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tober 28, 2005Abstra
tUsing the notions of 
onjuga
y of morphisms, we answer a question of G. Melançon 
on
ern-ing the de
omposition in Lyndon words of standard Sturmian words. We show some 
onne
tionswith morphisms preserving Lyndon words1 Introdu
tionFinite (or in�nite) Lyndon words 
an be en
ountered in many studies (see for instan
e [8, 9, 10℄).They are the nonempty words whi
h are smaller in lexi
ographi
 order than all their proper su�xes.The Lyndon fa
torization theorem [4℄ states that any �nite word 
an be de
omposed uniquely ina produ
t of nonin
reasing (in lexi
ographi
 order) Lyndon words. This result was extended toin�nite words [19℄ (In su
h a 
ase, the de
omposition 
an end with an in�nite Lyndon word). Thussome works 
on
ern the de
omposition in Lyndon words of some in�nite words (see for instan
e[3, 5, 11, 12, 18℄ for su
h results).In [12℄, G. Melançon gives a de
omposition in Lyndon words of standard Sturmian words. Heasks the following question: in whi
h 
ases, the sequen
e of nonin
reasing Lyndon words appearingin the de
omposition of a standard Sturmian word 
an be written (gn(ℓ0))n≥0 with ℓ0 a Lyndonword and g a morphism. In Se
tion 5, we answer this question.For this, we use results about morphisms preserving Lyndon words [14℄ and about 
onjuga
y ofmorphisms [13℄. In parti
ular, we show that when a positive answer exists to the previous question,
g preserves Lyndon words and is the 
onjugate of a morphism f that generates the de
omposedstandard Sturmian word.In Se
tion 2, we re
all notions on Sturmian words and morphisms. Se
tion 3 re
alls boththe de
omposition in Lyndon words of standard Sturmian words obtained by G. Melançon, andhis question. This se
tion also re
all notions on morphisms preserving Lyndon words. Se
tion 4presents notions on 
onjuga
y of morphisms and introdu
es a new parti
ular 
ase, namely the strong

∗This paper was presented at the 5th International Conferen
e on Words whi
h held in Montréal on september2005 (Publi
ations du LaCIM numéro 36, page 341-351 (S. Brlek, C. Reutenauer eds.).)2




onjuga
y. Using it in 
onjun
tion with morphisms preserving Lyndon words, we give a new proofthat for any standard Sturmian words w over {a < b}, aw is an in�nite Lyndon word [3℄. Finally,in Se
tion 5, we answer G. Melançon. Note that at a �rst step, we express the de
omposition of astandard Sturmian word using only morphisms.2 Sturmian words and morphismsWe re
all here notions on words (see for instan
e [8, 9℄ for more details).An alphabet A is a set of symbols 
alled letters. Here we 
onsider only �nite alphabets. A wordover A is a sequen
e of letters from A. The empty word ε is the empty sequen
e. Equipped withthe 
on
atenation operation, the set A∗ of �nite words over A is a free monoid with neutral element
ε and set of generators A. We denote by Aω the set of in�nite words over A. As usually, for a �niteword u and an integer n, the nth power of u, denoted un, is the word ε if n = 0 and the word un−1uotherwise. If u is not the empty word, uω denotes the in�nite word obtained by in�nitely repeating
u. A �nite word w is said primitive if for any word u, the equality w = un (with n an integer)implies n = 1. Any word is the power of a unique primitive word 
alled the primitive root of w.Given a nonempty word u = u1 . . . un with ui ∈ A, the length |u| of u is the integer n. One has
|ε| = 0. If for some words u, v, p, s (possibly empty), u = pvs, then v is a fa
tor of u, p is a pre�xof u and s is a su�x of u. When p 6= u (resp. s 6= u), we say that p is a proper pre�x (resp. s is aproper su�x ) of u. By |u|a we denote the number of o

urren
es of the letter a in the word u.Sturmian words may be de�ned in many equivalent ways (see [1℄ for instan
e). They are in�nitebinary words. Here we will 
onsider them as the in�nite balan
ed non ultimately periodi
 words.We re
all that a (�nite or in�nite) word w over {a, b} is balan
ed if for any fa
tors u and v of samelength ||u|a − |v|a| ≤ 1, and that an in�nite word w is ultimately periodi
 if w = uvω for some �nitewords u and v.Many studies of Sturmian words use Sturmian morphisms. Let A,B be two alphabets. Amorphism (endomorphism if A = B) f from A∗ to B∗ is a mapping from A∗ to B∗ su
h that for allwords u, v over A, f(uv) = f(u)f(v). We also say that f is a morphism on A or that f is de�nedon A (without any other pre
ision when B has no importan
e). A morphism on A is entirely knownby the images of the letters of A. A morphism extends naturally on in�nite words. We denote justby juxtaposition the 
omposition of morphisms. Given an endomorphism f , if limn→∞ fn(a) exists,then this limit is denoted fω(a) and is a �xed point of f : the word fω(a) is said generated by f .Sturmian morphisms are the morphisms in {E,La, Lb, Ra, Rb}

∗ where E,La, Lb, Ra, Rb are theendomorphisms de�ned on {a, b} by E(a) = b, E(b) = a, La(a) = a, La(b) = ab, Lb(a) = ba,
Lb(b) = b, Ra(a) = a, Ra(b) = ba, Rb(a) = ab, Rb(b) = b. Many relations exists between Sturmianwords and Sturmian morphisms. For instan
e, it is known [2, 6℄ that any Sturmian word 
an bede�ned as an in�nite produ
t of Sturmian morphisms.A parti
ular 
ase of Sturmian words is the standard (or 
hara
teristi
) one. For any standardSturmian words, there exists a sequen
e (dn)n≥0 of integers, 
alled the dire
tive sequen
e verifying
d1 ≥ 0 and dk ≥ 1 for all k ≥ 2, su
h that

w = lim
n→∞

sn3



where the sequen
e (sn)n≥−1 of words is de�ned by : s−1 = b, s0 = a and sn = sdn

n−1sn−2 for n ≥ 1.Let us observe that for every n ≥ 0, s2n ends with a. Moreover [1℄,
s2n = Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b (a)

= Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a (a)

s2n+1 = Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a (b)

= Ld1

a Ld2

b . . . Ld2n−1

a Ld2n

b Ld2n+1

a L
d2n+2

b (b)3 Lyndon words and morphismsFrom now on we 
onsider ordered alphabets. We denote {α1 < . . . < αn} the n-letter alphabet
{α1, . . . , αn} with order α1 < . . . < αn. Given an ordered alphabet A, we denote by � thelexi
ographi
 order whenever used on A∗ or on Aω. Let re
all that for two di�erent (�nite orin�nite) words u and v, u ≺ v if and only if u = xay, v = xbz with a, b ∈ A, a < b, x ∈ A∗,
y, z ∈ A∗ ∪ Aω, or if (when u is �nite) u is a pre�x of v.A nonempty �nite word w is a Lyndon word if for all nonempty words u and v, w = uv implies
w ≺ vu. Equivalently [4, 8℄, a nonempty word w is a Lyndon word if all its nonempty proper su�xesare greater than it for the lexi
ographi
 order. For instan
e, on the one-letter alphabet {a}, only ais a Lyndon word. On {a < b} the Lyndon words of length at most 5 are a, b, ab, aab, abb, aaab,
aabb, abbb, aaaab, aaabb, aabab, aabbb, abbbb. Lyndon words are primitive.The se
ond de�nition of Lyndon words extends to in�nite words: An in�nite word is an in�niteLyndon word if all its proper su�xes are greater than it for the lexi
ographi
 order. A useful resultof G. Melançon [12℄ states that an in�nite word is a Lyndon word if and only if it has an in�nity ofpre�xes that are Lyndon words. See for instan
e [7℄ for a re
ent example of in�nite Lyndon word.Any nonempty �nite or in�nite Lyndon words 
an be de
omposed as a nonin
reasing produ
tof Lyndon words. First, R.C. Lyndon proved (see [8℄ for instan
e):Any word w ∈ A+ may be written uniquely as a nonin
reasing produ
t of Lyndon words:

w = ℓ1ℓ2 . . . ℓn where for ea
h i, ℓi is a Lyndon word and ℓn � ℓn−1 � . . . ℓ1.This result was generalized to in�nite words [19℄:Any right in�nite word w may be uniquely expressed as a nonin
reasing produ
t of Lyn-don words, �nite or in�nite, in one of the two following forms: either there exists anin�nite nonin
reasing sequen
e of �nite Lyndon words (ℓk)k≥0 su
h that
w =

∏

n≥0

ℓn = ℓ0ℓ1 . . .or there exist �nite Lyndon words ℓ0, . . . , ℓm−1 (m ≥ 0) and an in�nite word ℓm su
hthat ℓm ≺ ℓm−1 � ℓm−2 � . . . ℓ0 and
w = ℓ0 . . . ℓm−1ℓm.4



As already said in the introdu
tion, many works 
on
ern the de
omposition in Lyndon words ofsome in�nite words. In [12℄, G. Melançon obtains the de
omposition of standard Sturmian words.We 
onsider these words here on the alphabet {a < b}. For any word w ending with the letter a,let us denote w the word su
h that w = wa.Theorem 3.1 [12℄ Let s be a standard Sturmian word with dire
tive sequen
e (dn)n≥1. Let ℓn =

as
d2n+1−1
2n s2n−1s2n. (if d1 = 0 then ℓ0 = b).The words (ℓn)n≥0 form a stri
tly de
reasing sequen
e of Lyndon words and the unique fa
tor-ization of s as a nonin
reasing produ
t of Lyndon words is

s =
∏

n≥0

ℓd2n+1

n .G. Melançon wrote [12, Remark 3.7℄ :When is the sequen
e (ℓn)n≥0 morphi
 ? More pre
isely, is it possible to give a morphism
ϕ : {a, b}∗ → {a, b}∗ and a Lyndon word ℓ0 su
h that ℓn+1 = ϕ(ℓn)? This questionhas a positive answer in the 
ase where the dire
tive sequen
e is 
onstant. For instan
e,if dn = 2 for all n ≥ 0, then we may set ℓ0 = aab and use the morphism mapping
a 7→ aaabaab and b 7→ aab.A 
hara
teristi
 Sturmian word may be itself morphi
. That is, may be the limit limn ϕn(a)of a (nonerasing) morphism (satisfying ϕ(a) ∈ aA∗). It is known that this is essentiallyequivalent to the fa
t that its dire
tive sequen
e is periodi
. Unfortunately, even whena 
hara
teristi
 Sturmian word s has a periodi
 dire
tive sequen
e, it seems that the se-quen
e (ℓn)n≥0 is not always morphi
, although it is possible to des
ribe patterns in thefa
torization.The aim of this paper is to answer this question. The main ideas of our proof are generalizationsof the following remarks: the morphism a 7→ aaabaab and b 7→ aab is the Sturmian morphism

L2
aR

2
b and preserves Lyndon words. Moreover L2

aL
2
b is a 
onjugate of L2

aR
2
b , L2

aL
2
b(a) = (l0)

2a and
L2

aR
2
b(a) = a(l0)

2. Let us note that, in [14℄, similar remarks are made about the de
omposition ofthe Fibona

i word (the standard Sturmian word of dire
tive sequen
e (1)n≥0). In Se
tion 4, were
all notions on 
onjuga
y of morphisms.Let us now re
all some results on morphisms preserving (�nite) Lyndon words. These mor-phisms are studied in [14℄. By de�nition, a morphism f preserves Lyndon word if for ea
h Lyndonword w, f(w) is a Lyndon word. E�e
tive 
hara
terizations of su
h morphisms are given in [14℄.Consequently Sturmian words preserving Lyndon words are known:Proposition 3.2 [14℄ A Sturmian morphism on {a < b} is a Lyndon morphism if and only if itbelongs to {La, Rb}
∗.To end this se
tion, let us observe that a study of morphisms preserving in�nite Lyndon wordsis given in [15℄.

5



4 Strong Conjuga
yIn this se
tion, we re
all the notion of 
onjuga
y (see, e.g., [9, 13℄). We also introdu
e the parti
ular
ase of strong 
onjuga
y whi
h will be useful to answer G. Melançon.Let A and B be two alphabets and let f and g be two morphisms from A∗ to B∗. The morphism
g is a (right) 
onjugate of f if there exists a word u su
h that for any word x over A, f(x)u = ug(x).We will also say that f and g are u-
onjugated, and we will denote f ⊳u g. Moreover if f(a) = uaand g(a) = au for a letter a, f and g will be 
alled strongly (on a) u-
onjugated.Let us re
all that any morphism f has at least one 
onjugate: itself (f⊳ε f). The Fibona

imorphism ϕ = LaE de�ned by ϕ(a) = ab and ϕ(b) = a has exa
tly two 
onjugates, itself and themorphism ϕ̃ = RaE (ϕ̃(a) = ba, ϕ̃(b) = a). A lot of relations between 
onjuga
y of morphisms andSturmian morphisms were given by P. Séébold [17℄ and generalized to a larger family of morphismsin [13℄.Sin
e ϕ(a) does not end with the letter a, no morphism is strongly 
onjugate (on a) to theFibona

i morphism. Nevertheless we 
an observe that ϕ2 (a 7→ aba, b 7→ ab) is strongly ab-
onjugated to ϕϕ̃ (a 7→ aab, b 7→ ab). More generally, for all integers x and y (y 6= 0), the mor-phism Lx

aL
y
b is strongly 
onjugated to the morphism Lx

aR
y
b . This follows immediatly the formulas:

Lx
aL

y
b (a) = (axb)ya, Lx

aL
y
b (b) = axb, Lx

aR
y
b (a) = a(axb)y, Lx

aR
y
b (b) = axb (Lx

aL
y
b ⊳(axb)y Lx

aR
y
b ).A basi
 property of 
onjuga
y is [9, 13℄: for morphisms f , f ′, g, g′, and words u, u′, if f ⊳u g and

f ′ ⊳u′ g′ then ff ′ ⊳f(u′)u gg′ (of 
ourse f(u′)u = ug(u′)). This property extends to strong 
onjuga
y:Lemma 4.1 Let f, f ′, g, g′, (a a letter) and u, u′ words su
h that f is strongly (on a) u-
onjugatedto g and f ′ is strongly (on a) u′- 
onjugated to g′. Then ff ′ is strongly (on a) [f(u′)u]-
onjugatedto gg′.Proof. We already know ff ′ ⊳f(u′)u gg′. By hypothesis, f(a) = ua, g(a) = au, f ′(a) = u′a et
g′(a) = au′. Thus ff ′(a) = f(u′a) = f(u′)ua and gg′(a) = g(au′) = aug(u′) = af(u′)u. So ff ′ isstrongly [f(u′)u]-
onjugated to gg′.We end this se
tion with a �rst use of strong 
onjuga
y 
on
erning Sturmian words. Oneparti
ular property of any standard Sturmian word w over {a < b} is that both aw and bw areSturmian words [16℄. Words aw (with w standard Sturmian) are also known as Christo�el words.In [3℄, it is shown, that Christo�el words are in�nite Lyndon words:Proposition 4.2 [3℄ For any standard Sturmian word w over {a < b}, aw is an in�nite Lyndonword.Proof. Let w be a standard word with dire
tive sequen
e (dn)n≥1. We have already said that astandard word 
an be viewed as w = limn→∞ sn for some words sn de�ned in Se
tion 2. In fa
t,we 
an verify that then w = limn→∞ s2n. Let n ≥ 1. We know that s2n = Ld1

a Ld2

b . . . L
d2n−1
a Ld2n

b (a).As a 
onsequen
e of Lemma 4.1 and of the fa
t that for all integers x and y, the morphism Lx
aL

y
bis strongly 
onjugated to the morphism Lx

aR
y
b , we 
an verify that Ld1

a Ld2

b . . . L
d2n−1
a Ld2n

b is strongly
onjugated to Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b .In parti
ular, aLd1
a Ld2

b . . . L
d2n−1
a Ld2n

b (a) = Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b (a)a. By Proposition 3.2, themorphism Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b preserves Lyndon words. Hen
e Ld1
a Rd2

b . . . L
d2n−1
a Rd2n

b (a) is a Lyn-don word. Consequently the word w has an in�nity of Lyndon words as pre�xes. It is a Lyndonword. 6



Let us note that the previous proof te
hnique 
an be used to state other results. For instan
e,we let the reader prove:Proposition 4.3 Let A be an alphabet and a a letter in A. Let f, g be two nonerasing endomor-phisms on A and let u be a word over A su
h that f is u-strongly 
onjugate to g. Then fω(a) and
gω(a) exist and afω(a) = gω(a).Thus if g generates on a an in�nite Lyndon word (whi
h is the 
ase if it preserves Lyndon wordsor if it preserves in�nite Lyndon words (see [15℄)), afω(a) is an in�nite Lyndon word.The situation of Proposition 4.3 
an be met for morphisms that are not Sturmian. For instan
e,this is the 
ase with the morphisms:

f :

{

a 7→ aba

b 7→ abb
g :

{

a 7→ aab

b 7→ babMoreover one 
an see that g preserves in�nite Lyndon words and generates an in�nite Lyndon word.5 An answer to G. MelançonIn this se
tion, we 
onsider a standard Sturmian word w over the ordered alphabet {a < b} withdire
tive sequen
e (dn)n≥1 (Let re
all that d1 ≥ 0 and dn ≥ 1 for all n ≥ 2). The sequen
e of words
(sn)n≥0 and (ℓn)n≥0 are those de�ned respe
tively at the end of Se
tion 2 and in Theorem 3.1. Inparti
ular, w = limn→∞

∏

n≥0 ℓd2n

n is the de
omposition in Lyndon words of w (for ea
h n ≥ 0, ℓnis a Lyndon word and ℓn+1 � ℓn). Our result is:Theorem 5.1 With the hypotheses of this se
tion, there exists a morphism g su
h that for all n ≥ 0,
ℓn+1 = g(ℓn) if and only if one of the two following 
ases hold:

• 1 ≤ d1 ≤ d3, and for all n ≥ 1, d2n = d2 and d2n+1 = d3. In this 
ase, ℓ0 = ad1b and
g = Ld1

a Rd2

b Ld3−d1
a .

• d1 = 0, 1 ≤ d2 ≤ d4, and for all n ≥ 1, d2n+2 = d4 and d2n+1 = d3. In this 
ase, ℓ0 = b and
g = Rd2

b Ld3
a Rd4−d2

b .We observe that in ea
h 
ase, the morphism g is a Sturmian morphism that preserves Lyn-don words (see Proposition 3.2). Moreover the word w is generated by a Sturmian morphism(Ld1
a Ld2

b Ld3−d1
a or Ld2

b Ld3
a Ld4−d2

b ).In order to prove the previous theorem, using the strong 
onjuga
y, we �rst express ea
h Lyndonword ℓn with morphisms. For n ≥ 0, we denote:
fn = (Ld1

a Ld2

b ) . . . (Ld2n−1

a Ld2n

b )

gn = (Ld1

a Rd2

b ) . . . (Ld2n−1

a Rd2n

b )The interest of the morphisms fn is immediate sin
e we have already seen relations between themand the words sn (s2n = fn(a), s2n+1 = fn+1(b)). We also observe that ea
h gn is a morphism thatpreserves Lyndon words. As a 
onsequen
e of Lemma 4.1 and of the fa
t that for all integers x and
y, the morphism Lx

aL
y
b is strongly 
onjugated to the morphism Lx

aR
y
b , we have:Lemma 5.2 For all n ≥ 1, fn is strongly (on a) 
onjugated to gn.7



Now we give a new formula for the words (ℓn)n≥0:Lemma 5.3 For all n ≥ 0, ℓn = gnL
d2n+1
a (b)Proof.

ℓna = as
d2n+1−1
2n s2n−1s2na

= as
d2n+1−1
2n s2n−1s2n

= afn(ad2n+1−1ba).If n = 0, ℓna = ad1ba = Ld1
a (b)a = g0L

d1
a (b)a.When n ≥ 1, let un be the word su
h that f ⊳un

gn. By Lemma 5.2, fn(a) = una, gn(a) = aun.Thus
ℓna = afn(ad2n+1−1b)una

= aungn(ad2n+1−1b)a

= gn(ad2n+1b)a

= gnLd2n+1

a (b)aConsequently for all n ≥ 0, ℓn = gnL
d2n+1
a (b).Let us observe that Lemma 5.2 allows to give a new proof of the fa
t that the words (ℓn)n≥0form a stri
tly de
reasing sequen
e of Lyndon words. Indeed, by Proposition 3.2, ea
h morphism

gnL
d2n+1
a is a Lyndon morphism, hen
e gnL

d2n+1
a is a Lyndon word. Moreover Rd2n

b L
d2n+1
a (b) for ea
h

n ≥ 1, then Rd2n
b L

d2n+1
a (b) ≺ b whi
h implies ℓn = gnL

d2n+1
a (b) ≺ gn−1L

d2n−1
a (b) = ℓn−1 (sin
e anymorphism preserving Lyndon words also stri
tly preserves the lexi
ographi
 order on �nite words[14℄).Proof of Theorem 5.1. Note that the �if� part of the theorem is immediate. Assume thesequen
e (ℓn)n≥0 is morphi
. Let g be the morphism su
h that, for all n ≥ 0, g(ℓn) = ℓn+1. Observethat the morphism g 
annot be erasing sin
e otherwise this 
ontradi
ts the fa
t that ℓ2 is a primitiveword (as a Lyndon word).We �rst 
onsider the 
ase d1 ≥ 2. Observe ℓ0 = ad1b and

g(ad1b) = ℓ1 = [a(ad1b)d2 ]d3ad1b.Assume g(a) = a, and so g(b) = ab(ad1b)d2−1[a(ad1b)d2 ]d3−1ad1b. The word ℓ2 = g(ℓ1) has
g(ad1+1b) as pre�x. Thus the words ad1+2 and bad1b are fa
tors of ℓ2. This 
ontradi
ts the fa
t that
ℓ2, as a fa
tor of a Sturmian word, is balan
ed. Hen
e g(a) 6= a.Sin
e d1 ≥ 2 and g(ad1b) starts with ad1+1b, the word ad1+1b is a pre�x of g(a). More pre
isely,
a(ad1b)d2 must be a pre�x of g(a). Finally, we 
an verify that g(a) = (a(ad1b)d2)k for an integer
k ≥ 1. It follows g(b) = (a(ad1b)d2)d3−kd1ad1b whi
h implies d3 ≥ kd1.Assume k ≥ 2. The word ℓ2 = g(ℓ1) 
ontains g(bad1b) and g(ad1+1b) as fa
tors. The word
g(bad1b) ends with bub where u = (ad1b)d2 [a(ad1b)d2 ]d3ad1 . Furthermore the word g(ad1+1b) =
[a(ad1b)d2 ]d3+kad1b starts with aua. This 
ontradi
ts the fa
t that ℓ2 is balan
ed.8



Hen
e k = 1, d3 ≥ d1, g(a) = a(ad1b)d2 , g(b) = [a(ad1b)d2 ]d3−d1ad1b. We observe that g =
Ld1

a Rd2

b Ld3−d1
a and that it is an inje
tive morphism.Now we 
an prove that, for all n ≥ 1, d2n = d2 and d2n+1 = d3. We a
t by indu
tion on n. Thereis nothing to do for n = 1. Let n ≥ 1. Assume that we have already proved d2p = d2 and d2p+1 = d3for all integers p with 1 ≤ p ≤ n. We have ℓn+1 = gn+1L

d2n+3
a (b) = Ld1

a (Rd2

b Ld3
a )nR

d2n+2

b L
d2n+3
a (b) =

(Ld1
a Rd2

b Ld3−d1
a )nLd1

a R
d2n+2

b L
d2n+3

b (b) = gn(Ld1
a R

d2n+2

b L
d2n+3

b (b)). Moreover ℓn+1 = gn(ℓ1). Sin
e g isinje
tive, ℓ1 = Ld1
a R

d2n+2

b L
d2n+3

b (b). This implies d2n+2 = d2 and d2n+3 = d3.Now we 
onsider the 
ase d1 = 1. We have ℓ0 = ab and ℓ1 = [a(ab)d2 ]d3ab. As in 
ase
d1 ≥ 2, we 
annot have g(a) = a. Hen
e g(a) starts with aa. We observe that g(a) 
annot endswith a, sin
e otherwise the balan
ed word ℓ2 = g(ℓ1) 
ontains aaa and bab. We observe also that
g(a) 6= [a(ab)d2 ]ia(ab)k for any integer k, i su
h that 1 ≤ k < d2 and i ≥ 0. Indeed otherwise theword ℓ2 
ontaining both g(aa) and g(ab) should 
ontains the fa
tors a(ab)kaa and b(ab)kab (sin
e
(ab)d2+1 ends g(ab)): this 
ontradi
ts the fa
t that ℓ2 is balan
ed. It follows that g(a) = [a(ab)d2 ]kwith 1 ≤ k ≤ d3 and g(b) = [a(ad1b)d2 ]d3−kad1b. Exa
tly as in 
ase d1 ≥ 2, we 
an then prove that
k = 1, g = LaR

d2

b Ld3−1
a and for all integers n ≥ 1, d2n = d2 and d2n+1 = d3.From now on, we 
onsider the 
ase d1 = 0. we have ℓ0 = b and so g(b) = ℓ1 = (abd2)d3b.Moreover ℓ2 = Rd2

b Ld3
a Rd4

b Ld5
a (b), that is

ℓ2 = [abd2 [(abd2)d3b]d4 ]d5(abd2)d3b.Furthermore ℓ2 = g2(b) = g((abd2)d3b). It follows that
g((abd2)d3) = [abd2g(b)d4 ]d5Sin
e the word abd2g(b)d4 = abd2 [(abd2)d3b]d4 is a primitive word, g(abd2) = [abd2g(b)d4 ]x and

xd3 = d5 for an integer x ≥ 1. Sin
e abd2 is not a su�x of g(b), d2 ≤ d4.Let us prove that x = 1, that is, d3 = d5. Assume by 
ontradi
tion that x ≥ 2. The word
ℓ2 has (abd2)d3+1 as a pre�x and [(abd2)d3b]2 as a su�x. Let u = abd2g(b)d4 : g(abd2) = ux.The word ℓ3 = g(ℓ2) 
ontains the fa
tor g((abd2)d3+1) = u(d3+1)x = uud5uux−2 whi
h 
ontainsthe fa
tor abd2g(b)d4ud5abd2(abd2)d3b whi
h starts with abd2g(b)d4ud5(abd2)d3a. Observe now that
g((abd2)d3b) = [abd2g(b)d4 ]d5g(b) ends with bd2+1g(b)d4 . Consequently the word ℓ3 also 
ontains thefa
tor bd2+1g(b)d4g(((ab)d2)d3b) = bbd2g(b)d4ud5(abd2)d3b. We have a 
ontradi
tion with the fa
tthat ℓ3 is a balan
ed word.From what pre
edes, g(abd2) = abd2g(b)d4 and so g(a) = abd2g(b)d4−d2 = abd2((abd2)d3b)d4−d2 .Moreover g(b) = (abd2)d3b. We observe g = Rd2

b Ld3
a Rd4−d2

b . As in 
ase d1 ≥ 2, we 
an state that,for all integers n ≥ 2, d2n = d4 and d2n−1 = d3.6 Con
lusionThis paper shows the interest of 
onjuga
y of morphisms and of morphisms preserving Lyndonwords as tools to ta
kle problems 
on
erning Sturmian words and/or Lyndon words. We are nowworking to �nd other situations where these tools 
an be useful. In parti
ular, we are looking forthe de
omposition in Lyndon words of any Sturmian words.9
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