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Abstract

Using the notions of conjugacy of morphisms, we answer a question of G. Melangon concern-
ing the decomposition in Lyndon words of standard Sturmian words. We show some connections
with morphisms preserving Lyndon words

1 Introduction

Finite (or infinite) Lyndon words can be encountered in many studies (see for instance [8, 9, 10]).
They are the nonempty words which are smaller in lexicographic order than all their proper suffixes.
The Lyndon factorization theorem [4] states that any finite word can be decomposed uniquely in
a product of nonincreasing (in lexicographic order) Lyndon words. This result was extended to
infinite words [19] (In such a case, the decomposition can end with an infinite Lyndon word). Thus
some works concern the decomposition in Lyndon words of some infinite words (see for instance
[3, 5, 11, 12, 18] for such results).

In [12], G. Melancon gives a decomposition in Lyndon words of standard Sturmian words. He
asks the following question: in which cases, the sequence of nonincreasing Lyndon words appearing
in the decomposition of a standard Sturmian word can be written (¢"(¢))n>0 with £y a Lyndon
word and g a morphism. In Section 5, we answer this question.

For this, we use results about morphisms preserving Lyndon words [14] and about conjugacy of
morphisms [13]. In particular, we show that when a positive answer exists to the previous question,
g preserves Lyndon words and is the conjugate of a morphism f that generates the decomposed
standard Sturmian word.

In Section 2, we recall notions on Sturmian words and morphisms. Section 3 recalls both
the decomposition in Lyndon words of standard Sturmian words obtained by G. Melancon, and
his question. This section also recall notions on morphisms preserving Lyndon words. Section 4
presents notions on conjugacy of morphisms and introduces a new particular case, namely the strong

*This paper was presented at the 5th International Conference on Words which held in Montréal on september
2005 (Publications du LaCIM numéro 36, page 341-351 (S. Brlek, C. Reutenauer eds.).)



conjugacy. Using it in conjunction with morphisms preserving Lyndon words, we give a new proof
that for any standard Sturmian words w over {a < b}, aw is an infinite Lyndon word [3]. Finally,
in Section 5, we answer G. Melancon. Note that at a first step, we express the decomposition of a
standard Sturmian word using only morphisms.

2 Sturmian words and morphisms

We recall here notions on words (see for instance 8, 9] for more details).

An alphabet A is a set of symbols called letters. Here we consider only finite alphabets. A word
over A is a sequence of letters from A. The empty word € is the empty sequence. Equipped with
the concatenation operation, the set A* of finite words over A is a free monoid with neutral element
€ and set of generators A. We denote by A% the set of infinite words over A. As usually, for a finite
word u and an integer n, the n'® power of u, denoted u", is the word ¢ if n = 0 and the word u" 'u
otherwise. If u is not the empty word, u“ denotes the infinite word obtained by infinitely repeating
u. A finite word w is said primitive if for any word wu, the equality w = u™ (with n an integer)
implies n = 1. Any word is the power of a unique primitive word called the primitive root of w.

Given a nonempty word u = uq ... u, with u; € A, the length |u| of u is the integer n. One has
le| = 0. If for some words w,v,p, s (possibly empty), u = puvs, then v is a factor of u, p is a prefix
of u and s is a suffiz of u. When p # u (resp. s # u), we say that p is a proper prefiz (resp. sis a
proper suffiz) of u. By |u|, we denote the number of occurrences of the letter a in the word wu.

Sturmian words may be defined in many equivalent ways (see [1] for instance). They are infinite
binary words. Here we will consider them as the infinite balanced non ultimately periodic words.
We recall that a (finite or infinite) word w over {a, b} is balanced if for any factors u and v of same
length ||u|s — |v|a] < 1, and that an infinite word w is ultimately periodic if w = wv® for some finite
words u and v.

Many studies of Sturmian words use Sturmian morphisms. Let A, B be two alphabets. A
morphism (endomorphism if A= B) f from A* to B* is a mapping from A* to B* such that for all
words u,v over A, f(uv) = f(u)f(v). We also say that f is a morphism on A or that f is defined
on A (without any other precision when B has no importance). A morphism on A is entirely known
by the images of the letters of A. A morphism extends naturally on infinite words. We denote just
by juxtaposition the composition of morphisms. Given an endomorphism f, if lim,,_ f"(a) exists,
then this limit is denoted f“(a) and is a fixed point of f: the word f“(a) is said generated by f.

Sturmian morphisms are the morphisms in {E, Ly, Ly, Ry, Rp}* where E, L, Ly, R4, Ry are the
endomorphisms defined on {a,b} by E(a) = b, E(b) = a, Ly(a) = a, Ly(b) = ab, Ly(a) = ba,
Ly(b) = b, Ra(a) = a, Ra(b) = ba, Ry(a) = ab, Rp(b) = b. Many relations exists between Sturmian
words and Sturmian morphisms. For instance, it is known [2, 6] that any Sturmian word can be
defined as an infinite product of Sturmian morphisms.

A particular case of Sturmian words is the standard (or characteristic) one. For any standard
Sturmian words, there exists a sequence (d,,),>0 of integers, called the directive sequence verifying
d1 > 0 and di > 1 for all £ > 2, such that

w= lim s,
n—oo



where the sequence (s,)n>—1 of words is defined by : s_1 =b, so =a and s,, = sg"_lsn,g for n > 1.
Let us observe that for every n > 0, sg,, ends with a. Moreover [1],

son = LILE . LB [P (q)
_ dy 7d2 dopn—1 7don 7d

S 7 I e e N ()
di7d don—1 7don 7d

o1 = LOLP .. LB [ [l (p)

- LB L L L )

3 Lyndon words and morphisms

From now on we consider ordered alphabets. We denote {a; < ... < ay} the n-letter alphabet
{a1,...,a,} with order @1 < ... < «,. Given an ordered alphabet A, we denote by =< the
lexicographic order whenever used on A* or on A“. Let recall that for two different (finite or
infinite) words v and v, v < v if and only if v = zay, v = xbz with a,b € A, a < b, x € A",
y,z € A*U A%, or if (when wu is finite) u is a prefix of v.

A nonempty finite word w is a Lyndon word if for all nonempty words u and v, w = uv implies
w < vu. Equivalently [4, 8], a nonempty word w is a Lyndon word if all its nonempty proper suffixes
are greater than it for the lexicographic order. For instance, on the one-letter alphabet {a}, only a
is a Lyndon word. On {a < b} the Lyndon words of length at most 5 are a, b, ab, aab, abb, aaab,
aabb, abbb, aaaab, aaabb, aabab, aabbb, abbbb. Lyndon words are primitive.

The second definition of Lyndon words extends to infinite words: An infinite word is an infinite
Lyndon word if all its proper suffixes are greater than it for the lexicographic order. A useful result
of G. Melancon [12] states that an infinite word is a Lyndon word if and only if it has an infinity of
prefixes that are Lyndon words. See for instance [7] for a recent example of infinite Lyndon word.

Any nonempty finite or infinite Lyndon words can be decomposed as a nonincreasing product
of Lyndon words. First, R.C. Lyndon proved (see [8] for instance):

Any word w € A may be written uniquely as a nonincreasing product of Lyndon words:
w = {1l ... L, where for each i, ¢; is a Lyndon word and £, =< lp_1 < ...{1.

This result was generalized to infinite words [19]:

Any right infinite word w may be uniquely expressed as a nonincreasing product of Lyn-
don words, finite or infinite, in one of the two following forms: either there exists an
infinite nonincreasing sequence of finite Lyndon words ({;)k>0 such that

w=[] tn="tots...

n>0

or there exist finite Lyndon words Ly, ..., lm—1 (m > 0) and an infinite word £, such
that £y, < b1 X lp—o = ... 4y and

w = fo e fmflfm.



As already said in the introduction, many works concern the decomposition in Lyndon words of
some infinite words. In [12], G. Melancon obtains the decomposition of standard Sturmian words.
We consider these words here on the alphabet {a < b}. For any word w ending with the letter a,
let us denote w the word such that w = wa.

Theorem 3.1 [12]| Let s be a standard Sturmian word with directive sequence (dy)n>1. Let £, =
asgi"“_ls%,lﬁ. (if di = 0 then £y =b).

The words (€y)n>0 form a strictly decreasing sequence of Lyndon words and the unique factor-
ization of s as a nonincreasing product of Lyndon words is

s = H E‘ff"“.

n>0
G. Melangon wrote {12, Remark 3.7] :

When is the sequence ({y,)n>0 morphic ¢ More precisely, is it possible to give a morphism
¢ :{a,b}* — {a,b}* and a Lyndon word £y such that l,+1 = @(£,)? This question
has a positive answer in the case where the directive sequence 1s constant. For instance,
if dy = 2 for all n > 0, then we may set £y = aab and use the morphism mapping
a — aaabaab and b — aab.

A characteristic Sturmian word may be itself morphic. That is, may be the limit lim,, ©"(a)
of a (nonerasing) morphism (satisfying p(a) € aA*). It is known that this is essentially

equivalent to the fact that its directive sequence is periodic. Unfortunately, even when

a characteristic Sturmian word s has a periodic directive sequence, it seems that the se-

quence (Un)n>0 is not always morphic, although it is possible to describe patterns in the

factorization.

The aim of this paper is to answer this question. The main ideas of our proof are generalizations
of the following remarks: the morphism a +— aaabaab and b — aab is the Sturmian morphism
L2R? and preserves Lyndon words. Moreover L2L7 is a conjugate of L2RZ, L2L2(a) = (lp)*a and
LZR%(a) = a(lp)?. Let us note that, in [14], similar remarks are made about the decomposition of
the Fibonacci word (the standard Sturmian word of directive sequence (1),>0). In Section 4, we
recall notions on conjugacy of morphisms.

Let us now recall some results on morphisms preserving (finite) Lyndon words. These mor-
phisms are studied in [14]. By definition, a morphism f preserves Lyndon word if for each Lyndon
word w, f(w) is a Lyndon word. Effective characterizations of such morphisms are given in [14].
Consequently Sturmian words preserving Lyndon words are known:

Proposition 3.2 [14] A Sturmian morphism on {a < b} is a Lyndon morphism if and only if it
belongs to {Lg, Rp}*.

To end this section, let us observe that a study of morphisms preserving infinite Lyndon words
is given in [15].



4 Strong Conjugacy

In this section, we recall the notion of conjugacy (see, e.g., [9, 13]). We also introduce the particular
case of strong conjugacy which will be useful to answer G. Melangon.

Let A and B be two alphabets and let f and g be two morphisms from A* to B*. The morphism
g is a (right) conjugate of f if there exists a word w such that for any word = over A, f(z)u = ug(x).
We will also say that f and g are u-conjugated, and we will denote f <, g. Moreover if f(a) = ua
and g(a) = au for a letter a, f and g will be called strongly (on a) u-conjugated.

Let us recall that any morphism f has at least one conjugate: itself (f<. f). The Fibonacci
morphism ¢ = L,FE defined by ¢(a) = ab and ¢(b) = a has exactly two conjugates, itself and the
morphism ¢ = R,E (¢(a) = ba, ¢(b) = a). A lot of relations between conjugacy of morphisms and
Sturmian morphisms were given by P. Séébold [17] and generalized to a larger family of morphisms
in [13].

Since ¢(a) does not end with the letter a, no morphism is strongly conjugate (on a) to the
Fibonacci morphism. Nevertheless we can observe that ¢? (a +— aba, b — ab) is strongly ab-
conjugated to @@ (a +— aab, b — ab). More generally, for all integers x and y (y # 0), the mor-
phism L{L is strongly conjugated to the morphism LZR}. This follows immediatly the formulas:
LiLY(a) = (a"b)Ya, LY LY (b) = a®b, LR} (a) = a(a”)?, LERy(b) = a®b (LEL} Qgepyy LERY).

A basic property of conjugacy is [9, 13]: for morphisms f, f/, g, ¢, and words u, «’, if f<, g and
J'<w g’ then ff'<pry, 99" (of course f(u')u = ug(u')). This property extends to strong conjugacy:

Lemma 4.1 Let f, ', 9,9, (a a letter) and u,u’ words such that f is strongly (on a) u-conjugated
to g and f' is strongly (on a) u'- conjugated to g'. Then f [’ is strongly (on a) [f(u')u]-conjugated
to gg'.

Proof.  We already know ff" <y, 99'- By hypothesis, f(a) = ua, g(a) = au, f'(a) = v'a et
¢'(a) = av’. Thus ff'(a) = f(v/a) = f(v)ua and g¢'(a) = g(av’) = aug(v’) = af(u')u. So ff'is
strongly [f(u')u]-conjugated to g¢’.

We end this section with a first use of strong conjugacy concerning Sturmian words. One
particular property of any standard Sturmian word w over {a < b} is that both aw and bw are
Sturmian words [16]. Words aw (with w standard Sturmian) are also known as Christoffel words.
In [3], it is shown, that Christoffel words are infinite Lyndon words:

Proposition 4.2 [3] For any standard Sturmian word w over {a < b}, aw is an infinite Lyndon
word.

Proof. Let w be a standard word with directive sequence (d,,),>1. We have already said that a
standard word can be viewed as w = lim,, .~ s, for some words s,, defined in Section 2. In fact,
we can verify that then w = lim,, . So,. Let n > 1. We know that so, = L21L§f2 . LgQ”‘ngQ" (a).
As a consequence of Lemma 4.1 and of the fact that for all integers  and y, the morphism L*L}
is strongly conjugated to the morphism LZR{, we can verify that L% ng . Lg%’ngQ" is strongly
conjugated to LA R{2 ... Lﬁ?”’le‘lQ".

In particular, aL9 L& .. L&' L3 (a) = LB RE . L2 R%"(a)a. By Proposition 3.2, the
morphism LglRZl2 e LgQ"’leQ” preserves Lyndon words. Hence LglRZl2 . LgQ"’leQ” (a) is a Lyn-
don word. Consequently the word w has an infinity of Lyndon words as prefixes. It is a Lyndon
word. 0



Let us note that the previous proof technique can be used to state other results. For instance,
we let the reader prove:

Proposition 4.3 Let A be an alphabet and a a letter in A. Let f,g be two nonerasing endomor-
phisms on A and let u be a word over A such that f is u-strongly conjugate to g. Then f“(a) and
g“(a) exist and af“(a) = g“(a).

Thus if g generates on @ an infinite Lyndon word (which is the case if it preserves Lyndon words
or if it preserves infinite Lyndon words (see [15])), af“(a) is an infinite Lyndon word.
The situation of Proposition 4.3 can be met for morphisms that are not Sturmian. For instance,
this is the case with the morphisms:
} araba ) ar aab
T2\ b abd 97 b bab
Moreover one can see that g preserves infinite Lyndon words and generates an infinite Lyndon word.

5 An answer to G. Melancon

In this section, we consider a standard Sturmian word w over the ordered alphabet {a < b} with
directive sequence (d,,)n>1 (Let recall that d; > 0 and d,, > 1 for all n > 2). The sequence of words
(Sn)n>0 and (£)n>0 are those defined respectively at the end of Section 2 and in Theorem 3.1. In
particular, w = lim, .o [],,>0 (%n ig the decomposition in Lyndon words of w (for each n > 0, £,
is a Lyndon word and £, .1 < £,). Our result is:

Theorem 5.1 With the hypotheses of this section, there exists a morphism g such that for alln > 0,
ln+1 = g(y) if and only if one of the two following cases hold:
e 1 < dy <ds, and for alln > 1, doy, = do and dopy1 = ds. In this case, {y = a®™b and
g=LhRPLBN,
e di =0,1<ds <dy, and for all n > 1, dopy2 = dg and don+1 = d3. In this case, £y = b and
_ pdz2 7d3 pda—d2
g=R> L3FR, .

We observe that in each case, the morphism ¢ is a Sturmian morphism that preserves Lyn-
don words (see Proposition 3.2). Moreover the word w is generated by a Sturmian morphism
(LA L Lds=d op L2 [ds =),

In order to prove the previous theorem, using the strong conjugacy, we first express each Lyndon
word ¢, with morphisms. For n > 0, we denote:

fo = (LB LY. (L3201 )

g = (L4 RE) . (L i)

The interest of the morphisms f,, is immediate since we have already seen relations between them
and the words s, (s2, = fn(a), son+1 = fnt+1(b)). We also observe that each g, is a morphism that
preserves Lyndon words. As a consequence of Lemma 4.1 and of the fact that for all integers z and
y, the morphism L¥L} is strongly conjugated to the morphism L¥ R}, we have:

Lemma 5.2 For alln > 1, f, is strongly (on a) conjugated to g,.



Now we give a new formula for the words (¢,)n>0:

Lemma 5.3 For alln >0, ¢, = gnLgQ"“(b)

Proof.

dons1—1 _
lha = asy ™ Sop_1S3ma

-1
= aSy, S2n—152n
= afn(a® 17 1pa).

If n=0, {a = a™ba = L (b)a = go L (b)a.
When n > 1, let u, be the word such that f <y, g,. By Lemma 5.2, f,(a) = upa, g,(a) = au,.
Thus

lha = afn(adQ”“*lb)una
= aungn(ad%“_lb)a
— gala®1b)a
— L

Consequently for all n > 0, £,, = gnLgQ"“(b). 0

Let us observe that Lemma 5.2 allows to give a new proof of the fact that the words (¢,)n>0
form a strictly decreasing sequence of Lyndon words. Indeed, by Proposition 3.2, each morphism

gnLE"* is a Lyndon morphism, hence g, L>**" is a Lyndon word. Moreover R,Cf2”LZQ”+1 (b) for each

n > 1, then Rg2”LZQ”+1(b) < b which implies £,, = gnLgQ"“(b) =< gn_ngQ"_l(b) = {,,_1 (since any
morphism preserving Lyndon words also strictly preserves the lexicographic order on finite words
[14]).

Proof of Theorem 5.1. Note that the “if” part of the theorem is immediate. Assume the
sequence (¢,)n>0 is morphic. Let g be the morphism such that, for all n > 0, g(¢,,) = £,+1. Observe
that the morphism g cannot be erasing since otherwise this contradicts the fact that s is a primitive
word (as a Lyndon word).

We first consider the case d; > 2. Observe £y = a®b and
g(a®b) = 01 = [a(a® b)®2] % aDp.

Assume g(a) = a, and so g(b) = ab(a®b)®2~a(ab)®]B~1q%bh. The word ly = g(¢1) has
g(a®*1b) as prefix. Thus the words a®+2 and ba®'b are factors of £3. This contradicts the fact that
0y, as a factor of a Sturmian word, is balanced. Hence g(a) # a.

Since d; > 2 and g(a®b) starts with a®1*1b, the word a®*+1b is a prefix of g(a). More precisely,
a(a®b)? must be a prefix of g(a). Finally, we can verify that g(a) = (a(a?1b)®)* for an integer
k> 1. It follows g(b) = (a(a® b)¥)®B—kdigd1p which implies d3 > kd .

Assume k > 2. The word ¢35 = g(f1) contains g(ba?'b) and g(a®T'b) as factors. The word
g(ba®™b) ends with bub where u = (a™b)®[a(a®b)®]®a%. Furthermore the word g(a®*1b) =
[a(a® b)?2]9s+kqd1p starts with aua. This contradicts the fact that £o is balanced.



Hence k = 1, d3 > dy, g(a) = a(a®b)®, g(b) = [a(a®b)®]B~dqdh. We observe that g =
Lh RgQ L3~ and that it is an injective morphism.

Now we can prove that, for all n > 1, da,, = do and da,4+1 = d3. We act by induction on n. There
is nothing to do for n = 1. Let n > 1. Assume that we have already proved da, = do and dgp11 = d3
for all integers p with 1 < p < n. We have £, 11 = gn1 La>"** (b) = L% (RE2 Lds)n R +2 L3243 () =
(L Rz [ds—dynph RZQ””LZQ””(I)) = g”(LZlRSQ"“LZlQ"*S(b)). Moreover £, 11 = g™ (¢1). Since g is
injective, £; = L& R ™2 L2743 (b). This implies doy1o = da and dapy3 = ds.

Now we consider the case dy = 1. We have £y = ab and ¢; = [a(ab)®]%ab. As in case
dy > 2, we cannot have g(a) = a. Hence g(a) starts with aa. We observe that g(a) cannot ends
with a, since otherwise the balanced word ¢2 = g(¢1) contains aaa and bab. We observe also that
g(a) # [a(ab)®]'a(ab)* for any integer k,i such that 1 < k < do and i > 0. Indeed otherwise the
word £y containing both g(aa) and g(ab) should contains the factors a(ab)*aa and b(ab)*ab (since
(ab)?2+1 ends g(ab)): this contradicts the fact that f5 is balanced. It follows that g(a) = [a(ab)?2]
with 1 < k < ds and g(b) = [a(a® b)®]%~kqh1p. Exactly as in case d; > 2, we can then prove that
k=1 g= LQRgQLgT1 and for all integers n > 1, dg,, = d2 and dop+1 = d3.

From now on, we consider the case di = 0. we have £y = b and so g(b) = £; = (ab??)®p.
Moreover £y = R{2L% R L35 (b), that is

0y = [ab™[(ab™)%b]%]% (ab™2)"%b.
Furthermore ¢5 = ¢%(b) = g((ab®)%b). Tt follows that
g((ab™)™) = [ab®g(p) "]

Since the word ab®g(b)™ = ab®[(ab?2)%b]% is a primitive word, g(ab??) = [ab®2g(b)™]* and
xd3 = ds for an integer > 1. Since ab? is not a suffix of g(b), do < dy.

Let us prove that x = 1, that is, d3 = ds. Assume by contradiction that = > 2. The word
(5 has (ab®)®B+! as a prefix and [(ab®)%b)? as a suffix. Let u = ab®g(b)™: g(ab®) = u®.
The word ¢3 = g(f3) contains the factor g((ab®)%+1) = y(@+Dz — 4454*=2 which contains
the factor ab®g(b)%u ab® (ab®)%b which starts with ab®g(b)%u (ab®)%a. Observe now that
g((ab?®2)®b) = [ab®g(b)%]% g(b) ends with b%2F1g(b)% . Consequently the word f3 also contains the
factor b%2+1g(b)%g(((ab)®)%b) = bb?2g(b)Mus (ab®)%b. We have a contradiction with the fact
that /3 is a balanced word.

From what precedes, g(ab®?) = ab®2g(b)™ and so g(a) = ab®g(b)™~% = ab® ((ab?2)®p)ds—d2,
Moreover g(b) = (ab®)%b. We observe g = Rgngi”Rgrdg. As in case dy > 2, we can state that,
for all integers n > 2, do,, = d4 and dop,—1 = d3. 0

6 Conclusion

This paper shows the interest of conjugacy of morphisms and of morphisms preserving Lyndon
words as tools to tackle problems concerning Sturmian words and/or Lyndon words. We are now
working to find other situations where these tools can be useful. In particular, we are looking for
the decomposition in Lyndon words of any Sturmian words.



Acknowledgement

Many thanks to P. Séébold for useful discussions on strong conjugacy.

References

[1] J. Berstel and P. Séébold. Sturmian words, chapter 2 in [9].

2| V. Berthé, C. Holton, and L. Q. Zamboni. Initial powers of sturmian sequences. To appear in

[ ) ) p q pp
Acta Informatica, see www.lirmm.fr/~berthe.

[3] J.P. Borel and F. Laubie. Quelques mots sur la droite projective réelle. Journal de Théorie des
Nombres de Bordeauz, 5:23-51, 1993.

[4] K.T. Chen, R.H. Fox, and R.C. Lyndon. Free differential calculus IV — the quotient groups of
the lower central series. Ann. Math. 68, 68:81-95, 1958.

[5] A. Ido and G. Melangon. Lyndon factorization of the Thue-Morse word and its relatives.
Discret. Math. and Theoret. Comput. Sci., 1:43-52, 1997.

6] J. Justin and G. Pirillo. Episturmian words and episturmian morphisms. Theoretical Computer

[ p p p p
Science, 276(1-2):281-313, 2002.

[7] J. Justin and G. Pirillo. On a characteristic property of Arnoux-Rauzy sequences. RAIRO
Theoretical Informatics and Applications, 36:385-388, 2002.

[8] M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of Mathematics. Addison-
Wesley, 1983. Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical
Library, Cambridge, UK, 1997.

[9] M. Lothaire. Algebraic Combinatorics on words, volume 90 of Encyclopedia of Mathematics.
Cambridge University Press, Cambridge, UK, 2002.

[10] M. Lothaire. Applied Combinatorics on Words. To appear.
(see www-igm.univ-mlv.fr/~berstel).

[11] G. Melancon. Lyndon factorization of infinite words. In STACS’96, volume 1046 of Lect. Notes
in Comp. Sci., pages 147-154, 1996.

[12] G. Melancon. Lyndon factorization of Sturmian words. Discrete Mathematics, 210:137-149,
2000.

[13] G. Richomme. Conjugacy and episturmian morphisms. Theoretical Computer Science, 302:1—
34, 2003.

[14] G. Richomme. Lyndon morphisms. Bulletin of the Belgian Mathematical Society, 10:761-785,

2003.

10



[15]

G. Richomme. On morphisms preserving infinite lyndon words. to appear in Journal of Au-
tomata, Languages and Combinatorics. An extended abstract appeared in the proceedings of
the conference "Journées Montoises d’Informatique Théorique", Liége, Belgium, 2004 (Prépub-
lication 04.006, Institut de Mathématique, Université de Liége), p325-333.

P. Séébold. Fibonacci morphisms and Sturmian words. Theoretical Computer Science, 88:365—
384, 1991.

P. Séébold. On the conjugation of standard morphisms. Theoretical Computer Science, 195:91—
109, 1998.

P. Séébold. Lyndon factorization of the Prouhet words. Theoretical Computer Science, 307:179—
197, 2003.

R. Siromoney, L. Mathew, V. R. Dare, and K. G. Subramanian. Infinite Lyndon words. Infor-
mation Processing Letters, 50:101-104, 1994.

11



