [eγ/ϑ] and νj := j−ϑ log(1 + j)γ if j ≥ j0. Then the sequence (νj)j is

decreasing. Since
lim
k→∞

kek,r(N (0, 1)) exists in (0,∞)

(cf. [10]), we deduce from (3.4), (A1) and Theorem 1 the estimate

(E‖X − X̂N‖r)1/r ≤ C(
m∑

j=1

νjN
−1
j +

log(1 +m)γ+1/2

mϑ−1/2
)
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for every m,N1, . . . Nm ∈ N with Πm
j=1Nj ≤ N . (The case b + ϑ ≤ 0 is treated analogously.)

Consequently,

e
N,r

(X)(pq) ≤ C inf{
m∑

j=1

νjN
−1
j +

log(1 +m)γ+1/2

mϑ−1/2
: m,N1, . . . , Nm ∈ N,Πm

j=1Nj ≤ N}. (3.10)

For a given N ∈ N, we may first optimize the integer bit allocation given by the Nj’s for fixed m
and then optimize m. To this end, note that the continuous allocation problem reads

inf{
m∑

j=1

νjy
−1
j : yj > 0,Πm

j=1yj ≤ N} =
m∑

j=1

νjz
−1
j = N−1/mm(Πm

j=1νj)
1/m

where
zj = N1/mνj(Π

m
j=1νj)

−1/m

and z1 ≥ . . . ≥ zm. One can produce an (approximate) integer solution by setting

Nj = [zj ] = [N1/mνj(Π
m
j=1νj)

−1/m], j ∈ {1, . . . ,m} (3.11)

provided zm ≥ 1. Then

m∑

j=1

νjN
−1
j ≤ 2mN−1/m(Πm

j=1νj)
1/m ≤ CmN−1/mνm.

Since the constraint on m reads m ∈ I(N) with

I(N) := {m ∈ N : N1/mνm(Πm
j=1νj)

−1/m ≥ 1}, (3.12)

we arrive at

e
N,r

(X)(pq) ≤ C inf
m∈I(N)

(
N−1/m log(1 +m)γ

mϑ−1
+

log(1 +m)γ+1/2

mϑ−1/2

)
(3.13)

for every N ∈ N. One checks that I(N) is finite, I(N) = {1, . . . ,m∗(N)},m∗(N) increases to
infinity and

m∗(N) ∼ logN

ϑ
as N → ∞. (3.14)

Finally, after a bit reflection let

m = m(N) ∈ I(N) with m(N) ≤ 2 logN

log logN
for N ≥ 3 (3.15)

such that m(N) ∼ 2 logN

log logN
as N → ∞.

This is possible in view of (3.14). The case r ∈ (0, 1] can be treated similarly. We thus obtain the
following result.

Theorem 2 Assume that X admits an admissible set (fj)j≥1 in C(I) satisfying (A1) and (A2).
Then we have for every N ≥ 3 and r ∈ (0,∞),

e
N,r

(X)(pq) ≤ C(log logN)ϑ+γ

(logN)ϑ−1/2
(3.16)

and

e
N,r

(X)(pq) ≤ C(log logN)ϑ+γ−1/2

(logN)ϑ−1/2
if b+ ϑ ≤ 0.

Furthermore, the Lr-product N -quantization X̂N with respect to (fj) with tuning parameters defined
in (3.11) and (3.15) achieves these rates.
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We may reasonably conjecture that for many specific processes the above rate is the true one.
This would imply that product quantization achieves the optimal rate for quantization, namely the
rate of convergence to zero of e

N,r
(X) := e

N,r
(X, C(I)), only up to a log logN -term in the formula

(3.16). This is in contrast to the Hilbert space setting where the optimal rate is attained by product
quantization (cf. [17]). To be precise we summarize the results on e

N,r
(X) in the present setting.

Theorem 3 (a) Assume that X admits an admissible sequence in C(I) satisfying(A1) and (A2).
Then

e
N,r

(X) = O

(
(log logN)γ+1/2

(logN)ϑ−1/2

)
(3.17)

and

e
N,r

(X) = O

(
(log logN)γ

(logN)ϑ−1/2

)
if b+ ϑ ≤ 0. (3.18)

(b) Assume that X admits an admissible sequence satisfying (A1). Let µ be a finite Borel measure
on I and let V : C(I) → L2(I, µ) denote the natural embedding. Then

e
N,r

(V (X), L2(µ)) = O

(
(log logN)γ

(logN)ϑ−1/2

)

and

eN,2(V (X), L2(µ))(pq) = O

(
(log logN)γ

(logN)ϑ−1/2

)
.

Proof. (a) The assertions follow from Theorem 1, Proposition 4.1 in [15] which relates l-numbers
(see (3.9)) and small ball probabilities (but this relation being not always sharp) and a precise link
between these probabilities and e

N,r
(X) (cf. [5], [11]).

(b) Let (fj)j≥1 be an admissible sequence in C(I) for X satisfying (A1) and consider an L2-product
N -quantization of V (X) based on (V fj),

̂V (X)
N

=
m∑

j=1

ξ̂jV (fj)

(see (3.2)). Then using the independence of ξj− ξ̂j, j ≥ 1 and the stationary property ξ̂j = E(ξj |ξ̂j)
of the quantization ξ̂j,

E‖
∞∑
j=1

ξjV (fj) − ̂V (X)
N‖2

L2(µ)

=
m∑
j=1

E|ξj − ξ̂j|2‖V fj‖2
L2(µ) +

∑
j≥m+1

‖V fj‖2
L2(µ)

≤ C(
m∑
j=1

n−2
j j−2ϑ log(1 + j)2γ +

∑
j≥m+1

j−2ϑ log(1 + j)2γ).

Now argue as in [16] to conclude that

eN,2(V (X), L2(µ))(pq) = O

(
(log logN)γ

(logN)ϑ−1/2

)
. ♦

Sometimes (3.17) provides the true rate for e
N,r

(X) (like for the 2-parameter Brownian sheet),
sometimes it yields the best known upper bound (like for the d-parameter Brownian sheet with
d ≥ 3) and sometimes (3.18) provides the true rate (like for the Brownian motion). The latter fact
typically occurs when the rate of e

N,r
(X) and the “Hilbert rate” of e

N,r
(V (X), L2(dt)) coincide (see

Section 4). It remains an open question to find conditions for this to happen.
The following proposition ensures stability of conditions (A1) and (A2) under tensor products

(see Proposition 5).
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Proposition 7 For i ∈ {1, . . . , d}, let (f ij)j≥1 ∈ C([0, T ])N satisfy (A1) and (A2) with parameters

ϑi, γi, ai, bi such that γi = 0. Then a suitable arrangement of (⊗d
i=1f

i
ji
)j∈Nd satisfies (A1) and

(A2) with parameters ϑ = min1≤i≤d ϑi, γ = ϑ(m − 1), where m = card{i ∈ {1, . . . , d} : ϑi = ϑ},
a = min1≤i≤d ai and b = (max1≤i≤d bi)+.

Proof. For j = (j1, . . . , jd) ∈ Nd, set fj = ⊗d
i=1f

i
ji

so that fj(t) = Πd
j=1f

i
ji
(ti), t ∈ [0, T ]d. We have

‖fj‖ ≤ Πd
i=1‖f iji‖ ≤ CΠd

i=1j
−ϑi

i

and
|fj(s) − fj(t)| ≤ C max

1≤i≤d
jbi |s− t|a.

Let uj := Πd
i=1j

−ϑi

i . Choose a bijective map ψ : N → Nd such that uk := uψ(k) is decreasing in
k ≥ 1. Set fk := fψ(k). Then

uk ≈ Ck−ϑ(log k)ϑ(m−1) as k → ∞

(cf. [19], Theorem 2.1). Consequently,

‖fk‖ ≤ Ck−ϑ(log k)ϑ(m−1)

and for j = ψ(k),

ji ≤ Πd
i=1ji ≤ Πd

i=1j
ϑi/ϑ
i ≤ Ck(log k)−(m−1) ≤ Ck,

hence
|fk(s) − fk(t)| ≤ Ckb|s− t|a. ♦

4 Examples

4.1 Brownian motion and Brownian sheet

The admissible sequences (2.10)-(2.13) for the standard Brownian motion over [0, T ] all satisfy the
conditions (A1) and (A2) with parameters ϑ = 1, γ = 0, a = 1 and b = 0. Consequently, by
Theorem 2, the performance of product quantization is ruled by

e
N,r

(BM)(pq) = O

(
log logN

(logN)1/2

)
(4.1)

while (see [5], [11])
e
N,r

(BM) ≈ (logN)−1/2. (4.2)

The same result holds for Brownian bridge over [0, T ] using e.g. the admissible sequence (2.15).
By Proposition 5 and 7, the tensor products of functions (2.10)-(2.13) are admissible for the

Brownian sheet (or Chentsov-Wiener field) X over [0, T ]d with covariance function

EXsXt =
d∏

i=1

si ∧ ti

and satisfy (A1) and (A2) with ϑ = 1, γ = d− 1, a = 1 and b = 0. Therefore, by Theorems 2 and 3,

e
N,r

(BS)(pq) = O

(
(log logN)d

(logN)1/2

)
(4.3)
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and

e
N,r

(BS) = O

(
(log logN)d−1/2

(logN)1/2

)
. (4.4)

Using e
N,r

(BS) ≥ T−de
N,r

(BS,L2([0, T ]d, dt)) and employing the sharp rate for the Hilbert space
case (see [17]), one obtains the lower estimate

e
N,r

(BS) = Ω

(
(log logN)d−1

(logN)1/2

)
. (4.5)

For d = 2, the ”non-Hilbert-rate” (4.4) is known to be the true one for e
N,r

(BS) (see [11]) and it
is very likely also the true rate for d ≥ 3. In any case we see no dramatic loss of performance by
using product quantization.

4.2 Fractional Brownian motions and fractional Brownian sheets

Consider the admissible familiy (2.14) in C([0, T ]) for the fractional Brownian motion over [0, T ]
with Hurst index ρ ∈ (0, 1). Using the asymptotic properties

xj ∼ yj ∼ πj, J1−ρ(xj) ∼ J−ρ(yj) ∼
√

2

π
j−1/2 as j → ∞

(cf. [8]), one observes that a suitable arrangement of the functions (2.14) (like f2j = f1
j , f2j−1 = f2

j )
satisfies (A1) and (A2) with parameters ϑ = ρ+ 1/2, γ = 0, a = 1 and b = 1/2 − ρ. Consequently,

e
N,r

(FBM)(pq) = O(
(log logN)ρ+1/2

(logN)ρ
) (4.6)

while (see [6], [11])
e
N,r

(FBM) ≈ (logN)−ρ. (4.7)

The tensor products of functions (2.14) are admissible for the fractional Brownian sheet X over
[0, T ]d with covariance function

EXsXt = (
1

2
)dΠd

i=1(s
2ρi

i + t2ρi

i − |si − ti|2ρi),

ρi ∈ (0, 1), and satisfy conditions (A1) and (A2) with ϑ = ρ + 1/2, where ρ = min1≤i≤d ρi,
γ = ϑ(m − 1), where m = card{i ∈ {1, . . . , d} : ρi = ρ}, a = 1 and b = max1≤i≤d(1/2 − ρi))+.
Therefore, by Theorems 2 and 3,

e
N,r

(FBS)(pq) = O

(
(log logN)m(ρ+1/2)

(logN)ρ

)
(4.8)

and

e
N,r

(FBS) = O

(
(log logN)m(ρ+1/2)−ρ

(logN)ρ

)
. (4.9)

The Hilbert space setting E = L2([0, T ]d, dt) provides the lower estimate

e
N,r

(FBS) = Ω

(
(log logN)(m−1)(ρ+1/2)

(logN)ρ

)
(4.10)

(see [16], [17]). The true rate of e
N,r

(FBS) is known only for the case m = 1 where the true rate
is the “Hilbert rate” (4.10) (see [5]) and in case m = 2 where (4.9) is the true rate (see [2], [11]).
A reasonable conjecture is that (4.9) is also the true rate for m ≥ 3.
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4.3 Riemann-Liouville and other moving average processes

For ψ ∈ L2([0, T ], dt) and a standard Brownian motion W , let

Xt =

∫ t

0
ψ(t− s)dWs, t ∈ [0, T ]

and assume that X has a pathwise continuous modification. Since

EXsXt =

∫ s∧t

0
ψ(s − u)ψ(t − u)du,

the operator S : L2([0, T ], dt) → C([0, T ]), Sk(t) =
∫ t
0 ψ(t− s)k(s)ds provides a factorization of C

X

so that

fj(t) =

√
2

T

∫ t

0
ψ(t− s) cos

(
π(j − 1/2)s

T

)
ds (4.11)

=

√
2

T

∫ t

0
ψ(s) cos

(
π(j − 1/2)(t − s)

T

)
ds, j ≥ 1,

is an admissible sequence for X. Observe that (4.11) provides well defined continuous functions
even for ψ ∈ L1([0, T ], dt).

Lemma 3 Let ψ ∈ L1([0, 1], dt).

(a) If ϕ(t) =
∫ t
0 |ψ(s)|ds is β-Hölder continuous with β ∈ (0, 1], then the sequence (fj) from (4.11)

satisfies (A2) with a = β and b = 1. In particular, if ψ ∈ L2([0, T ], dt), then (A2) is satisfied with
a = 1/2 and b = 1.
(b) If ψ has finite variation over [0, T ], then (A1) is satisfied with ϑ = 1 and γ = 0.

Proof. Let λj = (π(j − 1/2)/T )−2. (a) For s < t, we have

fj(s)−fj(t) =

√
2

T

{∫ s

0
ψ(u)(cos((s − u)/

√
λj) − cos((t− u)/

√
λj))du −

∫ t

s
ψ(u) cos((t− u)/

√
λj)du

}

so that

|fj(s) − fj(t)| ≤
√

2

T

(
|s− t|√
λj

‖ψ‖L1(dt) +

∫ t

s
|ψ(u)|du

)
.

(b) We have

fj(t) = −
√

2λj/T

∫ t

0
ψ(s)d(sin((t− s)/

√
λj))

=
√

2λj/T (ψ(0) sin(t/
√
λj) +

∫ t

0
sin((t− s)/

√
λj)dψ(s))

so that
‖fj‖ ≤

√
2λj/T (|ψ(0)| + Var(ψ, [0, T ])). ♦

This lemma yields an universal upper bound

e
N,r

(X)(pq) = O

(
log logN

(logN)1/2

)

for functions ψ having finite variation.
In the sequel we do not care about improvements of parameter b in (A2) since the condition

b+ ϑ ≤ 0 cannot be achieved in this setting (cf. Theorems 2 and 3).
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Lemma 4 Let ψ ∈ L1([0, T ], dt).

(a) If ψ is positive and decreasing on (0, T ] and ϕ(t) =
∫ t
0 ψ(s)ds is β-Hölder continuous with

β ∈ (0, 1], then the sequence (fj) from (4.11) satisfies ‖fj‖ ≤ Cj−β. If β > 1/2, then (A1) is
satisfied with ϑ = β and γ = 0.

(b) If ψ(0) = 0, ψ is β-Hölder continuous with β ∈ (0, 1], ψ is differentiable on (0, T ] such that ψ′

is positive and decreasing on (0, T ], then (A1) is satisfied with ϑ = 1 + β and γ = 0.

Proof. Let λj = (π(j − 1/2)/T )−2. (a) For t ≤ √
λj, we have

|fj(t)| ≤
√

2/Tϕ(
√
λj).

Using the second integral mean value formula we obtain for t ∈ [
√
λj , T ] and some δj ∈ [

√
λj , t]

|fj(t) ≤
√

2/T (|
∫ √

λj

0
ψ(s) cos((t− s)/

√
λj)ds| + |

∫ t

√
λj

ψ(s) cos((t− s)/
√
λj)ds|)

=
√

2/T (|
∫ √

λj

0
ψ(s) cos((t− s)/

√
λj)ds| + ψ(

√
λj)|

∫ δj

√
λj

cos((t− s)/
√
λj)ds|)

≤
√

2/T (ϕ(
√
λj + 2

√
λjψ(

√
λj))

≤ 3
√

2/Tϕ(
√
λj).

Consequently,

‖fj‖ ≤ 3
√

2/Tϕ(
√
λj) ≤ Cλ

β/2
j .

(b) The function ψ is absolutely continuous on [0, T ] so that an integration by parts yields

fj(t) =
√

2λj/T

∫ t

0
ψ′(s) sin((t− s)/

√
λj)ds.

Arguing like in (a) (with ψ replaced by ψ′) one derives that

‖fj‖ ≤ 3
√

2λj/Tψ(
√
λj) ≤ Cλ

(1+β)/2
j . ♦

Now let ψ(t) = tρ−1/2 with ρ ∈ (0,∞). Then

Xt = Xρ
t =

∫ t

0
(t− s)ρ−1/2dWs, t ∈ [0, T ] (4.12)

so that Xρ is a Riemann-Liouville process of order ρ. Using the (ρ ∧ 1
2)-Hölder continuity of the

application t 7→ Xρ
t from [0, T ] into L2(P) and the Kolmogorov criterion one checks that Xρ has a

pathwise continuous modification.

Lemma 5 Let ψ(t) = tρ−1/2, ρ ∈ (0,∞). Then the sequence (fj) from (4.11) satisfies (A2) with
a = min{1, ρ+ 1/2}, b = 1 and (A1) for ρ ∈ (0, 3/2] with ϑ = ρ+ 1/2 and γ = 0.

Proof. Immediate consequence of Lemma 3 and Lemma 4. ♦

We deduce for Riemann-Liouville processes of order ρ ∈ (0, 3/2]

e
N,r

(RL)(pq) = O

(
(log logN)ρ+1/2

(logN)ρ

)
(4.13)
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while for every ρ ∈ (0,∞)( see [15], [11])

e
N,r

(RL) ≈ (logN)−ρ. (4.14)

For β ∈ (0,∞), define the fractionally integrated Brownian motion by

Y β
t =

1

Γ(β)

∫ t

0
(t− s)β−1Wsds. (4.15)

The Ito formula yields Y β
t = Γ(1 + β)−1X

β+1/2
t so that for β ∈ (0, 1]

e
N,r

(FIBM)(pq) = O

(
(log logN)β+1

(logN)β+1/2

)

and for β ∈ (0,∞)
e
N,r

(FIBM) ≈ (logN)−(β+1/2).

To go beyond ρ = 3/2 needs to slightly change the way we quantize. Let ψ(t) = tρ−1/2 with
ρ > 3/2 and choose k ∈ N such that k + 1/2 < ρ ≤ k + 3/2. Set λj = (π(j − 1/2)/T )−2. For
k ∈ {2n − 1, 2n}, n ∈ N integration by parts yields the expansion

fj(t) =
n∑

m=1

(−1)m−1λmj

√
2/Tψ(2m−1)(t) + (−1)nλnj

√
2/T

∫ t

0
ψ(2n)(s) cos((t− s)/

√
λj)ds

=: gj(t) + hj(t), t ∈ [0, T ].

Since ψ(2n)(t) = Ctβ−1 if k = 2n− 1 and ψ(2n)(t) = Ctβ if k = 2n with β = ρ− k− 1/2 ∈ (0, 1]
we deduce from Lemma 3 and Lemma 4 that the sequence (hj) in C([0, T ]) satisfies (A1) with
ϑ = ρ+1/2, γ = 0 and (A2) with a = ρ−k−1/2, b = −k if k = 2n−1 and a = 1, b = −k+1 if k = 2n.
Clearly, the sequence (gj) also satisfies the conditions (A1) and (A2) (with ϑ = 2, γ = 0, b = −2
and a = ρ − k − 1/2 if k = 2n − 1 and a = 1 if k = 2n). Consequently, there exist centered

continuous Gaussian processes U = (Ut)t∈[0,T ] and Z such that U =
∞∑
j=1

ξjgj a.s., Z =
∞∑
j=1

ξjhj a.s.,

X = Xρ d
= U + Z (4.16)

and U ∈ span{ψ(2m−1) : m = 1, . . . , n} a.s. Observe that

U =
n∑

m=1

(−1)m−1
√

2/Tψ(2m−1)ηm

where ηm =
∞∑
j=1

λmj ξj is N(0,
∞∑
j=1

λ2m
j )-distributed.

Now use e.g. [N1/2n]-quantizations of ηm and a [
√
N ]-product quantization of Z for the quan-

tization of X (which is clearly not optimal in practice but remains rate optimal). Let αm ⊂ R be
the Lr-optimal [N1/2n]-quantizer for ηm, η̂m := η̂αm

m ,

Û
√
N :=

n∑

m=1

(−1)m−1
√

2/Tψ(2m−1)η̂m

and let Ẑ
√
N be the Lr-product [

√
N ]-quantization of Z from Theorem 2. Then, a (modified)

Lr-product N -quantization of X with respect to (fj) is defined by

X̂N := Û
√
N + Ẑ

√
N . (4.17)
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Using Theorem 2 one shows for the quantization error

‖U + Z − X̂N‖Lr
E

≤ C(‖U − Û
√
N‖Lr

E
+ ‖Z − Ẑ

√
N‖Lr

E
)

≤ C(
n∑

m=1

√
2/T‖ψ(2m−1)‖‖ηm − η̂m‖Lr + ‖Z − Ẑ

√
N‖Lr

E

≤ C

N1/2n
+
C(log log

√
N)ρ+1/2

(log
√
N)ρ

≤ C(log logN)ρ+1/2

(logN)ρ

so that with the above modification (4.13) remains true for ρ > 3/2.

4.4 Ornstein-Uhlenbeck process

By Lemma 3, the admissible sequence

f0(t) =
σ√
2a
e−βt, fj(t) = σ

√
2

T

∫ t

0
e−β(t−s) cos

(
π(j − 1/2)s

T

)
ds, j ≥ 1

(see (2.16)) for the stationary Ornstein-Uhlenbeck process (Xt)t∈[0,T ] with covariance

EXsXt =
σ2

2β
e−β|s−t|

satisfies conditions (A1) and (A2) with ϑ = 1, γ = 0, a = 1 and b = 1. Consequently,

e
N,r

(OU)(pq) = O

(
log logN

(logN)1/2

)
(4.18)

while (see [11])
e
N,r

(OU) ≈ (logN)−1/2. (4.19)
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