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Path instability and wake of a rising bubble

Woodrow L. Shew, Sebastien Poncet, and Jean-François Pinton
Laboratoire de Physique, École Normale Supérieur de Lyon

Lyon, France 69007

The dynamics of millimeter sized air bubbles rising through still water are investigated using
precise ultrasound velocity measurements combined with high speed video. From measurements we
deduce the forces acting on the bubble and we tie the dynamics of the bubble’s wake to observed
oscillatory instabilities of the bubble’s path: planar zigzag and spiraling motion.

I. BACKGROUND

As a bubble ascends from the bottom of a body of wa-
ter, it induces motion in the fluid. The buoyant forces
which drive the bubble’s rise do work resulting in an in-
crease in kinetic energy of the surrounding fluid. This
induced flow, in turn, causes changes in the path of the
bubble. These nonlinear interactions between a bubble
and the fluid motion it induces are the subject of the
work presented here.

An understanding of bubble-fluid interactions, in gen-
eral, is important in a broad range of natural, engineer-
ing, and medical settings. Air-sea gas transfer, bubble
column reactors, oil/natural gas transport, boiling heat
transfer, ship hydrodynamics, ink-jet printing and medi-
cal ultrasound imaging are just a few examples where the
dynamics of bubbles play a role (e.g [6, 16, 26]).

We narrow our focus to a single air bubble rising
through still water. Our study includes a range of bubble
sizes between 0.84 and 1.2 mm in radius. At the small end
of this range the bubble path is rectilinear and its wake is
steady and axisymmetric. As the bubble size is increased,
one observes the generation of a double-threaded vortex
wake and the transition to a planar zigzag path [8, 23].
A second instability, often preceded by the zigzag, re-
sults in a spiraling path, which is also accompanied by
the double-threaded wake vortices [5, 8, 15, 23]. Fo even
larger bubbles, a third type of oscillating path occurs,
which looks similar to the zigzag, sometimes called “rock-
ing”. We do not address this state and emphasize that it
is different than the zigzag mentioned above. Unlike the
zigzag state that we study, the rocking bubble undergoes
dramatic shape oscillations, periodically discharges tur-
bulent bursts into its wake, and oscillates at frequencies
several times higher than the zigzag or spiral [5, 15, 29].
The goal of our work is to better understand the physi-
cal mechanisms which relate the onset and saturation of
zigzag and spiral path instabilities to the structure and
time evolution of the bubble’s wake.

The dynamics of bubble path instabilities have puz-
zled researchers for quite a long time. Leonardo Davinci
is likely the first scientist to have contributed to the sig-
nificant body of work addressing this problem [26]. Clift
et al. [6] review relevant studies prior to about 1978. In
2002, Magnaudet and Eames [16] provided a thorough
account of more recent work on this subject. Our atten-
tion will be limited to those works which address bubble

path instabilities. Saffman in 1956 [27], Hartunian and
Sears in 1957 [11], and later Benjamin in 1984 [4] at-
tempted to explain features of the path instabilities and
bubble shape by analytical means, but experiments are
not in accord with their findings. Several experimen-
tal works have visualized and documented the shape of
zigzagging and spiraling bubble paths without attempt-
ing to explain causal mechanisms [1, 2, 17, 30]. Other
recent studies have investigated path instabilities with
special attention paid to the role of the bubble’s wake.
We will only briefly describe these works now, referring
to more details later in the text when appropriate. The
understanding of bubble wake structure that we invoke in
the discussions to follow is derived from our own quanti-
tative measurements of bubble paths in conjunction with
the findings of these studies. Lunde and Perkins used dye
to observe the wake of ascending bubbles and solid par-
ticles [15]. Brücker used particle image velocimetry to
study the wake of large spiraling and rocking bubbles
[5]. Mougin and Magnaudet presented numerical obser-
vations of the path and wake of a bubble with a rigid
ellipsoidal shape [23]. de Vries et al. used Schlieren op-
tics techniques to visualize the wakes of zigzagging and
spiraling bubbles [8]. Finally, Ellingsen and Risso used
laser doppler anenometry and cameras to measure the
path as well as the flow around the bubble [10].

Some of these studies have focused on the role of vor-
ticity production and transport in the dynamics of path
instabilities [15, 23]. They argue qualitatively that, for
larger bubbles, vorticity production is too large to be
transported away from the bubble in an axisymmetric
wake. As a result, the wake develops a non-axisymmetric
form which more efficiently transports vorticity and also
gives rise to path instability. We approach the problem
from a complementary and more quantitative point of
view. We experimentally measure the trajectories of bub-
bles with unprecedented precision in velocity over large
rise distances. We use our measurements to estimate the
forces acting on the bubble and develop an explanation
of path instabilities in terms of the path geometry and
structure of the wake.

In the next section we describe the experimental appa-
ratus and measurement techniques, as well a typical bub-
ble trajectory. In section III, we present a method for ex-
tracting force measurements from path and velocity mea-
surements based on the generalized Kirchhoff equations.
Then, in section IV, we discuss some observations of the
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bubble trajectory during the first few hundred millisec-
onds after release. We describe the zigzagging instability
in section V and the spiral motion in section VI. Finally
we conclude and discuss some remaining open questions
concerning our data and bubble path instabilities.

II. EXPERIMENTAL APPARATUS AND

METHODS

One goal of this work is to obtain measurements of
bubble behavior rising through a large distance, reveal-
ing the long time dynamics of the zigzag and spiral in-
stabilities. To this effect, the experiments are conducted
in a tank 2 m in height and 30 cm wide with square cross
section as illustrated in Fig. 1. The walls are made of
1.45 cm thick acrylic plate. Bubbles are produced at the
bottom of the vessel by pumping air through a 24 gauge
stainless steel capillary tube with a 0.30 mm inner di-
ameter (ID) and a 0.56 mm outer diameter (OD). The
tube is oriented with its open end facing upwards. The
air is pumped to the capillary tube through a length of
Tygon tubing (0.51 mm ID and 2.3 mm OD, from Cole-
Parmer) using a peristaltic pump (Roto-Consulta, flocon
1003). The rotor of the pump is turned by hand, releas-
ing a single bubble. We always allow at least 3 minutes
delay between the release of consecutive bubbles to be
sure that the water is truly quiescent for each bubble.

The volume of each bubble is measured individually.
When the bubble reaches the top of the vessel it is
trapped under a submerged plate. Using a syringe, each
bubble is sucked into a transparent section of Tygon tub-
ing (ID 0.51 ± 0.005 mm) with water on either side of
the bubble. The length of the air plug in the tube is then
measured with calipers (± 0.2 mm precision). Knowing
the tube inner diameter one then calculates the bubble
volume. In the results that follow, an equivalent radius
R ≡ (3/4π×actual volume)1/3 is used as a measure of the
bubble size. During the ascent, R increases by 6% due to
the gradient in hydrostatic pressure. This expansion is
accounted for in the calculations of forces. Furthermore,
each instance where the bubble radius or Reynolds num-
ber is presented in this paper it is properly adjusted for
the pressure at the height of the bubble being described.
The Reynolds number is defined Re = 2RU/ν, where
U is the current speed of the bubble and ν is the kine-
matic viscosity of water. We have observed speeds in the
range 32 < U < 36 cm/s, yielding Reynolds numbers
500 < Re < 770.

Some of our force calculations depend on the shape
of the bubble. It has been shown by other experimenters
that the bubble is close to an oblate ellipsoid [8, 9, 10, 29].
Since we do not make such measurements, we use the ex-
perimental results of Duineveld [9] to estimate the shape
of our bubbles. Wu and Gharib [30] measured aspect ra-
tios which confirm Duineveld’s results. The aspect ratio
of the bubbles in our size range is well approximated by
a linear function of bubble equivalent radius. The aspect
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FIG. 1: Schematic of experimental setup. As the bubble rises
its vertical velocity is measured using ultrasound and its hor-
izontal position is obtained with a high speed video camera.

ratio χ is defined as the length of the semimajor axis di-
vided by the length of the semiminor axis. In fig. 2, we
show Duineveld’s results and the linear fit,

χ(R) = 2.18R− 0.10. (1)

This method of estimating χ is justified by the agreement
of our measurements with Moore’s drag theory [18] as
shown below in Fig. 8 in section IV.

Before each experiment the vessel and all parts exposed
to the water are thoroughly cleaned with methanol, dried,
and then rinsed with tap water for 5 minutes. All data
is collected with tap water less than 8 hours old. It is
known that small bubbles rise more slowly in tap water
compared to highly purified water due to contamination
of the air-water interface with surfactants (e.g. [6, 9]).
Nonetheless, several observations suggest that surfactant
effects are not greatly influencing the dynamics of our
bubbles, probably because of their larger size. First, our
velocity measurements are consistent with Moore’s drag
theory and Duineveld’s measurements in clean water (see
fig. 8 in section IV). Second, we observe that during the
straight rise of a bubble of radius 1.0 mm (at 1 atm), the
velocity grows by about 2% over 1.5 m. This result is con-
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FIG. 2: Comparison of Duineveld’s measurements of aspect
ratio [9] and the linear model we use to estimate χ.

sistent with the increase in buoyancy and drag due the
expansion of size as well as aspect ratio during ascent.
If surfactant effects were significant, the bubble would
slow down as it rises. We note that for bubbles smaller
than about 0.75 mm in radius, our measured rise veloc-
ities reveal such a decrease in speed and are decreased
compared to those of Duineveld. This indicates that, in
our tap water, smaller bubbles are strongly influenced by
surfactants, while large bubbles are not. The data pre-
sented in this paper is limited to bubbles larger than 0.87
mm.

Temperature is monitored at two different depths for
each experiment. The mean temperature is 18.5±0.25 ◦C
and the temperature gradient is always less than 0.009
◦C/cm.

The trajectory of the bubble is measured using two
methods: ultrasound and high speed video. The vertical
component of the bubble velocity is obtained with high
precision using a continuous ultrasound technique. We
briefly describe this technique here, but for more detail
the reader is referred to the references: [19, 20, 21]. One
piezo-electric ultrasound transducer positioned at the top
of the vessel generates a continuous 2.8 MHz sound wave
directed towards the bottom. The emitted waveform is
created by a Hewlett Packard arbitrary function genera-
tor (HP E1445A) and amplified by a Kalmus Engineer-
ing Model 150C 47 dB radio frequency power amp. The
sound is scattered by the rising bubble and measured
by an array of eight piezo ultrasound transducers (cus-
tom by Vermon), also located at the top of the vessel.
Each signal measured by the eight receiving transducers
is then mixed into a different frequency band, amplified,
and summed using an in-house custom made circuit. Af-
ter this stage, 130 dB of dynamical range is preserved.
The eight channels are mixed down to one channel so
that only one analog to digital converter is needed to
digitize the data. The digitization is accomplished with
a Hewlett Packard 10 MHz, 23 bit A/D converter (HP
E1430A). All of the HP devices are VXI modules in a
Hewlett Packard mainframe (HP E1421A) which inter-

faces with a personal computer using a fire-wire module
(HP E8491A).

Once digitized, Matlab routines are used to extract
the original eight channels of ultrasound data. The signal
from each channel is dominated by the emitted frequency
(2.8 MHz) and a lower amplitude Doppler shifted fre-
quency of the sound scattered from the bubble. Each sig-
nal is shifted in frequency so that the emitted frequency
becomes DC and hence the Doppler shifted frequency is
directly proportional to the bubble velocity. In order to
obtain velocity as a function of time the frequency is ex-
tracted using a numerical approximated maximum like-
lihood scheme coupled with a generalized Kalman filter
[19].

The ultrasound method measures the component of the
bubble’s velocity along the line between the bubble and
the ultrasound receiver. In order to obtain the true ver-
tical component, some correction of the data is required
as the bubble comes closer to the ultrasound transducer.
An iterative corrective algorithm is employed beginning
with the average vertical velocity and the position data
from the camera data as a first estimate of the trajectory.
Geometrical corrections are then made on the original ve-
locity data based on this approximate trajectory. This
new corrected velocity is then used to recompute the tra-
jectory. The process is then iterated until convergence is
reached.

The absolute accuracy of our velocity measurements
was verified using a video camera. We released an object
slightly heavier than water and recorded its descent with
the ultrasound device and simultaneously with a cam-
era positioned 2.5 meters away with a side view of the
tank. The test showed that the ultrasound velocity mea-
surements are consistent within 2% of the camera data.
We measure top speeds of our bubbles typically about 36
cm/s, which is consistent with other experimental mea-
surements [2, 9, 30]. The relative accuracy of our ve-
locity measurements is more precise, typically ±1 mm/s,
or about 0.2% accuracy. Furthermore, the sampling fre-
quency is several kHz. Over a distance of 2 meters, this
level of accuracy is not possible with cameras or other op-
tical methods. Another advantage is that the ultrasound
technique is potentially useful in opaque fluids.

The vertical velocity measurements provide direct ob-
servations of the kinetic energy delivered to the fluid as
the bubble rises. The only energy source in the system
is the work done by the buoyancy force Fb. The power
delivered to the fluid is then Fb · U = ρV gUz, where
ρ = ρf − ρg is the density difference between the fluid
and the gas, V is the volume of the bubble, g is acceler-
ation due to gravity, and Uz is the vertical component of
velocity of the bubble. Note that ρg ≪ ρf , so ρ ≈ ρf . In
the remainder of this paper we will continue to neglect
the density of the gas. For typical bubbles in our study,
Uz ≈ 0.35 m/s and the buoyancy force is ρV g ≈ 50 µN.
Therefore the bubble produces about 10 µW of power in
the form of fluid kinetic energy as it rises.

A high speed video camera (Photron Fast Cam Ultima
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1024) is used to obtain the horizontal motion of the bub-
ble. The camera is positioned above the vessel close to
the ultrasound receiving array so that it records the hor-
izontal motion of the bubble. The camera is operated
at 125 frames/sec with 512 × 512 pixel resolution. The
bubble is between 10 and 100 pixels wide as it rises from
a depth of two meters. Lighting is provided by two in-
candescent lamps (125 and 100 Watts) positioned above
the vessel and one (100 Watts) beneath the translucent
floor. Note that most of the time series displayed later
in this paper contain 125 samples/sec since they are at
least partially derived from the camera data. This gives
an effective time resolution of 8 ms. Time series with
higher sampling rates (see section IV) are derived only
from the ultrasound data, which yields a time resolution
of less than 1 ms. The period of motion for typical path
oscillations is around 200 ms.

The bubble position is extracted from movies using
another Matlab routine. The routine subtracts frame i
from frame i+1, then averages over a 5 × 5 pixel moving
window and locates the maximum of the resulting image.
This process is repeated, reversing the subtraction (frame
i minus frame i + 1). The position of the maxima of the
two subtraction/averageing processes are then averaged
and taken as the bubble position. This method is found
to reliably locate the bubble center even when the camera
focus and light reflected from the bubble changes during
its ascent. The accuracy of the position measurements
is about 3% or ± 0.1 mm. The horizontal position data
is differentiated to obtain the horizontal velocity with
about 6% or ±6 mm/s precision.

Trajectories were recorded for over 20 bubbles. From
the vertical speed and horizontal position data we may re-
construct the entire three dimensional trajectory for each
bubble as demonstrated in Fig. 3. The bubble in Fig. 3 is
1.12 mm in radius at atmospheric pressure. This example
clearly demonstrates the three different types of behavior
exhibited by the bubbles in the size range of our investi-
gation. Just after the bubble is generated it accelerates
quickly to its terminal speed. It rises for a short time in
a nearly straight path. For a large enough bubble, the
rectilinear rise soon becomes unstable to a zigzag mo-
tion. These oscillations are confined to a vertical plane
(y-z plane in Fig. 3). The path then evolves into a spi-
ral. A smooth transition occurs from zigzag to elliptical
spiral, and finally to a circular spiral. This transition is
shown in Fig. 4, where the trajectory is projected onto a
horizontal plane.

III. FORCES ON BUBBLES

The equations of motion for a rigid body moving
through a fluid at rest were established in the context of
potential flow theory more than a century ago by Kirch-
hoff (for an English translation see [13]). Like in other
analytical approaches to understanding bubble dynam-
ics, potential flow theory describes the gross features, but

regions of the flow with vorticity must be accounted for
to make precise predictions. Kirchhoff’s equations have
been generalized to the case of viscous, rotational flow
[12] and, more recently, used in numerical work [22, 23]
to investigate the behavior of freely rising bubbles with
a fixed shape. The numerical work revealed the same
zigzagging and spiraling paths as we and others have ob-
served experimentally as well as quantitative agreement
with path oscillation amplitudes and frequencies. These
results strongly suggest that shape changes to the bub-
ble do not play a critical role in the dynamics. Based
on this result and experimental observations of steady
bubble shapes for the bubble sizes we study [7, 10], we
assume that bubble shape is fixed and therefor we may
use the generalized Kirchhoff equations. The equations
govern the six degrees of freedom necessary to completely
specify the angular velocity Ω and the linear velocity U

of the body. Using the notation of [22, 23], we have

D
dΩ

dt
= Γ − Ω × DΩ− U × AU, (2)

A
dU

dt
= F− Ω × AU. (3)

Here the velocity and angular velocity of the body is eval-
uated in an inertial reference frame (like our experimen-
tal measurements) and then projected onto a coordinate
system which has a fixed origin and rotates with the bub-
ble, such that the added mass tensor A and the added
rotational inertia tensor D are always diagonal. F and Γ

are respectively the net forces and torques on the bubble
due to non-zero viscosity, the presence of vorticity in the
flow, as well as buoyancy.

The rotating coordinate system mentioned above is
precisely defined as follows. The 1-direction is always
parallel to the velocity vector of the bubble. The 2-
direction is at a right angle to the 1-direction and de-
fined such that the 1-2 plane contains both the velocity
and the buoyancy force vector. Finally the 3-direction is
orthogonal to the 1 and 2-directions and, hence, is always
purely horizontal. This coordinate system is illustrated
in Fig. 5.

For a straight rising bubble, obviously Ω = 0. For
zigzagging and spiraling bubbles, it is has been observed
in experiments and numerics that the short axis of the
ellipsoidal bubble is always aligned with the bubble ve-
locity vector [8, 10, 23]. With this knowledge, Ω is deter-
mined by the pitch angle θ and frequency f of oscillatory
motions of the bubble trajectory. From geometrical con-
siderations one may determine,

Ω =

{

θ̇ 3̂, for zigzag
2πf(cos θ 1̂ + sin θ 2̂), for spiral.

(4)

Combining equations 2, 3, and 4 one obtains for the
zigzag,

ρV CI3θ̈ = Γd3 + Γw3, (5)
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FIG. 4: Projection of a bubble trajectory onto a horizontal
plane during the transition from zigzag to spiral. The bubble
radius is 1.12 mm at 1 atm. The time step between plotted
points is 8 ms.

ρV CM1a1 = Fb1 + Fd, (6)

ρV (CM2a2 + CM1θ̇U) = Fb2 + FL2 (7)

(8)

and for the spiral,

0 = Γd1 + Γw1, (9)

0 = Γd2 + Γw2, (10)

0 = Fb1 + Fd, (11)

0 = Fb2 + FL2 (12)

ρV (CM3a3 + CM12πf sin θ)U = FL3. (13)

Here ai are the components of acceleration and CMi are
the added mass coefficients, which depend only on the
aspect ratio of the bubble [13]. We have introduced the
contributions to the net force F = Fb +Fd +FL, includ-
ing buoyancy, drag, and lift respectively. The buoyancy
is simply Fb = ρV g. The buoyancy generally has compo-
nents in the 1 and 2 directions in proportions determined
by the pitch angle. The drag always acts opposite the ve-
locity in direction and is given by Fd = 0.5CDπR2ρU2,
where CD is the drag coefficient. Finally, the lift force
FL is perpendicular to the bubble path and causes the
path curvature and balances part of the buoyancy force.
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Time series of the two components of lift during the tra-
jectory shown in Fig. 3 are shown in Fig. 6. We remind
the reader that for the calculation of all of these forces
we account for the increasing volume and aspect ratio χ
caused by the hydrostatic pressure gradient. The torques
Γ = Γd + Γw are less well understood. Γd is the drag
torque due to rotation and Γw is the wake induce torque
which drives rotation. To our knowledge, no analytical
predictions exist for Γd or Γw.

For the rectilinear portion of bubble trajectories,
Moore’s theory [18] for the drag coefficient CD(χ)
matches experimental measurements. Note, however,
that Moore’s prediction of χ(R) does not agree with ex-
periments and therefor one must obtain the aspect ratio
from measurements. Moore’s result is

CD =
48

Re
G(χ) +

48

Re3/2
G(χ)H(χ). (14)

The first term on the right, 48G(χ)/Re results from com-
puting the dissipation in the flow field predicted by po-
tential flow theory for an ellipsoid with a free-slip bound-
ary. The second term on the right refines the calculation
accounting for the rotational flow in thin boundary lay-
ers and a long thin wake. For zigzagging and spiraling
bubbles, the wake becomes unstable and Moore’s CD is
no longer expected to be accurate for several reasons.
First, the rotational regions in the wake change drasti-
cally when the wake goes unstable and loses axisymme-
try. Second, the first term on the right in equation 14 is
based on the irrotational flow around a translating body
and a different result is expected for a body with some
rotation and unsteady speed. For the spiral this differ-
ence may be small since the speed is steady and the time
scale of rotation (path oscillation period) is about 100
times the time scale for translation, D/U ≈ 3 ms.

IV. RECTILINEAR RISE AND ONSET OF

PATH INSTABILITY

Let us discuss several observations of the initial mo-
ments of the bubble’s ascent up to the point where the
trajectory becomes unstable. First, we observe an expo-
nential approach to terminal speed. Second, our mea-
surements of terminal speed agree with Moore’s theory
[18]. Third, as bubble size is increased the bifurcation to
path instability is rather abrupt and possibly subcritical.

As shown in Fig. 7 the bubble accelerates to a terminal
velocity Uo within the first 200 ms of the rise. The inset
in Fig. 7 shows the velocity U subtracted from the termi-
nal velocity Uo and plotted on a logarithmic scale. After
about 20 ms, the rise is well approximated by an expo-
nential approach to the terminal velocity. The dashed
line in the inset of Fig. 7 is the equation,

U = Uo(1 − e−t/τ ), (15)

where the time constant τ = 25 ms. We interpret τ as
the approximate time required for the flow around the
bubble to respond to a sudden change in the bubble’s
speed.

Once the bubble has attained terminal velocity it typi-
cally rises for a short period in a straight trajectory before
beginning to zigzag. During this constant speed, recti-
linear portion of the ascent our velocity measurements
are in agreement with Moore’s theory [18]. In Fig. 8, we
compare our measurements of the drag coefficient CD as
a function of bubble Reynolds number to Moore’s pre-
diction (equation 14). Our measurement of CD, depends
only on the bubble size and velocity. Moore’s prediction
depends on the bubble size, velocity, and aspect ratio.

We observe that the height above the release point at
which a bubble’s path becomes unstable varies signifi-
cantly with bubble size. Small bubbles can rise straight
for nearly 2 meters before becoming unstable, while
larger bubbles may become unstable even before reaching
terminal velocity. For those bubbles whose path becomes
unstable some time after reaching terminal velocity, we
determine the critical radius at the onset of oscillations
is 0.97 mm. Using the approximation in eqn. 1, this
corresponds to a critical aspect ratio of 2.02. As a mea-
sure of the character of the bifurcation from straight to
oscillating path, the average horizontal component of ve-
locity between a height of 1.4 and 1.6 meters is shown
for a range of bubble sizes in Fig. 9. The transition is
rather abrupt as bubble size is increased, which suggests
the bifurcation is not supercritical (see comparison to√

R − Rcrit in Fig. 9). Mougin and Magnaudet also sug-
gest that the onset of zigzag motions may be subcritical
for increasing aspect ratio.

V. ZIGZAG INSTABILITY

It is known from previous experimental and numerical
work that the onset of the zigzag instability is simultane-
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ous with a dramatic change in the bubble’s wake. In this
section, we first review what is know about the struc-
ture of the wake behind a bubble with an unstable path.
Then we use this information in conjunction with our ex-
perimental measurements to explain the dynamics of the
zigzag trajectory.

A. Wake structure

The wake structure of millimeter sized bubbles has
been demonstrated clearly by several flow visualization
experiments over the last decade [5, 8, 10, 15]. de Vries
et al. were kind enough to allow us to reprint some of their
Schlieren images, which we display in Fig. 10. One ob-
serves the existence of two long, thin wake vortices with
opposite sense of rotation aligned with the bubble’s path.
For a spiraling bubble the wake vortices are continuously
generated, while they are interrupted twice per period of
path oscillation for the zigzag. Mougin and Magnaudet
[23, 24] obtained a nearly identical wake structure in nu-
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merical simulations.
The mechanism responsible for producing this wake

may be similar to that which creates lift and trailing
vortices on an airplane wing. This analogy was also sug-
gested by Lunde and Perkins [15]. A wing experiences
lift because the flow over its top surface is faster than
the flow under its bottom surface, resulting in a lower
pressure above than below (e.g. [3]). Consistently, this
lift force is the time rate of increase in downward mo-
mentum imparted to the air as the wing passes. This
downward momentum manifests largely in the form of
wing-tip vortices, which result from the flow from high
(below the wing) to low (above the wing) pressure near
the ends of the wing as illustrated in Fig. 11a. A com-
bination of the downward pumping between the vortices
and an overall downward drift of the vortex system be-
hind the wing gives rise to downward momentum trans-
port in the fluid. By analogy, we suggest that similar
velocity and pressure fields give rise to the two trailing
vortices in the wake of a bubble. Streamline images from
Mougin and Magnaudet’s numerical simulations indicate
this is a reasonable suggestion [24]. When the bubble’s
path is curving a lift force is acting towards the center
of curvature, i.e. the flow around the bubble’s surface is
slower on the side outside the curve of the path creating a
high pressure region there. The pressure difference then
produces flow around the sides of the bubble resulting in
a vortex pair in the wake, as illustrated in Fig. 11b. The
critical role of the wake vortices in generating lift and,
hence, path instability has also been suggested in many
of the above mentioned studies [5, 8, 15, 23].

B. Zigzag dynamics and force measurements

Once the wake instability occurs and the path begins
to curve, what causes the repeating change in direction
as we observe in the zigzag? The answer to this question
lies in the change in the balance of forces on the bubble
as the path becomes inclined with respect to vertical. As
the angle between the path and vertical grows, the com-
ponent of buoyancy (Fb1 as defined above) available to
drive the bubble forward decreases and consequently the
bubble slows down. At a lower speed the bubble can no
longer maintain the wake production, so path curvature
decreases and the wake dissipates. In a sense the wake
cuts off its own power source, the buoyancy. The lift
force, which holds the bubble’s path at an angle against
the influence of buoyancy, is caused by the wake. There-
fore, as the wake dissipates the bubble’s trajectory once
again gradually returns to vertical. The bubble is able to
pick up speed again, soon reaching the speed where the
wake growth begins again. Consequently, the path be-
gins to curve away from vertical, and the cyclic process
starts again. de Vries et al. [8] have presented a similar
explanation, but were mistaken about the time dynamics
of lift forces.

This description of the zigzag is supported by our mea-

surements of the forces on the bubble as it rises. Fig. 12a
shows the evolution of the component of buoyancy tan-
gential to the trajectory Fb1, the velocity, the horizontal
position (x and y) of the bubble, and the two components
of wake induced lift FL2 and FL3. The lift force FL2 may
be regarded as an indicator for the existence of the wake.
The fact that FL3 is zero indicates that the zigzag mo-
tion is restricted to the 1-2 plane. One can see in Fig. 12
that as the lift grows the path veers away from verti-
cal resulting in a decrease in Fb1 and, hence, a decrease
in the velocity. When the velocity is low enough, wake
production and, hence, lift decrease. The path then re-
turns to vertical and the bubble regains speed once again
increasing wake production.

During the zigzag process the sense of rotation of the
wake vortices reverses every time the wake dies and then
is reborn [5, 8, 15, 23]. This reversal ensures that the
lift and hence curvature of the bubble path reverses ev-
ery half cycle of path oscillation. If the reversal did not
occur a staircase-like motion would result rather than a
zigzag. What causes the reversal of the wake? Once the
bubble is moving at the critical speed for path instabil-
ity, a symmetry breaking occurs and the wake becomes
unstable to the streamwise vortex pair. After the bubble
has slowed and the wake is dissipating, the path curves
upwards again under the influence of buoyancy. This will
initially cause slightly faster flow around the side of the
bubble furthest from the center of the path curvature.
This flow may provide the symmetry breaking pertur-
bation needed to trigger the wake instability in a way
that results in a lift force which enhances the curvature
already started by buoyancy. In a similar way, wake pro-
duction is triggered on the fast flow side of a solid sphere
placed in a shear flow [28].

VI. SPIRAL MOTION

Let us shift our attention now to the dynamics of spi-
raling bubble motion. First, we present observations and
force measurements. Then we give a hypothesis for the
mechanism responsible for spiraling motion as well as the
transition from zigzag.

A. Observations and forces

The transition to spiral motion is remarkable in several
ways. First, we observe that every zigzagging path even-
tually becomes a spiral. The spiral may be clockwise or
or counterclockwise. The transition to spiraling motion
is not abrupt, generally developing gradually over sev-
eral periods of motion as demonstrated above in Fig. 4.
Bubbles may zigzag for as many as 15 and as few as 2 cy-
cles before transitioning to the spiral. Furthermore, the
transition does not seem to behave systematically with
bubble size. The frequency of path oscillations remains
unchanged compared to the zigzag. This is apparent in
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a b c d e

FIG. 10: Schlieren images of wake structure for (a) straight rising (R = 0.79 mm), (b-c) zigzagging (R = 1.00 mm), (d-e) and
spiraling (R = 1.01 mm) bubbles reprinted with permission from the PhD thesis of de Vries [7]. The two photos in (b-c) show
the same bubble viewed from orthogonal viewpoints. The same is true of (d-e)

(a)

(b)

FIG. 11: (a) Flow around a wing which gives rise to trailing
vortices and lift. (b) Depiction of possible flow and wake
around a bubble. The dotted lines represent flow behind the
object.

the horizontal position data shown previously in Fig. 3.
The frequency increases as bubble size is increased as
shown in Fig. 13.

The most striking change when the bubble stops
zigzagging and begins to spiral is that all the forces and
the bubble speed become steady. This is consistent with
observations that the wake generation is continuous for a
spiraling bubble [5, 8, 15, 29]. Fig. 14 shows time series
of several features of a spiralling bubble. The top frame
presents the component of buoyancy Fb1 compared to
the drag Fdp predicted by assuming CD = 48G(χ)/Re as

2 2.1 2.2 2.3 2.4 2.5

50

52

49

51

F
b

1
 (

µ
N

)

0.35

0.36
s
p
e
e
d

(m
/s

)

-5

0

5

p
o
s
it
io

n

 (
m

m
)

-20

0

lif
t 
(µ

N
)

time (s)

x

y

FL3

FL2

FIG. 12: The buoyancy component tangential to the path
Fb1, bubble velocity, horizontal position (x and y), and (d)
lift force (solid line: FL2 and dashed line: FL3) as measured
during a zigzagging trajectory. The bubble radius is 1.12 mm
at 1 atm. The measurement uncertainties are ±0.5 µN for
Fb1, ±7 mm/s for speed, ± 0.2 mm for position, and ±4 µN
for lift forces.

discussed in section III. Since the speed of the bubble
is constant during the spiral, Fb1 is equal to the total
drag on the bubble. We observe that Fdp predicts the
total drag within 1%. The component of wake induced
lift FL3 is typically about twice as large as FL2. This is
apparent in Fig. 14 and is demonstrated for a range of
bubble sizes in Fig. 15.
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FIG. 13: The frequency of spiraling motion for a range of
bubble sizes. The measurement is precise to within 2%.
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and ±4 µN for lift forces.

B. Transition to spiral

In the following discussion we present a mechanism for
the spiral state as well as the transition from zigzag to
spiral. During the zigzag, the bubble motion is confined
to a vertical plane (1-2 plane as defined above) and the
two vortices in the wake of the bubble are symmetri-
cally located on either side of that plane as illustrated
in Fig. 16a. Since all the forces on the bubble are also
confined to this plane, so is the bubble’s path. Further-
more, the orientation of the 1-2 plane is constant in time.
Recall that the transition to spiral motion occurs at a
random time during the zigzag. Thus, let us examine a
random perturbation which dislocates the wake vortices
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FIG. 16: Cartoon of a pair of wake vortices whose position
is (a) symmetric about the 1-2 plane (zigzag) and (b) shifted
away from the 1-2 plane as we hypothesize for the spiral.

during the zigzag. In this situation, the wake vortices
are shifted to one side so that the symmetry about the
1-2 plane is broken. Such a displacement has been re-
ported in dye visualization studies by Lunde and Perkins
[15]. As illustrated in Fig. 16b, we may quantify such a
perturbation as a shift δ of the lift force with respect to
the bubble center and an angle φ with respect to the 1-2
plane. A nonzero φ results in nonzero FL3 and hence a
rotation of the 1-2 plane. FL3 typically reaches values
about twice those of FL2. The situation of a spiraling
bubble corresponds to a particular value of φ = φs, which
produces a rotation frequency of the 1-2 plane equal to
the frequency of path oscillation. Indeed, if the 1-2 plane
rotates by π radians during half a period of path oscil-
lation, there is no longer a need for the wake reversal of
the zigzag. The observation that this rotation of the 1-2
plane is necessary to explain why the wake of spiraling
bubbles is smooth and continuous has been pointed out
in wake visualization studies as well [5, 8]. For the bubble
shown in Fig. 3, φ reaches a constant 0.3 radians during
the spiral.

If φ < φs just after a perturbation, then the rotation
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rate of the 1-2 plane will not be large enough to generate
a spiral. Instead the motion is similar to that during the
transition from zigzag to spiral: a precessing ellipse. The
1-2 plane does not make a rotation of π radians before
the wake reversal occurs. Now, in order for φ to grow, δ
must be nonzero. In this case, the lift force does not act
through the center of mass of the bubble. This results in
a torque and hence a rotation of the wake vortices about
the symmetry axis of the bubble, i.e. dφ/dt 6= 0. We sup-
pose that a nonzero δ is required initially to cause growth
in the seed perturbation in φ eventually producing a spi-
ral. More specifically, of all possible perturbations of the
location of the wake vortices, only those with δ, φ > 0 or
δ, φ < 0 are unstable. If δ and φ are of opposite sign then
the rotation induced by δ will act to reverse the perturba-
tion in φ, i.e. it is stable. Once an unstable perturbation
occurs (as it inevitably will, given time), then the angle
φ will grow through the course of the perturbed zigzag.
When φ grows to a critical value, the wake rotation will
be sufficient to maintain a stationary balance between
buoyancy, acceleration, and lift; this is the spiral state.

Note that there is another possible mechanism that
would result in a nonzero dφ/dt. It is well known that
two vortex lines of unequal strength will rotate about
each other by mutual advection (e.g. [3]). This could
provide the same torque as the offset δ in the above dis-
cussion. Although Schlieren visualization techniques sug-
gest that the two vortices are quite similar in strength
[8, 29], Brücker, using PIV measurements, suggests that
one vortex may be stronger. Additional hydrodynamic
measurements in the wake are needed to resolve this is-
sue.

VII. CONCLUSIONS AND OPEN QUESTIONS

Several authors have previously pointed to vorticity
production and transport as the underlying causes of the
dynamics of millimeter sized rising bubbles [14, 15, 23].
From a complementary and consistent point of view, we
describe physical mechanisms underlying the same dy-
namics based primarily on the geometry and structure
of the bubble’s path and wake. These descriptions are
supported by precise experimental measurements of the
full three dimensional trajectories of air bubbles rising
through 2 meters of still water. From these measure-
ments we deduce quantitative estimates of the forces act-
ing on the bubbles.

We observe that for the rectilinear portion of bubble

trajectories the measured drag matches Moore’s predic-
tion. The bifurcation to path instability is abrupt and
perhaps subcritical. The bifurcated state always begins
as a zigzag and evolves into a spiral. Qualitative and
quantitative aspects of the path can be explained by the
dynamics of a pair of streamwise vortices in the wake.
The wake is responsible for lift forces on the bubble 10-
40 µN in magnitude (buoyancy is typically 50-60 µN).

Several features of bubble path instability deserve fur-
ther investigation. First, understanding of the onset to
unstable path and wake would benefit from visualization,
either numerical or experimental, of the flow very close
to the rear of the bubble. Is the double-threaded vortex
wake born out of an attached recirculating eddy? Second,
such visualization data would also be useful in unravel-
ling the causes of the transition from zigzag to spiral. Is
one wake vortex stronger or, as we suggest, are the wake
vortices simply unstable to rotation? Finally, we believe
the frequency of path oscillation could be predicted us-
ing the torque balance in equations 5 and 9. In the same
way that the balance between buoyancy and drag sets the
terminal velocity of a straight rising bubble, the balance
between the wake induced torque Γw and the drag Γd

associated with rotation about the bubble’s semimajor
axis will determine the rotation rate of the bubble. This
rotation rate is tied directly to the frequency of the path
oscillations as was shown in section III. With expressions
for Γw and Γd once could predict the path oscillation fre-
quency. If the wake induced torque is unchanged in mag-
nitude for zigzagging and spiraling bubbles, this would
explain why the frequency of path oscillation is constant
through the transition from zigzag to spiral.
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