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Conjugay of morphisms and Lyndon deomposition of standardSturmian words∗G. RihommeLaRIA, Université de Piardie Jules Verne33, Rue Saint Leu,F-80039 Amiens edex 1(gwenael.rihomme�u-piardie.fr)Otober 28, 2005AbstratUsing the notions of onjugay of morphisms, we answer a question of G. Melançon onern-ing the deomposition in Lyndon words of standard Sturmian words. We show some onnetionswith morphisms preserving Lyndon words1 IntrodutionFinite (or in�nite) Lyndon words an be enountered in many studies (see for instane [8, 9, 10℄).They are the nonempty words whih are smaller in lexiographi order than all their proper su�xes.The Lyndon fatorization theorem [4℄ states that any �nite word an be deomposed uniquely ina produt of noninreasing (in lexiographi order) Lyndon words. This result was extended toin�nite words [19℄ (In suh a ase, the deomposition an end with an in�nite Lyndon word). Thussome works onern the deomposition in Lyndon words of some in�nite words (see for instane[3, 5, 11, 12, 18℄ for suh results).In [12℄, G. Melançon gives a deomposition in Lyndon words of standard Sturmian words. Heasks the following question: in whih ases, the sequene of noninreasing Lyndon words appearingin the deomposition of a standard Sturmian word an be written (gn(ℓ0))n≥0 with ℓ0 a Lyndonword and g a morphism. In Setion 5, we answer this question.For this, we use results about morphisms preserving Lyndon words [14℄ and about onjugay ofmorphisms [13℄. In partiular, we show that when a positive answer exists to the previous question,
g preserves Lyndon words and is the onjugate of a morphism f that generates the deomposedstandard Sturmian word.In Setion 2, we reall notions on Sturmian words and morphisms. Setion 3 realls boththe deomposition in Lyndon words of standard Sturmian words obtained by G. Melançon, andhis question. This setion also reall notions on morphisms preserving Lyndon words. Setion 4presents notions on onjugay of morphisms and introdues a new partiular ase, namely the strong

∗This paper was presented at the 5th International Conferene on Words whih held in Montréal on september2005 (Publiations du LaCIM numéro 36, page 341-351 (S. Brlek, C. Reutenauer eds.).)2



onjugay. Using it in onjuntion with morphisms preserving Lyndon words, we give a new proofthat for any standard Sturmian words w over {a < b}, aw is an in�nite Lyndon word [3℄. Finally,in Setion 5, we answer G. Melançon. Note that at a �rst step, we express the deomposition of astandard Sturmian word using only morphisms.2 Sturmian words and morphismsWe reall here notions on words (see for instane [8, 9℄ for more details).An alphabet A is a set of symbols alled letters. Here we onsider only �nite alphabets. A wordover A is a sequene of letters from A. The empty word ε is the empty sequene. Equipped withthe onatenation operation, the set A∗ of �nite words over A is a free monoid with neutral element
ε and set of generators A. We denote by Aω the set of in�nite words over A. As usually, for a �niteword u and an integer n, the nth power of u, denoted un, is the word ε if n = 0 and the word un−1uotherwise. If u is not the empty word, uω denotes the in�nite word obtained by in�nitely repeating
u. A �nite word w is said primitive if for any word u, the equality w = un (with n an integer)implies n = 1. Any word is the power of a unique primitive word alled the primitive root of w.Given a nonempty word u = u1 . . . un with ui ∈ A, the length |u| of u is the integer n. One has
|ε| = 0. If for some words u, v, p, s (possibly empty), u = pvs, then v is a fator of u, p is a pre�xof u and s is a su�x of u. When p 6= u (resp. s 6= u), we say that p is a proper pre�x (resp. s is aproper su�x ) of u. By |u|a we denote the number of ourrenes of the letter a in the word u.Sturmian words may be de�ned in many equivalent ways (see [1℄ for instane). They are in�nitebinary words. Here we will onsider them as the in�nite balaned non ultimately periodi words.We reall that a (�nite or in�nite) word w over {a, b} is balaned if for any fators u and v of samelength ||u|a − |v|a| ≤ 1, and that an in�nite word w is ultimately periodi if w = uvω for some �nitewords u and v.Many studies of Sturmian words use Sturmian morphisms. Let A,B be two alphabets. Amorphism (endomorphism if A = B) f from A∗ to B∗ is a mapping from A∗ to B∗ suh that for allwords u, v over A, f(uv) = f(u)f(v). We also say that f is a morphism on A or that f is de�nedon A (without any other preision when B has no importane). A morphism on A is entirely knownby the images of the letters of A. A morphism extends naturally on in�nite words. We denote justby juxtaposition the omposition of morphisms. Given an endomorphism f , if limn→∞ fn(a) exists,then this limit is denoted fω(a) and is a �xed point of f : the word fω(a) is said generated by f .Sturmian morphisms are the morphisms in {E,La, Lb, Ra, Rb}

∗ where E,La, Lb, Ra, Rb are theendomorphisms de�ned on {a, b} by E(a) = b, E(b) = a, La(a) = a, La(b) = ab, Lb(a) = ba,
Lb(b) = b, Ra(a) = a, Ra(b) = ba, Rb(a) = ab, Rb(b) = b. Many relations exists between Sturmianwords and Sturmian morphisms. For instane, it is known [2, 6℄ that any Sturmian word an bede�ned as an in�nite produt of Sturmian morphisms.A partiular ase of Sturmian words is the standard (or harateristi) one. For any standardSturmian words, there exists a sequene (dn)n≥0 of integers, alled the diretive sequene verifying
d1 ≥ 0 and dk ≥ 1 for all k ≥ 2, suh that

w = lim
n→∞

sn3



where the sequene (sn)n≥−1 of words is de�ned by : s−1 = b, s0 = a and sn = sdn

n−1sn−2 for n ≥ 1.Let us observe that for every n ≥ 0, s2n ends with a. Moreover [1℄,
s2n = Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b (a)

= Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a (a)

s2n+1 = Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a (b)

= Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a L
d2n+2

b (b)3 Lyndon words and morphismsFrom now on we onsider ordered alphabets. We denote {α1 < . . . < αn} the n-letter alphabet
{α1, . . . , αn} with order α1 < . . . < αn. Given an ordered alphabet A, we denote by � thelexiographi order whenever used on A∗ or on Aω. Let reall that for two di�erent (�nite orin�nite) words u and v, u ≺ v if and only if u = xay, v = xbz with a, b ∈ A, a < b, x ∈ A∗,
y, z ∈ A∗ ∪ Aω, or if (when u is �nite) u is a pre�x of v.A nonempty �nite word w is a Lyndon word if for all nonempty words u and v, w = uv implies
w ≺ vu. Equivalently [4, 8℄, a nonempty word w is a Lyndon word if all its nonempty proper su�xesare greater than it for the lexiographi order. For instane, on the one-letter alphabet {a}, only ais a Lyndon word. On {a < b} the Lyndon words of length at most 5 are a, b, ab, aab, abb, aaab,
aabb, abbb, aaaab, aaabb, aabab, aabbb, abbbb. Lyndon words are primitive.The seond de�nition of Lyndon words extends to in�nite words: An in�nite word is an in�niteLyndon word if all its proper su�xes are greater than it for the lexiographi order. A useful resultof G. Melançon [12℄ states that an in�nite word is a Lyndon word if and only if it has an in�nity ofpre�xes that are Lyndon words. See for instane [7℄ for a reent example of in�nite Lyndon word.Any nonempty �nite or in�nite Lyndon words an be deomposed as a noninreasing produtof Lyndon words. First, R.C. Lyndon proved (see [8℄ for instane):Any word w ∈ A+ may be written uniquely as a noninreasing produt of Lyndon words:

w = ℓ1ℓ2 . . . ℓn where for eah i, ℓi is a Lyndon word and ℓn � ℓn−1 � . . . ℓ1.This result was generalized to in�nite words [19℄:Any right in�nite word w may be uniquely expressed as a noninreasing produt of Lyn-don words, �nite or in�nite, in one of the two following forms: either there exists anin�nite noninreasing sequene of �nite Lyndon words (ℓk)k≥0 suh that
w =

∏

n≥0

ℓn = ℓ0ℓ1 . . .or there exist �nite Lyndon words ℓ0, . . . , ℓm−1 (m ≥ 0) and an in�nite word ℓm suhthat ℓm ≺ ℓm−1 � ℓm−2 � . . . ℓ0 and
w = ℓ0 . . . ℓm−1ℓm.4



As already said in the introdution, many works onern the deomposition in Lyndon words ofsome in�nite words. In [12℄, G. Melançon obtains the deomposition of standard Sturmian words.We onsider these words here on the alphabet {a < b}. For any word w ending with the letter a,let us denote w the word suh that w = wa.Theorem 3.1 [12℄ Let s be a standard Sturmian word with diretive sequene (dn)n≥1. Let ℓn =

as
d2n+1−1
2n s2n−1s2n. (if d1 = 0 then ℓ0 = b).The words (ℓn)n≥0 form a stritly dereasing sequene of Lyndon words and the unique fator-ization of s as a noninreasing produt of Lyndon words is

s =
∏

n≥0

ℓd2n+1

n .G. Melançon wrote [12, Remark 3.7℄ :When is the sequene (ℓn)n≥0 morphi ? More preisely, is it possible to give a morphism
ϕ : {a, b}∗ → {a, b}∗ and a Lyndon word ℓ0 suh that ℓn+1 = ϕ(ℓn)? This questionhas a positive answer in the ase where the diretive sequene is onstant. For instane,if dn = 2 for all n ≥ 0, then we may set ℓ0 = aab and use the morphism mapping
a 7→ aaabaab and b 7→ aab.A harateristi Sturmian word may be itself morphi. That is, may be the limit limn ϕn(a)of a (nonerasing) morphism (satisfying ϕ(a) ∈ aA∗). It is known that this is essentiallyequivalent to the fat that its diretive sequene is periodi. Unfortunately, even whena harateristi Sturmian word s has a periodi diretive sequene, it seems that the se-quene (ℓn)n≥0 is not always morphi, although it is possible to desribe patterns in thefatorization.The aim of this paper is to answer this question. The main ideas of our proof are generalizationsof the following remarks: the morphism a 7→ aaabaab and b 7→ aab is the Sturmian morphism

L2
aR

2
b and preserves Lyndon words. Moreover L2

aL
2
b is a onjugate of L2

aR
2
b , L2

aL
2
b(a) = (l0)

2a and
L2

aR
2
b(a) = a(l0)

2. Let us note that, in [14℄, similar remarks are made about the deomposition ofthe Fibonai word (the standard Sturmian word of diretive sequene (1)n≥0). In Setion 4, wereall notions on onjugay of morphisms.Let us now reall some results on morphisms preserving (�nite) Lyndon words. These mor-phisms are studied in [14℄. By de�nition, a morphism f preserves Lyndon word if for eah Lyndonword w, f(w) is a Lyndon word. E�etive haraterizations of suh morphisms are given in [14℄.Consequently Sturmian words preserving Lyndon words are known:Proposition 3.2 [14℄ A Sturmian morphism on {a < b} is a Lyndon morphism if and only if itbelongs to {La, Rb}
∗.To end this setion, let us observe that a study of morphisms preserving in�nite Lyndon wordsis given in [15℄.
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4 Strong ConjugayIn this setion, we reall the notion of onjugay (see, e.g., [9, 13℄). We also introdue the partiularase of strong onjugay whih will be useful to answer G. Melançon.Let A and B be two alphabets and let f and g be two morphisms from A∗ to B∗. The morphism
g is a (right) onjugate of f if there exists a word u suh that for any word x over A, f(x)u = ug(x).We will also say that f and g are u-onjugated, and we will denote f ⊳u g. Moreover if f(a) = uaand g(a) = au for a letter a, f and g will be alled strongly (on a) u-onjugated.Let us reall that any morphism f has at least one onjugate: itself (f⊳ε f). The Fibonaimorphism ϕ = LaE de�ned by ϕ(a) = ab and ϕ(b) = a has exatly two onjugates, itself and themorphism ϕ̃ = RaE (ϕ̃(a) = ba, ϕ̃(b) = a). A lot of relations between onjugay of morphisms andSturmian morphisms were given by P. Séébold [17℄ and generalized to a larger family of morphismsin [13℄.Sine ϕ(a) does not end with the letter a, no morphism is strongly onjugate (on a) to theFibonai morphism. Nevertheless we an observe that ϕ2 (a 7→ aba, b 7→ ab) is strongly ab-onjugated to ϕϕ̃ (a 7→ aab, b 7→ ab). More generally, for all integers x and y (y 6= 0), the mor-phism Lx

aL
y
b is strongly onjugated to the morphism Lx

aR
y
b . This follows immediatly the formulas:

Lx
aL

y
b (a) = (axb)ya, Lx

aL
y
b (b) = axb, Lx

aR
y
b (a) = a(axb)y, Lx

aR
y
b (b) = axb (Lx

aL
y
b ⊳(axb)y Lx

aR
y
b ).A basi property of onjugay is [9, 13℄: for morphisms f , f ′, g, g′, and words u, u′, if f ⊳u g and

f ′ ⊳u′ g′ then ff ′ ⊳f(u′)u gg′ (of ourse f(u′)u = ug(u′)). This property extends to strong onjugay:Lemma 4.1 Let f, f ′, g, g′, (a a letter) and u, u′ words suh that f is strongly (on a) u-onjugatedto g and f ′ is strongly (on a) u′- onjugated to g′. Then ff ′ is strongly (on a) [f(u′)u]-onjugatedto gg′.Proof. We already know ff ′ ⊳f(u′)u gg′. By hypothesis, f(a) = ua, g(a) = au, f ′(a) = u′a et
g′(a) = au′. Thus ff ′(a) = f(u′a) = f(u′)ua and gg′(a) = g(au′) = aug(u′) = af(u′)u. So ff ′ isstrongly [f(u′)u]-onjugated to gg′.We end this setion with a �rst use of strong onjugay onerning Sturmian words. Onepartiular property of any standard Sturmian word w over {a < b} is that both aw and bw areSturmian words [16℄. Words aw (with w standard Sturmian) are also known as Christo�el words.In [3℄, it is shown, that Christo�el words are in�nite Lyndon words:Proposition 4.2 [3℄ For any standard Sturmian word w over {a < b}, aw is an in�nite Lyndonword.Proof. Let w be a standard word with diretive sequene (dn)n≥1. We have already said that astandard word an be viewed as w = limn→∞ sn for some words sn de�ned in Setion 2. In fat,we an verify that then w = limn→∞ s2n. Let n ≥ 1. We know that s2n = Ld1

a Ld2

b . . . L
d2n−1
a Ld2n

b (a).As a onsequene of Lemma 4.1 and of the fat that for all integers x and y, the morphism Lx
aL

y
bis strongly onjugated to the morphism Lx

aR
y
b , we an verify that Ld1

a Ld2

b . . . L
d2n−1
a Ld2n

b is stronglyonjugated to Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b .In partiular, aLd1
a Ld2

b . . . L
d2n−1
a Ld2n

b (a) = Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b (a)a. By Proposition 3.2, themorphism Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b preserves Lyndon words. Hene Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b (a) is a Lyn-don word. Consequently the word w has an in�nity of Lyndon words as pre�xes. It is a Lyndonword. 6



Let us note that the previous proof tehnique an be used to state other results. For instane,we let the reader prove:Proposition 4.3 Let A be an alphabet and a a letter in A. Let f, g be two nonerasing endomor-phisms on A and let u be a word over A suh that f is u-strongly onjugate to g. Then fω(a) and
gω(a) exist and afω(a) = gω(a).Thus if g generates on a an in�nite Lyndon word (whih is the ase if it preserves Lyndon wordsor if it preserves in�nite Lyndon words (see [15℄)), afω(a) is an in�nite Lyndon word.The situation of Proposition 4.3 an be met for morphisms that are not Sturmian. For instane,this is the ase with the morphisms:

f :

{

a 7→ aba

b 7→ abb
g :

{

a 7→ aab

b 7→ babMoreover one an see that g preserves in�nite Lyndon words and generates an in�nite Lyndon word.5 An answer to G. MelançonIn this setion, we onsider a standard Sturmian word w over the ordered alphabet {a < b} withdiretive sequene (dn)n≥1 (Let reall that d1 ≥ 0 and dn ≥ 1 for all n ≥ 2). The sequene of words
(sn)n≥0 and (ℓn)n≥0 are those de�ned respetively at the end of Setion 2 and in Theorem 3.1. Inpartiular, w = limn→∞

∏

n≥0 ℓd2n

n is the deomposition in Lyndon words of w (for eah n ≥ 0, ℓnis a Lyndon word and ℓn+1 � ℓn). Our result is:Theorem 5.1 With the hypotheses of this setion, there exists a morphism g suh that for all n ≥ 0,
ℓn+1 = g(ℓn) if and only if one of the two following ases hold:

• 1 ≤ d1 ≤ d3, and for all n ≥ 1, d2n = d2 and d2n+1 = d3. In this ase, ℓ0 = ad1b and
g = Ld1

a Rd2

b Ld3−d1
a .

• d1 = 0, 1 ≤ d2 ≤ d4, and for all n ≥ 1, d2n+2 = d4 and d2n+1 = d3. In this ase, ℓ0 = b and
g = Rd2

b Ld3
a Rd4−d2

b .We observe that in eah ase, the morphism g is a Sturmian morphism that preserves Lyn-don words (see Proposition 3.2). Moreover the word w is generated by a Sturmian morphism(Ld1
a Ld2

b Ld3−d1
a or Ld2

b Ld3
a Ld4−d2

b ).In order to prove the previous theorem, using the strong onjugay, we �rst express eah Lyndonword ℓn with morphisms. For n ≥ 0, we denote:
fn = (Ld1

a Ld2

b ) . . . (Ld2n−1

a Ld2n

b )

gn = (Ld1

a Rd2

b ) . . . (Ld2n−1

a Rd2n

b )The interest of the morphisms fn is immediate sine we have already seen relations between themand the words sn (s2n = fn(a), s2n+1 = fn+1(b)). We also observe that eah gn is a morphism thatpreserves Lyndon words. As a onsequene of Lemma 4.1 and of the fat that for all integers x and
y, the morphism Lx

aL
y
b is strongly onjugated to the morphism Lx

aR
y
b , we have:Lemma 5.2 For all n ≥ 1, fn is strongly (on a) onjugated to gn.7



Now we give a new formula for the words (ℓn)n≥0:Lemma 5.3 For all n ≥ 0, ℓn = gnL
d2n+1
a (b)Proof.

ℓna = as
d2n+1−1
2n s2n−1s2na

= as
d2n+1−1
2n s2n−1s2n

= afn(ad2n+1−1ba).If n = 0, ℓna = ad1ba = Ld1
a (b)a = g0L

d1
a (b)a.When n ≥ 1, let un be the word suh that f ⊳un

gn. By Lemma 5.2, fn(a) = una, gn(a) = aun.Thus
ℓna = afn(ad2n+1−1b)una

= aungn(ad2n+1−1b)a

= gn(ad2n+1b)a

= gnLd2n+1

a (b)aConsequently for all n ≥ 0, ℓn = gnL
d2n+1
a (b).Let us observe that Lemma 5.2 allows to give a new proof of the fat that the words (ℓn)n≥0form a stritly dereasing sequene of Lyndon words. Indeed, by Proposition 3.2, eah morphism

gnL
d2n+1
a is a Lyndon morphism, hene gnL

d2n+1
a is a Lyndon word. Moreover Rd2n

b L
d2n+1
a (b) for eah

n ≥ 1, then Rd2n
b L

d2n+1
a (b) ≺ b whih implies ℓn = gnL

d2n+1
a (b) ≺ gn−1L

d2n−1
a (b) = ℓn−1 (sine anymorphism preserving Lyndon words also stritly preserves the lexiographi order on �nite words[14℄).Proof of Theorem 5.1. Note that the �if� part of the theorem is immediate. Assume thesequene (ℓn)n≥0 is morphi. Let g be the morphism suh that, for all n ≥ 0, g(ℓn) = ℓn+1. Observethat the morphism g annot be erasing sine otherwise this ontradits the fat that ℓ2 is a primitiveword (as a Lyndon word).We �rst onsider the ase d1 ≥ 2. Observe ℓ0 = ad1b and

g(ad1b) = ℓ1 = [a(ad1b)d2 ]d3ad1b.Assume g(a) = a, and so g(b) = ab(ad1b)d2−1[a(ad1b)d2 ]d3−1ad1b. The word ℓ2 = g(ℓ1) has
g(ad1+1b) as pre�x. Thus the words ad1+2 and bad1b are fators of ℓ2. This ontradits the fat that
ℓ2, as a fator of a Sturmian word, is balaned. Hene g(a) 6= a.Sine d1 ≥ 2 and g(ad1b) starts with ad1+1b, the word ad1+1b is a pre�x of g(a). More preisely,
a(ad1b)d2 must be a pre�x of g(a). Finally, we an verify that g(a) = (a(ad1b)d2)k for an integer
k ≥ 1. It follows g(b) = (a(ad1b)d2)d3−kd1ad1b whih implies d3 ≥ kd1.Assume k ≥ 2. The word ℓ2 = g(ℓ1) ontains g(bad1b) and g(ad1+1b) as fators. The word
g(bad1b) ends with bub where u = (ad1b)d2 [a(ad1b)d2 ]d3ad1 . Furthermore the word g(ad1+1b) =
[a(ad1b)d2 ]d3+kad1b starts with aua. This ontradits the fat that ℓ2 is balaned.8



Hene k = 1, d3 ≥ d1, g(a) = a(ad1b)d2 , g(b) = [a(ad1b)d2 ]d3−d1ad1b. We observe that g =
Ld1

a Rd2

b Ld3−d1
a and that it is an injetive morphism.Now we an prove that, for all n ≥ 1, d2n = d2 and d2n+1 = d3. We at by indution on n. Thereis nothing to do for n = 1. Let n ≥ 1. Assume that we have already proved d2p = d2 and d2p+1 = d3for all integers p with 1 ≤ p ≤ n. We have ℓn+1 = gn+1L

d2n+3
a (b) = Ld1

a (Rd2

b Ld3
a )nR

d2n+2

b L
d2n+3
a (b) =

(Ld1
a Rd2

b Ld3−d1
a )nLd1

a R
d2n+2

b L
d2n+3

b (b) = gn(Ld1
a R

d2n+2

b L
d2n+3

b (b)). Moreover ℓn+1 = gn(ℓ1). Sine g isinjetive, ℓ1 = Ld1
a R

d2n+2

b L
d2n+3

b (b). This implies d2n+2 = d2 and d2n+3 = d3.Now we onsider the ase d1 = 1. We have ℓ0 = ab and ℓ1 = [a(ab)d2 ]d3ab. As in ase
d1 ≥ 2, we annot have g(a) = a. Hene g(a) starts with aa. We observe that g(a) annot endswith a, sine otherwise the balaned word ℓ2 = g(ℓ1) ontains aaa and bab. We observe also that
g(a) 6= [a(ab)d2 ]ia(ab)k for any integer k, i suh that 1 ≤ k < d2 and i ≥ 0. Indeed otherwise theword ℓ2 ontaining both g(aa) and g(ab) should ontains the fators a(ab)kaa and b(ab)kab (sine
(ab)d2+1 ends g(ab)): this ontradits the fat that ℓ2 is balaned. It follows that g(a) = [a(ab)d2 ]kwith 1 ≤ k ≤ d3 and g(b) = [a(ad1b)d2 ]d3−kad1b. Exatly as in ase d1 ≥ 2, we an then prove that
k = 1, g = LaR

d2

b Ld3−1
a and for all integers n ≥ 1, d2n = d2 and d2n+1 = d3.From now on, we onsider the ase d1 = 0. we have ℓ0 = b and so g(b) = ℓ1 = (abd2)d3b.Moreover ℓ2 = Rd2

b Ld3
a Rd4

b Ld5
a (b), that is

ℓ2 = [abd2 [(abd2)d3b]d4 ]d5(abd2)d3b.Furthermore ℓ2 = g2(b) = g((abd2)d3b). It follows that
g((abd2)d3) = [abd2g(b)d4 ]d5Sine the word abd2g(b)d4 = abd2 [(abd2)d3b]d4 is a primitive word, g(abd2) = [abd2g(b)d4 ]x and

xd3 = d5 for an integer x ≥ 1. Sine abd2 is not a su�x of g(b), d2 ≤ d4.Let us prove that x = 1, that is, d3 = d5. Assume by ontradition that x ≥ 2. The word
ℓ2 has (abd2)d3+1 as a pre�x and [(abd2)d3b]2 as a su�x. Let u = abd2g(b)d4 : g(abd2) = ux.The word ℓ3 = g(ℓ2) ontains the fator g((abd2)d3+1) = u(d3+1)x = uud5uux−2 whih ontainsthe fator abd2g(b)d4ud5abd2(abd2)d3b whih starts with abd2g(b)d4ud5(abd2)d3a. Observe now that
g((abd2)d3b) = [abd2g(b)d4 ]d5g(b) ends with bd2+1g(b)d4 . Consequently the word ℓ3 also ontains thefator bd2+1g(b)d4g(((ab)d2)d3b) = bbd2g(b)d4ud5(abd2)d3b. We have a ontradition with the fatthat ℓ3 is a balaned word.From what preedes, g(abd2) = abd2g(b)d4 and so g(a) = abd2g(b)d4−d2 = abd2((abd2)d3b)d4−d2 .Moreover g(b) = (abd2)d3b. We observe g = Rd2

b Ld3
a Rd4−d2

b . As in ase d1 ≥ 2, we an state that,for all integers n ≥ 2, d2n = d4 and d2n−1 = d3.6 ConlusionThis paper shows the interest of onjugay of morphisms and of morphisms preserving Lyndonwords as tools to takle problems onerning Sturmian words and/or Lyndon words. We are nowworking to �nd other situations where these tools an be useful. In partiular, we are looking forthe deomposition in Lyndon words of any Sturmian words.9
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