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Abstract

In this work, we give a description of all σ-finite measures on the space of rooted

compact R-trees which satisfy a certain regenerative property. We show that any

infinite measure which satisfies the regenerative property is the ”law” of a Lévy tree,

that is, the ”law” of a tree-valued random variable that describes the genealogy of

a population evolving according to a continuous-state branching process. On the

other hand, we prove that a probability measure with the regenerative property must

be the law of the genealogical tree associated with a continuous-time discrete-state

branching process.

1 Introduction

Galton-Watson trees are well known to be characterized among all random discrete trees
by a regenerative property. More precisely, if γ is a probability measure on Z+, the law
Πγ of the Galton-Watson tree with offspring distribution γ is uniquely determined by the
following two conditions: Under the probability measure Πγ ,

(i) the ancestor has p children with probability γ(p),

(ii) if γ(p) > 0, then conditionally on the event that the ancestor has p children, the
p subtrees which describe the genealogy of the descendants of these children, are
independent and distributed according to Πγ .

The aim of this work is to study σ-finite measures satisfying an analogue of this property
on the space of equivalence classes of rooted compact R-trees.

An R-tree is a metric space (T , d) such that for any two points σ1 and σ2 in T , there is
a unique arc with endpoints σ1 and σ2, and furthermore this arc is isometric to a compact
interval of the real line. In this work, all R-trees are supposed to be compact. A rooted R-
tree is an R-tree with a distinguished vertex called the root. Say that two rooted R-trees
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are equivalent if there is a root-preserving isometry that maps one onto the other. It was
noted in [8] that the set T of all equivalence classes of rooted compact R-trees equipped
with the pointed Gromov-Hausdorff distance dGH (see e.g. Chapter 7 in [4]), is a Polish
space. Hence it is legitimate to consider random variables with values in T, that is,
random R-trees. A particularly important example is the CRT, which was introduced by
Aldous [1], [2] with a different formalism. Striking applications of the concept of random
R-trees can be found in the recent papers [8] and [9].

Let T be an R-tree. We write H(T ) for the height of the R-tree T , that is the maximal
distance from the root to a vertex of T . For every t ≥ 0, we denote by T≤t the set of
all vertices of T which are at distance at most t from the root, and by T>t the set of all
vertices which are at distance greater than t from the root. To each connected component
of T>t there corresponds a ”subtree” of T above level t (see section 2.2.3 for a more precise
definition). For every h > 0, we define Z(t, t+h)(T ) as the number of subtrees of T above
level t with height greater than h.

Let Θ be a σ-finite measure on T, such that 0 < Θ(H(T ) > t) <∞ for every t > 0 and
Θ(H(T ) = 0) = 0. We say that Θ satisfies the regenerative property (R) if the following
holds:

(R) For every t, h > 0 and p ∈ N, under the probability measure Θ(· | H(T ) > t) and
conditionally on the event {Z(t, t+ h) = p}, the p subtrees of T above level t with
height greater than h are independent and distributed according to the probability
measure Θ(· | H(T ) > h).

This is a natural analogue of the regenerative property stated above for Galton-Watson
trees. Beware that, unlike the discrete case, there is no natural order on the subtrees
above a given level. So, the preceding property should be understood in the sense that
the unordered collection of the p subtrees in consideration is distributed as the unordered
collection of p independent copies of Θ(· | H(T ) > h).

Property (R) is known to be satisfied by a wide class of infinite measures on T, namely
the ”laws” of Lévy trees. Lévy trees have been introduced by T. Duquesne and J.F. Le
Gall in [7]. Their precise definition is recalled in section 2.3, but let us immediately give
an informal presentation.

Let Y be a critical or subcritical continuous-state branching process. The distribution
of Y is characterized by its branching mechanism function ψ. Assume that Y becomes
extinct a.s., which is equivalent to the condition

∫∞

1
ψ(u)−1du <∞. The ψ-Lévy tree is a

random variable taking values in (T, dGH), which describes the genealogy of a population
evolving according to Y and starting with infinitesimally small mass. More precisely, the
”law” of the Lévy tree is defined in [7] as a σ-finite measure on the space (T, dGH), such
that 0 < Θψ(H(T ) > t) <∞ for every t > 0. As a consequence of Theorem 4.2 of [7], the
measure Θψ satisfies Property (R). In the special case ψ(u) = uα, 1 < α ≤ 2 corresponding
to the so-called stable trees, this was used by Miermont [12], [13] to introduce and to study
certain fragmentation processes.

2



In the present work we describe all σ-finite measures on T that satisfy Property (R).
We show that the only infinite measures satisfying Property (R) are the measures Θψ

associated with Lévy trees. On the other hand, if Θ is a finite measure satisfying Property
(R), we can obviously restrict our attention to the case Θ(T) = 1 and we obtain that Θ
must be the law of the genealogical tree associated with a continuous-time discrete-state
branching process.

Theorem 1.1 Let Θ be an infinite measure on (T, dGH) such that Θ(H(T ) = 0) = 0 and
0 < Θ(H(T ) > t) < +∞ for every t > 0. Assume that Θ satisfies Property (R). Then,
there exists a continuous-state branching process, whose branching mechanism is denoted
by ψ, which becomes extinct almost surely, such that Θ = Θψ.

Theorem 1.2 Let Θ be a probability measure on (T, dGH) such that Θ(H(T ) = 0) = 0
and 0 < Θ(H(T ) > t) for every t > 0. Assume that Θ satisfies Property (R). Then there
exists a > 0 and a critical or subcritical probability measure γ on Z+\{1} such that Θ
is the law of the genealogical tree for a discrete-space continuous-time branching process
with offspring distribution γ, where branchings occur at rate a.

In other words, Θ in Theorem 1.2 can be described in the following way: There exists a
real random variable J such that under Θ:

(i) J is distributed according to the exponential distribution with parameter a and there
exists σJ ∈ T such that T≤J = [[ρ, σJ ]],

(ii) the number of subtrees above level J is distributed according to γ and is independent
of J ,

(iii) for every p ≥ 2, conditionally on J and given the event that the number of sub-
trees above level J is equal to p, these p subtrees are independent and distributed
according to Θ.

Theorem 1.1 is proved in section 3, after some preliminary results have been established
in section 2. A key idea of the proof is to use the regenerative property to embed discrete
Galton-Watson trees in our random real trees (Lemma 3.3). A technical difficulty comes
from the fact that real trees are not ordered whereas Galton-Watson trees are usually
defined as random ordered discrete trees (cf subsection 2.2.4 below). To overcome this
difficulty, we assign a random ordering to the discrete trees embedded in real trees. An-
other major ingredient of the proof of Theorem 1.1 is the construction of a ”local time”
Lt at every level t of a random real tree governed by Θ. The local time process is then
shown to be a continuous-state branching process with branching mechanism ψ, which
makes it possible to identify Θ with Θψ. Theorem 1.2 is proved in section 4. Several
arguments are similar to the proof of Theorem 1.1, so that we have skipped some details.

3



2 Preliminaries

In this section, we recall some basic facts about branching processes, R-trees and Lévy
trees.

2.1 Branching processes

2.1.1 Continuous-state branching processes

A (continuous-time) continuous-state branching process (in short a CSBP) is a Markov
process Y = (Yt, t ≥ 0) with values in the positive half-line [0,+∞), with a Feller semi-
group (Qt, t ≥ 0) satisfying the following branching property: For every t ≥ 0 and
x, x′ ≥ 0,

Qt(x, ·) ∗Qt(x
′, ·) = Qt(x+ x′, ·).

Informally, this means that the union of two independent populations started respectively
at x and x′ will evolve like a single population started at x+ x′.

We will consider only the critical or subcritical case, meaning that, for every t ≥ 0 and
x ≥ 0, ∫

[0,+∞)

yQt(x, dy) ≤ 1.

Then, if we exclude the trivial case where Qt(x, ·) = δ0 for every t > 0 and x ≥ 0, the
Laplace functional of the semigroup can be written in the following form: For every λ ≥ 0,

∫

[0,+∞)

e−λyQt(x, dy) = exp(−xu(t, λ)),

where the function (u(t, λ), t ≥ 0, λ ≥ 0) is determined by the differential equation

du(t, λ)

dt
= −ψ(u(t, λ)), u(0, λ) = λ,

and ψ : R+ −→ R+ is of the form

ψ(u) = αu+ βu2 +

∫

(0,+∞)

(e−ur − 1 + ur)π(dr), (1)

where α, β ≥ 0 and π is a σ-finite measure on (0,+∞) such that
∫

(0,+∞)
(r∧r2)π(dr) <∞.

The process Y is called the ψ-continuous-state branching process (in short the ψ-CSBP).

Continuous-state branching processes may also be obtained as weak limits of rescaled
Galton-Watson processes. We recall that an offspring distribution is a probability measure
on Z+. An offspring distribution µ is said to be critical if

∑
i≥0 iµ(i) = 1 and subcritical

if
∑

i≥0 iµ(i) < 1. Let us state a result that can be derived from [10] and [11].

4



Theorem 2.1 Let (µn)n≥1 be a sequence of offspring distributions. For every n ≥ 1,
denote by Xn a Galton-Watson process with offspring distribution µn, started at Xn

0 = n.
Let (mn)n≥1 be a nondecreasing sequence of positive integers converging to infinity. We
define a sequence of processes (Y n)n≥1 by setting, for every t ≥ 0 and n ≥ 1,

Y n
t = n−1Xn

[mnt].

Assume that, for every t ≥ 0, the sequence (Y n
t )n≥1 converges in distribution to Yt where

Y = (Yt, t ≥ 0) is an almost surely finite process such that P(Yδ > 0) > 0 for some δ > 0.
Then, Y is a continuous-state branching process and the sequence of processes (Y n)n≥1

converges to Y in distribution in the Skorokhod space D(R+).

Proof : It follows from the proof of Theorem 1 of [11] that Y is a CSBP. Then, thanks
to Theorem 2 of [11], there exists a sequence of offspring distributions (νn)n≥1 and a
nondecreasing sequence of positive integers (cn)n≥1 such that we can construct for every
n ≥ 1 a Galton-Watson process Zn started at cn and with offspring distribution νn
satisfying (

c−1
n Zn

[nt], t ≥ 0
) d
−→
n→∞

(Yt, t ≥ 0),

where the symbol
d

−→ indicates convergence in distribution in D(R+).

Let (mnk
)k≥1 be a strictly increasing subsequence of (mn)n≥1. For n ≥ 1, we set

Bn = Xnk and bn = nk if n = mnk
for some k ≥ 1, and we set Bn = Zn and bn = cn if

there is no k ≥ 1 such that n = mnk
. Then, for every t ≥ 0, (b−1

n Bn
[nt])n≥1 converges in

distribution to Yt. Applying Theorem 4.1 of [10], we obtain that

(
b−1
n Bn

[nt], t ≥ 0
) d
−→
n→∞

(Yt, t ≥ 0).

In particular, we have,

(Y nk
t , t ≥ 0)

d
−→
k→∞

(Yt, t ≥ 0). (2)

As (2) holds for every strictly increasing subsequence of (mn)n≥1, we obtain the desired
result. �

2.1.2 Discrete-state branching processes

A (continuous-time) discrete-state branching process (in short DSBP) is a continuous-
time Markov chain Y = (Yt, t ≥ 0) with values in Z+ whose transition probabilities
(Pt(i, j), t ≥ 0)i≥0,j≥0 satisfy the following branching property: For every i ∈ Z+, t ≥ 0
and |s| ≤ 1,

∞∑

j=0

Pt(i, j)s
j =

(
∞∑

j=0

Pt(1, j)s
j

)i

.
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We exclude the trivial case where Pt(i, i) = 1 for every t ≥ 0 and i ∈ Z+. Then, there
exist a > 0 and an offspring distribution γ with γ(1) = 0 such that the generator of Y
can be written of the form

Q =




0 0 0 0 0 . . .
aγ(0) −a aγ(2) aγ(3) aγ(4) . . .

0 2aγ(0) −2a 2aγ(2) aγ(3) . . .
0 0 3aγ(0) −3a 3aγ(2) . . .
...

...
. . .

. . .
. . .

. . .



.

Furthermore, it is well known that Y becomes extinct almost surely if and only if γ is
critical or subcritical. We refer the reader to [3] and [14] for more details.

2.2 Deterministic trees

2.2.1 The space (T, dGH) of rooted compact R-trees

We start with a basic definition.

Definition 2.1 A metric space (T , d) is an R-tree if the following two properties hold for
every σ1, σ2 ∈ T .

(i) There is a unique isometric map fσ1,σ2 from [0, d(σ1, σ2)] into T such that

fσ1,σ2(0) = σ1 and fσ1,σ2(d(σ1, σ2)) = σ2.

(ii) If q is a continuous injective map from [0, 1] into T such that q(0) = σ1 and q(1) = σ2,
we have

q([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]).

A rooted R-tree is an R-tree with a distinguished vertex ρ = ρ(T ) called the root.

In what follows, R-trees will always be rooted.

Let (T , d) be an R-tree with root ρ, and σ, σ1, σ2 ∈ T . We write [[σ1, σ2]] for the range
of the map fσ1,σ2 . In particular, [[ρ, σ]] is the path going from the root to σ and can be
interpreted as the ancestral line of σ.

The height H(T ) of the R-tree T is defined by H(T ) = sup{d(ρ, σ) : σ ∈ T }. In
particular, if T is compact, its height H(T ) is finite.

Two rooted R-trees T and T ′ are called equivalent if there is a root-preserving isom-
etry that maps T onto T ′. We denote by T the set of all equivalence classes of rooted
compact R-trees. We often abuse notation and identify a rooted compact R-tree with its
equivalence class.
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The set T can be equipped with the pointed Gromov-Hausdorff distance, which is
defined as follows. If (E, δ) is a metric space, we use the notation δHaus for the usual
Hausdorff metric between compact subsets of E. Then, if T and T ′ are two rooted
compact R-trees with respective roots ρ and ρ′, we define the distance dGH(T , T ′) as

dGH(T , T ′) = inf
{
δHaus (φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′))

}
,

where the infimum is over all isometric embeddings φ : T −→ E and φ′ : T ′ −→ E into
a common metric space (E, δ). We see that dGH(T , T ′) only depends on the equivalence
classes of T and T ′. Furthermore, according to Theorem 2 in [8], dGH defines a metric
on T that makes it complete and separable. Notice that dGH(T , T ′) makes sense more
generally if T and T ′ are pointed compact metric spaces (see e.g. Chapter 7 in [4]). We
will use this in the proof of Lemma 2.2 below.

We equip T with its Borel σ-field. If T ∈ T, we set T≤t = {σ ∈ T : d(ρ, σ) ≤ t} for
every t ≥ 0. Plainly, T≤t is a real tree whose root is the same as the root of T . Note that
the mapping T 7−→ T≤t from T into T is Lipschitz for the Gromov-Hausdorff metric.

2.2.2 The R-tree coded by a function

We now recall a construction of rooted compact R-trees which is described in [7]. Let g :
[0,+∞) −→ [0,+∞) be a continuous function with compact support satisfying g(0) = 0.
We exclude the trivial case where g is identically zero. For every s, t ≥ 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r)

and
dg(s, t) = g(s) + g(t) − 2mg(s, t).

We define an equivalence relation ∼ on [0,+∞) by declaring that s ∼ t if and only if
dg(s, t) = 0 (or equivalently if and only if g(s) = g(t) = mg(s, t)). Let Tg be the quotient
space

Tg = [0,+∞)/ ∼ .

Then, dg induces a metric on Tg and we keep the notation dg for this metric. According
to Theorem 2.1 of [7], the metric space (Tg, dg) is a compact R-tree. By convention, its
root is the equivalence class of 0 for ∼ and is denoted by ρg.

2.2.3 Subtrees of a tree above a fixed level

Let (T , d) ∈ T and t > 0. Denote by T i,◦, i ∈ I the connected components of the open
set T>t = {σ ∈ T : d(ρ(T ), σ) > t}. Let i ∈ I. Then the ancestor of σ at level t, that is,
the unique vertex on the line segment [[ρ, σ]] at distance t from ρ, must be the same for
all σ ∈ T i,◦ . We denote by σi this common ancestor and set T i = T i,◦ ∪ {σi}. Then T i
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is a compact rooted R-tree with root σi. The trees T i, i ∈ I are called the subtrees of T
above level t. We now consider, for every h > 0,

Z(t, t+ h)(T ) = #{i ∈ I : H(T i) > h}.

By a compactness argument, we can easily verify that Z(t, t+ h)(T ) <∞.

2.2.4 Discrete trees and real trees

We start with some formalism for discrete trees. We first introduce the set of labels

U =
⋃

n≥0

N
n,

where by convention N0 = {∅}. An element of U is a sequence u = u1 . . . un, and we set
|u| = n so that |u| represents the generation of u. In particular, |∅| = 0. If u = u1 . . . un

and v = v1 . . . vm belong to U , we write uv = u1 . . . unv1 . . . vm for the concatenation of
u and v. In particular, ∅u = u∅ = u. The mapping π : U\{∅} −→ U is defined by
π(u1 . . . un) = u1 . . . un−1 (π(u) is the father of u). Note that πk(u) = ∅ if k = |u|.

A rooted ordered tree θ is a finite subset of U such that

(i) ∅ ∈ θ,

(ii) u ∈ θ\{∅} =⇒ π(u) ∈ θ,

(iii) for every u ∈ θ, there exists a number ku(θ) ≥ 0 such that uj ∈ θ if and only if
1 ≤ j ≤ ku(θ).

We denote by A the set of all rooted ordered trees. If θ ∈ A, we write H(θ) for the
height of θ, that is H(θ) = max{|u| : u ∈ θ}. And for every u ∈ θ, we define τuθ ∈ A by
τuθ = {v ∈ U : uv ∈ θ}. This is the tree θ shifted at u.

Let us define an equivalence relation on A by setting θ ∼ θ′ if and only if we can find
a permutation ϕu of the set {1, . . . , ku(θ)} for every u ∈ θ such that ku(θ) ≥ 1, in such a
way that

θ′ = {∅} ∪
{
ϕ∅(u

1)ϕu1(u2) . . . ϕu1...un−1(un) : u1 . . . un ∈ θ, n ≥ 1
}
.

In other words θ ∼ θ′ if they correspond to the same unordered tree. Let A = A/ ∼
be the associated quotient space and let p : A −→ A be the canonical projection. It
is immediate that if θ ∼ θ′, then k∅(θ) = k∅(θ

′). So, for every ξ ∈ A, we may define
k∅(ξ) = k∅(θ) where θ is any representative of ξ. Let us fix ξ ∈ A such that k∅(ξ) = k > 0
and choose a representative θ of ξ. We can define {ξ1, . . . , ξk} = {p(τ1θ), . . . , p(τkθ)} as
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the unordered family of subtrees of ξ above the first generation. Then, if F : Ak −→ R+

is any symmetric measurable function, we have

(
#p

−1(ξ)
)−1

∑

θ∈p−1(ξ)

F (τ1θ, . . . , τkθ)

=
(
#p

−1(ξ1)
)−1

. . .
(
#p

−1(ξk)
)−1

∑

θ1∈p−1(ξ1)

. . .
∑

θk∈p−1(ξk)

F (θ1, . . . , θk). (3)

Note that the right-hand side of (3) is well defined since it is symmetric in {ξ1, . . . , ξk}.
The identity (3) is a simple combinatorial fact, whose proof is left to the reader.

A marked tree is a pair T = (θ, {hu}u∈θ) where θ ∈ A and hu ≥ 0 for every u ∈ θ.
We denote by M the set of all marked trees. We can associate with every marked tree
T = (θ, {hu}u∈θ) ∈ M, an R-tree T T in the following way. Let R

θ be the vector space of
all mappings from θ into R. Write (eu, u ∈ θ) for the canonical basis of Rθ. We define

l∅ = 0 and lu =
∑|u|

k=1 hπk(u)eπk(u) for u ∈ θ. Let us set

T T =
⋃

u∈θ

[lu, lu + hueu].

T T is a connected union of line segments in Rθ. It is equipped with the distance dT such
that dT (a, b) is the length of the shortest path in T T between a and b, and can be rooted
in ρ(T T ) = 0 so that it becomes a rooted compact R-tree.

If θ ∈ A, we write T θ for the R-tree T T where T = (θ, {hu}u∈θ) with h∅ = 0 and hu = 1
for every u ∈ θ \ {∅}, and we write dθ for the associated distance. We then set m∅ = 0

and mu =
∑|u|−1

k=0 eπk(u) = lu + eu for every u ∈ θ \ {∅}.

It is easily checked that T θ = T θ′ if θ ∼ θ′. Thus for every ξ ∈ A, we may write T ξ for
the tree T θ where θ is any representative of ξ.

We will now explain how to approximate a general tree T in T by a discrete type tree.
Let ε > 0 and set T(ε) = {T ∈ T : H(T ) > ε}. For every T in T(ε), we can construct by
induction an element ξε(T ) of A in the following way:

• If T ∈ T(ε) satisfies H(T ) ≤ 2ε, we set ξε(T ) = p({∅}).

• Let n be a positive integer. Assume that we have defined ξε(T ) for every T ∈ T(ε)

such that H(T ) ≤ (n + 1)ε. Let T be an R-tree such that (n + 1)ε < H(T ) ≤
(n + 2)ε. We set k = Z(ε, 2ε)(T ) and we denote by T 1, . . . , T k the k subtrees of
T above level ε with height greater than ε. Then ε < H(T i) ≤ (n + 1)ε for every
i ∈ {1, . . . , k}, so we can define ξε(T i). Let us choose a representative θi of ξε(T i)
for every i ∈ {1, . . . , k}. We set

ξε(T ) = p
(
{∅} ∪ 1θ1 ∪ . . . ∪ kθk

)
,

where iθi = {iu : u ∈ θi}. Clearly this does not depend on the choice of the
representatives θi.
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If r > 0 and T is a compact rooted R-tree with metric d, we write rT for the same
tree equipped with the metric rd.

Lemma 2.2 For every ε > 0 and every T ∈ T(ε), we have

dGH(εT ξε(T ), T ) ≤ 4ε. (4)

Proof : Let ε > 0 and T ∈ T. Let θ be any representative of ξε(T ). Recall the notation
(mu, u ∈ θ). We can construct a mapping φ : θ −→ T such that:

(i) For every σ ∈ T , there exists u ∈ θ such that d(σ, φ(u)) ≤ 2ε,

(ii) for every u ∈ θ, d(φ(u), ρ) = ε|u| where ρ denotes the root of T ,

(iii) for every u, u′ ∈ θ, 0 ≤ εdθ(mu, mu′) − d(φ(u), φ(u′)) ≤ 2ε.

To be specific, we always take φ(∅) = ρ, which suffices for the construction if H(T ) ≤ 2ε.
If (n+ 1)ε < H(T ) ≤ (n + 2)ε for some n ≥ 1, we have as above

θ = {∅} ∪ 1θ1 ∪ . . . ∪ kθk,

where θ1, . . . , θk are representatives of respectively ξε(T 1), . . . , ξε(T k), if T 1, . . . , T k are
the subtrees of T above level ε with height greater than ε. With an obvious notation we
define φ(ju) = φj(u) for every j ∈ {1, . . . , k} and u ∈ θj . Properties (i)-(iii) are then
easily checked by induction.

Let us now set Φ = {φ(u), u ∈ θ} and M = {mu, u ∈ θ}. We equip Φ with the metric
induced by d and M with the metric induced by εdθ. Then, Φ and M can be viewed
as pointed compact metric spaces with respective roots ρ and 0. It is immediate that
dGH(εT θ,M) ≤ ε. Furthermore, Property (i) above implies that dGH(T ,Φ) ≤ 2ε. At
last, according to Lemma 2.3 in [8] and Property (iii) above, we have dGH(Φ,M) ≤ ε.
Lemma 2.2 then follows from the triangle inequality for dGH . �

2.3 Lévy trees

Roughly speaking, a Lévy tree is a T-valued random variable which is associated with a
CSBP in such a way that it describes the genealogy of a population evolving according
to this CSBP.

2.3.1 The measure Θψ

We consider on a probability space (Ω,P) a ψ-CSBP Y = (Yt, t ≥ 0), where the function
ψ is of the form (1), and we suppose that Y becomes extinct almost surely. This condition
is equivalent to ∫ ∞

1

du

ψ(u)
<∞. (5)
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This implies that at least one of the following two conditions holds:

β > 0 or

∫

(0,1)

rπ(dr) = ∞. (6)

The Lévy tree associated to Y will be defined as the tree coded by the so-called height
process, which is a functional of the Lévy process with Laplace exponent ψ. Let us denote
by X = (Xt, t ≥ 0) a Lévy process on (Ω,P) with Laplace exponent ψ. This means that
X is a Lévy process with no negative jumps, and that for every λ, t ≥ 0,

E(exp(−λXt)) = exp(tψ(λ)).

Then, X does not drift to +∞ and has paths of infinite variation (by (6)).

We can define the height process H = (Ht, t ≥ 0) by the following approximation:

Ht = lim
ε→0

1

ε

∫ t

0

1{Xs≤Is
t +ε}ds,

where Ist = inf{Xr : s ≤ r ≤ t} and the convergence holds in probability (see Chapter 1
in [6]). Informally, we can say that H measures the size of the set {s ∈ [0, t] : Xs− ≤ Ist }.
Thanks to condition (5), we know that the process H has a continuous modification (see
Theorem 4.7 in [6]). From now on, we consider only this modification.

Let us now set It = inf {Xs : 0 ≤ s ≤ t} for every t ≥ 0, and consider the process
X − I = (Xt − It, t ≥ 0). We recall that X − I is a strong Markov process, for which the
point 0 is regular. The process −I is a local time for X− I at level 0. We write N for the
associated excursion measure. We let ∆(de) be the ”law” of (Hs, s ≥ 0) under N . This
makes sense because the values of the height process in an excursion of X − I away from
0 only depend on that excursion (see section 1.2 in [6]). Then, ∆(de) is a σ-finite measure
on C([0,∞)), and is supported on functions with compact support such that e(0) = 0.

The Lévy tree is the tree (Te, de) coded by the function e, in the sense of section 2.2.2,
under the measure ∆(de). We denote by Θψ the σ-finite measure on T which is the
“law”of the Lévy tree, that is the image of ∆(de) under the mapping e 7−→ Te.

2.3.2 A discrete approximation of the Lévy tree

Let us now recall that the Lévy tree is the limit in the Gromov-Hausdorff distance of
suitably rescaled Galton-Watson trees.

We start by recalling the definition of Galton-Watson trees which was given informally
in the introduction above. Let γ be a critical or subcritical offspring distribution. We
exclude the trivial case where γ(1) = 1. Then, there exists a unique probability measure
Πγ on A such that:

(i) For every p ≥ 0, Πγ(k∅ = p) = γ(p),

11



(ii) for every p ≥ 1 with γ(p) > 0, under the probability measure Πγ(· | k∅ = p), the
shifted trees τ1θ, . . . , τpθ are independent and distributed according to Πγ .

Recall that if r > 0 and T is a compact rooted R-tree with metric d, we write rT for
the same tree equipped with the metric rd. The following result is Theorem 4.1 in [7].

Theorem 2.3 Let (γn)n≥1 be a sequence of critical or subcritical offspring distributions.
For every n ≥ 1, let us denote by Xn a Galton-Watson process with offspring distribution
γn, started at Xn

0 = n. Let (mn)n≥1 be a nondecreasing sequence of positive integers
converging to infinity. We define a sequence of processes (Y n)n≥1 by setting, for every
t ≥ 0 and n ≥ 1,

Y n
t = n−1Xn

[mnt].

Assume that, for every t ≥ 0, (Y n
t )n≥1 converges in distribution to Yt where

Y = (Yt, t ≥ 0) is a ψ-CSBP which becomes extinct almost surely. Assume furthermore
that for every δ > 0,

lim inf
n→∞

P(Y n
δ = 0) > 0.

Then, for every a > 0, the law of the R-tree m−1
n T θ under Πγn(· | H(θ) ≥ [amn]) converges

as n −→ ∞ to the probability measure Θψ(· | H(T ) > a) in the sense of weak convergence
of measures in the space T.

3 Proof of Theorem 1.1

Let Θ be an infinite measure on (T, dGH) satisfying the assumptions of Theorem 1.1.
Clearly Θ is σ-finite.

We start with two important lemmas that will be used throughout this section. Let us
first define v : (0,∞) −→ (0,∞) by v(t) = Θ(H(T ) > t) for every t > 0. For every t > 0,
we denote by Θt the probability measure Θ(· | H(T ) > t).

Lemma 3.1 The function v is nonincreasing, continuous and verifies

v(t) −→
t→0

∞ and v(t) −→
t→∞

0.

Proof : We only have to prove the continuity of v. To this end, we argue by contradiction
and assume that there exists t > 0 such that Θ(H(T ) = t) > 0. Let s > 0 and u ∈ (0, t)
such that v(u) > v(t). From the regenerative property (R), we have

Θs(H(T ) = s+ t) = Θs (Θs(H(T ) = s+ t | Z(s, s+ u)))

= Θs
(
Z(s, s+ u)Θu(H(T ) = t) (Θu(H(T ) ≤ t))Z(s,s+u)−1

)

=
Θ(H(T ) = t)

v(u)
Θs

(
Z(s, s+ u)

(
1 −

v(t)

v(u)

)Z(s,s+u)−1
)

> 0.

12



We have shown that Θ(H(T ) = t + s) > 0 for every s > 0. This is absurd since Θ is
σ-finite. �

Lemma 3.2 For every t > 0 and 0 < a < b, the conditional law of the random variable
Z(t, t+b), under the probability measure Θt and given Z(t, t+a), is a binomial distribution
with parameters Z(t, t+ a) and v(b)/v(a) (where we define the binomial distribution with
parameters 0 and p ∈ [0, 1] as the Dirac measure δ0).

Proof : This is a straightforward consequence of the regenerative property. �

3.1 The CSBP derived from Θ

In this section, we consider a random forest of trees derived from a Poisson point measure
with intensity Θ. We associate with this forest a family of Galton-Watson processes. We
then construct local times at every level a > 0 as limits of the rescaled Galton-Watson
processes. Finally we show that the local time process is a CSBP.

Let us now fix the framework. We consider a probability space (Ω,P) and on this space
a Poisson point measure N =

∑
i∈I δTi

on T, whose intensity is the measure Θ.

3.1.1 A family of Galton-Watson trees

We start with some notation that we need in the first lemma. We consider on another
probability space (Ω′,P′), a collection (θξ, ξ ∈ A) of independent A-valued random vari-
ables such that for every ξ ∈ A, θξ is distributed uniformly over p−1(ξ). In what follows,
to simplify notation, we identify an element ξ of the set A with the subset p−1(ξ) of A.
Recall the definition of ξε(T ) before Lemma 2.2.

Lemma 3.3 Let us define for every ε > 0, a mapping θ(ε) from T(ε) × Ω′ into A by

θ(ε)(T , ω) = θξε(T )(ω).

Then for every positive integer p, the law of the random variable θ(ε) under the probability
measure Θpε⊗ P

′ is Πµε(· | H(θ) ≥ p− 1) where µε denotes the law of Z(ε, 2ε) under Θε.

Proof : Since {H(T ) > pε} ×Ω′ = {H(θ(ε)) ≥ p− 1} for every p ≥ 1, it suffices to show
the result for p = 1. Let k be a nonnegative integer. According to the construction of
ξε(T ), we have

Θε ⊗ P
′
(
k∅
(
θ(ε)
)

= k
)

= Θε(Z(ε, 2ε) = k) = µε(k).
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Let us fix k ≥ 1 with µε(k) > 0. Let F : Ak −→ R+ be a symmetric measurable function.
Then we have

Θε ⊗ P
′
(
F
(
τ1θ

(ε), . . . , τkθ
(ε)
) ∣∣∣ k∅

(
θ(ε)
)

= k
)

= Θε ⊗ P
′
( ∑

θ∈ξε(T )

F (τ1θ, . . . , τkθ)1{θξε(T )=θ}

∣∣∣ Z(ε, 2ε) = k
)

= Θε
(
(#ξε(T ))−1

∑

θ∈ξε(T )

F (τ1θ, . . . , τkθ)
∣∣∣ Z(ε, 2ε) = k

)
. (7)

On the event {Z(ε, 2ε) = k}, we write T 1, . . . , T k for the k subtrees of T above level ε
with height greater than ε. Then, Formula (3) and the regenerative property yield

Θε
(
(#ξε(T ))−1

∑

θ∈ξε(T )

F (τ1θ, . . . , τkθ)
∣∣∣ Z(ε, 2ε) = k

)

= Θε
(
(#ξε(T 1))−1 . . . (#ξε(T k))−1

∑

θ1∈ξε(T 1)

. . .
∑

θk∈ξε(T k)

F (θ1, . . . , θk)
∣∣∣ Z(ε, 2ε) = k

)

=

∫
Θε(dT1) . . .Θ

ε(dTk)(#ξ
ε(T1))

−1 . . . (#ξε(Tk))
−1

∑

θ1∈ξε(T1)

. . .
∑

θk∈ξε(Tk)

F (θ1, . . . , θk)

=

∫
Θε ⊗ P

′(dT1, dω
′
1) . . .Θ

ε ⊗ P
′(dTk, dω

′
k)F

(
θ(ε)(T1, ω

′
1), . . . , θ

(ε)(Tk, ω
′
k)
)
,

as in (7). We have thus proved that

Θε ⊗ P
′
(
F
(
τ1θ

(ε), . . . , τkθ
(ε)
) ∣∣∣ k∅

(
θ(ε)
)

= k
)

=

∫
Θε ⊗ P

′(dT1, dω
′
1) . . .Θ

ε ⊗ P
′(dTk, dω

′
k)F

(
θ(ε)(T1, ω

′
1), . . . , θ

(ε)(Tk, ω
′
k)
)
. (8)

Note that for every permutation ϕ of the set {1, . . . , k}, (τϕ(1)θ
(ε), . . . , τϕ(k)θ

(ε)) and
(τ1θ

(ε), . . . , τkθ
(ε)) have the same distribution under Θε⊗P

′. Then, (8) means that the law
of θ(ε) under Θε ⊗ P′ satisfies the branching property of the Galton-Watson trees. This
completes the proof of the desired result. �

Recall that
∑

i∈I δTi
is a Poisson point measure on T with intensity Θ. Let us now set,

for every t, h > 0,

Z(t, t+ h) =
∑

i∈I

Z(t, t+ h)(Ti).

For every ε > 0, we define a process X ε = (X ε
k , k ≥ 0) on (Ω,P) by the formula

X ε
k = Z(kε, (k + 1)ε), k ≥ 0.

Proposition 3.4 For every ε > 0, the process X ε is a Galton-Watson process whose
initial distribution is the Poisson distribution with parameter v(ε) and whose offspring
distribution is µε.
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Proof : We first observe that X ε
0 = N (H(T ) > ε) is Poisson with parameter

Θ(H(T ) > ε) = v(ε). Then let p be a positive integer. We know from a classical
property of Poisson measures that, under the probability measure P and conditionally on
the event {X ε

0 = p}, the atoms of N that belong to the set Tε are distributed as p i.i.d.
variables with distribution Θε. Furthermore, it follows from Lemma 3.3 that under Θε,
the process (Z(kε, (k+ 1)ε))k≥0 is a Galton-Watson process started at one with offspring
distribution µε. This completes the proof. �

As a consequence, we get the next proposition, which we will use throughout this work.

Proposition 3.5 For every t > 0 and h > 0, we have Θ(Z(t, t+ h)) ≤ v(h).

Proof : Since compact real trees have finite height, the Galton-Watson process X ε dies
out P a.s. This implies that µε is critical or subcritical so that (X ε

k , k ≥ 0) is a super-
martingale. Let t, h > 0. We can find ε > 0 and k ∈ N such that t = kε and ε ≤ h. Thus
we have,

Θ(Z(t, t+ ε)) = Θ(Z(kε, (k + 1)ε)) = E(X ε
k ) ≤ E(X ε

0 ) = v(ε). (9)

Using Lemma 3.2 and (9), we get

Θ(Z(t, t+ h)) = Θ

(
Z(t, t+ ε)

v(h)

v(ε)

)
≤ v(h).

�

3.1.2 A local time process

Proposition 3.6 For every t ≥ 0, there exists a random variable Lt on the space T such
that Θ a.e.,

Z(t, t+ h)

v(h)
−→
h→0

Lt.

Proof : Let us start with the case t = 0. As Z(0, h) = 1{H(T )>h} for every h > 0, Lemma
3.1 gives v(h)−1Z(0, h) −→ 0 Θ a.e. as h −→ 0, so we set L0 = 0.

Let us now fix t > 0. Thanks to Lemma 3.1, we can define a decreasing sequence
(εn)n≥1 by the condition v(εn) = n4 for every n ≥ 1. We claim that there exists a random
variable Lt on the space T such that, Θ a.e.,

Z(t, t+ εn)

n4
−→
n→∞

Lt. (10)

Indeed, using Lemma 3.2, we have, for every n ≥ 1,

Θt

(∣∣∣∣
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n+ 1)4

∣∣∣∣
2
)
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= Θt

(
1

n8
Θt

(∣∣∣∣Z(t, t+ εn) −
n4

(n + 1)4
Z(t, t+ εn+1)

∣∣∣∣
2 ∣∣∣ Z(t, t+ εn+1)

))

≤ Θt

(
Z(t, t+ εn+1)

4n8

)

≤
(n+ 1)4

4v(t)n8
, (11)

where the last bound follows from Proposition 3.5 and the definition of εn+1. Thanks to
the Cauchy-Schwarz inequality, we get

Θt

(∣∣∣∣
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n + 1)4

∣∣∣∣
)

≤
(n+ 1)2

2n4
√
v(t)

≤
2

n2
√
v(t)

. (12)

The bound (12) implies

Θ

(
∞∑

n=1

∣∣∣∣
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n+ 1)4

∣∣∣∣

)
<∞.

In particular, Θ a.e.,

∞∑

n=1

∣∣∣∣
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n+ 1)4

∣∣∣∣ <∞.

Our claim (10) follows.

For every h ∈ (0, ε1], we can find n ≥ 1 such that εn+1 ≤ h ≤ εn. Then, we have
Z(t, t+ εn) ≤ Z(t, t+ h) ≤ Z(t, t+ εn+1) Θ a.e., and n4 ≤ v(h) ≤ (n+ 1)4 so that

Z(t, t+ εn)

(n+ 1)4
≤
Z(t, t+ h)

v(h)
≤
Z(t, t+ εn+1)

n4
.

We then deduce from (10) that Θ a.e.,

Z(t, t+ h)

v(h)
−→
h→0

Lt

which completes the proof. �

Definition 3.1 We define a process L = (Lt, t ≥ 0) on (Ω,P) by setting L0 = 1 and for
every t > 0,

Lt =
∑

i∈I

Lt(Ti).

Notice that Lt(T ) = 0 if H(T ) ≤ t so that the above sum is finite a.s.
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Corollary 3.7 For every t ≥ 0, we have P a.s.

Z(t, t+ h)

v(h)
−→
h→0

Lt.

Moreover, this convergence holds in L1(P) uniformly in t ∈ [0,∞).

Proof : The first assertion is an immediate consequence of Proposition 3.6. Let us focus
on the second assertion. From Lemma 3.2, Θ(n−4Z(t, t+εn)−(n+1)−4Z(t, t+εn+1)) = 0
for every t ≥ 0 and n ≥ 1. Thus, from the second moment formula for Poisson measures,
we get, for every t ≥ 0 and n ≥ 1,

E

((
Z(t, t+ εn)

n4
−

Z(t, t+ εn+1)

(n+ 1)4

)2
)

= Θ

((
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n+ 1)4

)2
)
.

Now, we have

Θ

((
Z(0, εn)

n4
−
Z(0, εn+1)

(n+ 1)4

)2
)

= Θ

((1{H(T )>εn}

n4
−
1{H(T )>εn+1}

(n+ 1)4

)2
)

=
1

n4
−

1

(n + 1)4

and for every t > 0, thanks to the bound (11),

Θ

((
Z(t, t+ εn)

n4
−
Z(t, t+ εn+1)

(n+ 1)4

)2
)

≤
(n+ 1)4

4n8
.

So for every t ≥ 0 and n ≥ 1, we have from the Cauchy-Schwarz inequality

E

(∣∣∣∣
Z(t, t+ εn)

n4
−

Z(t, t+ εn+1)

(n+ 1)4

∣∣∣∣
)

≤
(n+ 1)2

n4
. (13)

Then n−4Z(t, t+ εn) −→ Lt in L
1 as n −→ ∞ and, for every n ≥ 2,

E

(∣∣∣∣
Z(t, t+ εn)

n4
− Lt

∣∣∣∣
)

≤
∞∑

k=n

(k + 1)2

k4
≤

∞∑

k=n

4

k2
≤

8

n
.

In the same way as in the proof of (13), we have the following inequality: If h ∈ (0, ε1],
t ≥ 0 and n is a positive integer such that εn+1 ≤ h ≤ εn,

E

(∣∣∣∣
Z(t, t+ εn)

n4
−

Z(t, t+ h)

v(h)

∣∣∣∣
)

≤

√
v(h)

n4
≤

16√
v(h)

.

Then, for every h ∈ (0, ε2] and t ≥ 0, we get

E

(∣∣∣∣
Z(t, t+ h)

v(h)
− Lt

∣∣∣∣
)

≤ 16
(
v(h)−1/2 + v(h)−1/4

)
,

which completes the proof. �

We will now establish a regularity property of the process (Lt, t ≥ 0).
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Proposition 3.8 The process (Lt, t ≥ 0) admits a modification, denoted by (L̃t, t ≥ 0),
which is right-continuous with left-limits, and which has no fixed discontinuities.

Proof : We start with two lemmas.

Lemma 3.9 There exists λ ≥ 0 such that E(Lt) = e−λt for every t ≥ 0.

Proof : We claim that the function t ∈ [0,+∞) 7−→ E(Lt) is multiplicative, meaning
that for every t, s ≥ 0, E(Lt+s) = E(Lt)E(Ls). As L0 = 1 by definition, E(L0) = 1. Let
t, s > 0 and 0 < h < s. Let us denote by T 1, . . . , T Z(t,t+h) the subtrees of T above level t
with height greater than h. Then, using the regenerative property, we can write

Θ(Z(t+ s, t+ s+ h)) = Θ




Z(t,t+h)∑

i=1

Z(s, s+ h)(T i)



 = Θ
(
Z(t, t+ h))Θh(Z(s, s+ h)

)
,

which implies

E(Z(t+ s, t+ s+ h)) = E(Z(t, t+ h))E

(
Z(s, s+ h)

v(h)

)
. (14)

Thus, dividing by v(h) and letting h −→ 0 in (14), we get our claim from Corollary
3.7. Moreover, thanks to Proposition 3.5 and Corollary 3.7, we know that E(Lt) ≤ 1 for
every t ≥ 0. Then, we obtain in particular that the function t ∈ [0,∞) 7−→ E(Lt) is
nonincreasing.

To complete the proof, we have to check that E(Lt) > 0 for every t > 0. If we assume
that E(Lt) = 0 for some t > 0 then Lt = 0, Θ a.e. Let s, h > 0 such that 0 < h < s. With
the same notation as in the beginning of the proof, we can write

Θ(H(T ) > t+ s) = Θ
(
∃i ∈ {1, . . . , Z(t, t+ h)} : H(T i) > s

)

= Θ

(
1 −

(
1 −

v(s)

v(h)

)Z(t,t+h)
)
. (15)

Now, thanks to Proposition 3.6, Θ a.e.,

(
1 −

v(s)

v(h)

)Z(t,t+h)

−→
h→0

exp(−Ltv(s)) = 1.

Moreover, Θ a.e.,

1 −

(
1 −

v(s)

v(h)

)Z(t,t+h)

≤ 1{H(T )>t}.

Then, using dominated convergence in (15) as h −→ 0, we obtain Θ(H(T ) > t + s) = 0
which contradicts the assumptions of Theorem 1.1. �
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Lemma 3.10 Let us denote by D = {k2−n, k ≥ 1, n ≥ 0} the set of positive dyadic
numbers and define Gt = σ(Ls, s ∈ D, s ≤ t) for every t ∈ D. Then (Lt, t ∈ D) is a
nonnegative supermartingale with respect to the filtration (Gt, t ∈ D).

Proof : Let p be a positive integer, let s1, . . . , sp, s, t ∈ D such that s1 < . . . < sp ≤ s < t
and let f : Rp −→ R+ be a bounded continuous function. We can find a positive integer
n such that 2nt, 2ns, and 2nsi for i ∈ {1, . . . , p} are nonnegative integers. The process
X 2−n

is a subcritical Galton-Watson process, so

E(X 2−n

2nt f(X 2−n

2ns1, . . . ,X
2−n

2nsp
)) ≤ E(X 2−n

2ns f(X 2−n

2ns1, . . . ,X
2−n

2nsp
)).

Therefore we have also,

E

(
Z(t, t+ 2−n)

v(2−n)
f

(
Z(s1, s1 + 2−n)

v(2−n)
, . . . ,

Z(sp, sp + 2−n)

v(2−n)

))

≤ E

(
Z(s, s+ 2−n)

v(2−n)
f

(
Z(s1, s1 + 2−n)

v(2−n)
, . . . ,

Z(sp, sp + 2−n)

v(2−n)

))
. (16)

We can then use Corollary 3.7 to obtain E(Ltf(Ls1, . . . ,Lsp)) ≤ E(Lsf(Ls1, . . . ,Lsp)). �

We now complete the proof of Proposition 3.8. Let us set, for every t ≥ 0,

G̃t =
⋂

s>t,s∈D

Gs.

From Lemma 3.10 and classical results on supermartingales, we can define a right-
continuous supermartingale (L̃t, t ≥ 0) with respect to the filtration (G̃t, t ≥ 0) by setting,
for every t ≥ 0,

L̃t = lim
s↓t,s∈D

Ls, (17)

where the limit holds P a.s. and in L1 (see e.g. Chapter VI in [5] for more details). We

claim that (L̃t, t ≥ 0) is a càdlàg modification of (Lt, t ≥ 0) with no fixed discontinuities.

We first prove that (L̃t, t ≥ 0) is a modification of (Lt, t ≥ 0). For every t ≥ 0 and
every sequence (sn)n≥0 in D such that sn ↓ t as n ↑ ∞, we have thanks to (17) and Lemma
3.9,

E(L̃t) = lim
n→∞

E(Lsn) = E(Lt).

Let us now show that for every t ≥ 0, Lt ≤ L̃t P a.s. Let α, ε > 0 and δ ∈ (0, 1). Thanks
to Corollary 3.7, we can find h0 > 0 such that for every h ∈ (0, h0) and n ≥ 0,

E

(∣∣∣∣
Z(t, t+ h)

v(h)
−Lt

∣∣∣∣
)

≤ εα and E

(∣∣∣∣
Z(sn, sn + h)

v(h)
−Lsn

∣∣∣∣
)

≤ εα.

We choose h ∈ (0, h0) and n0 ≥ 0 such that sn− t+h ≤ h0 and v(h) ≤ (1+δ)v(sn− t+h)
for every n ≥ n0. We notice that Z(t, sn + h) ≤ Z(sn, sn + h) so that, for every n ≥ n0,

P(Lt > (1 + δ)Lsn + ε)
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≤ P

(
Lt −

Z(t, sn + h)

v(sn − t+ h)
> (1 + δ)Lsn − (1 + δ)

Z(sn, sn + h)

v(h)
+ ε

)

≤ 2ε−1
E

(∣∣∣∣
Z(t, sn + h)

v(sn − t+ h)
− Lt

∣∣∣∣
)

+ 2ε−1(1 + δ)E

(∣∣∣∣
Z(sn, sn + h)

v(h)
−Lsn

∣∣∣∣
)

≤ 6α.

We have thus shown that

P(Lt > (1 + δ)Lsn + ε) −→
n→∞

0. (18)

So, P(Lt − (1 + δ)L̃t > ε) = 0 for every ε > 0, implying that Lt ≤ (1 + δ)L̃t, P a.s. This

leads us to the claim Lt ≤ L̃t a.s. Since we saw that E(Lt) = E(L̃t), we have Lt = L̃t P

a.s. for every t ≥ 0.

Now, (L̃t, t ≥ 0) is a right-continuous supermartingale. Thus, (L̃t, t ≥ 0) is also left-

limited and we have E(L̃t) ≤ E(L̃t−) for every t > 0. Moreover, we can prove in the same
way as we did for (18) that, for every t > 0 and every sequence (sn, n ≥ 0) in D such that
sn ↑ t as n ↑ ∞,

P(L̃sn > (1 + δ)L̃t + ε) −→
n→∞

0,

implying that L̃t− ≤ L̃t, P a.s. So, Lt = Lt− P a.s. for every t > 0 meaning that (L̃t, t ≥ 0)
has no fixed discontinuities. �

From now on, to simplify notation, we replace (Lt, t ≥ 0) by its càdlàg modification

(L̃t, t ≥ 0).

3.1.3 The CSBP

We will prove that the suitably rescaled family of Galton-Watson processes (X ε)ε>0 con-
verges to the local time L.

Thanks to Lemma 3.1, we can define a sequence (ηn)n≥1 by the condition v(ηn) = n for
every n ≥ 1. We set mn = [η−1

n ] where [x] denotes the integer part of x. We recall from
Proposition 3.4 that X ηn is a Galton-Watson process on (Ω,P) whose initial distribution
is the Poisson distribution with parameter n. For every n ≥ 1, we define a process
Yn = (Yn

t , t ≥ 0) on (Ω,P) by the following formula,

Yn
t = n−1X ηn

[mnt]
, t ≥ 0.

Proposition 3.11 For every t ≥ 0, Yn
t −→ Lt in probability as n −→ ∞.

Proof : The result for t = 0 is a consequence of the definition of L0 together with simple
estimates for the Poisson distribution. Let t, δ > 0. We can write

P(|Yn
t − Lt| > 2δ) ≤ P

(∣∣Yn
t −Lηn[mnt]

∣∣ > δ
)

+ P
(∣∣Lηn[mnt] −Lt

∣∣ > δ
)

≤ δ−1
E
(∣∣Yn

t −Lηn[mnt]

∣∣)+ P
(∣∣Lηn[mnt] − Lt

∣∣ > δ
)
.
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Now, Corollary 3.7 and Proposition 3.8 imply respectively that

E
(∣∣Yn

t − Lηn[mnt]

∣∣) −→
n→∞

0 and P
(∣∣Lηn[mnt] − Lt

∣∣ > δ
)
−→
n→∞

0,

which completes the proof. �

Corollary 3.12 For every t ≥ 0, the law of Yn
t under P(· | X ηn

0 = n) converges weakly
to the law of Lt under P as n −→ ∞.

Proof : For positive integers n and k, we denote by µn the offspring distribution of the
Galton-Watson process X ηn, by fn the generating function of µn and by fnk the k-th
iterate fnk = fn ◦ . . . ◦ fn of fn. Let λ > 0 and t ≥ 0. We have,

E(exp(−λYn
t )) =

∞∑

p=0

e−n
np

p!

(
fn[mnt]

(
e−λ/n

))p
= exp

(
−n
(
1 − fn[mnt]

(
e−λ/n

)))
.

From Proposition 3.11, it holds that

exp
(
−n
(
1 − fn[mnt]

(
e−λ/n

)))
−→
n→∞

E(exp(−λLt)).

Let us set u(t, λ) = − log(E[exp(−λLt)]). It follows that,

n
(
1 − fn[mnt]

(
e−λ/n

))
−→
n→∞

u(t, λ).

Thus, we obtain,

E (exp(−λYn
t ) | X ηn

0 = n) =
(
fn[mnt]

(
e−λ/n

))n
−→
n→∞

exp(−u(t, λ)) = E[exp(−λLt)].

�

At this point, we can use Theorem 2.1 to assert that (Lt, t ≥ 0) is a CSBP and that
the law of (Yn

t , t ≥ 0) under the probability measure P(· | X ηn

0 = n) converges to the law
of (Lt, t ≥ 0) as n −→ ∞ in the space of probability measures on the Skorokhod space
D(R+). To verify the assumptions of Theorem 2.1, we need to check that there exists
δ > 0 such that P(Lδ > 0) > 0. This is obvious from Lemma 3.9.

3.2 Identification of the measure Θ

In the previous section, we have constructed from Θ a CSBP L, which becomes extinct
almost surely. We denote by ψ the associated branching mechanism. We can consider the
σ-finite measure Θψ, which is the law of the Lévy tree associated with L. Our goal is to
show that the measures Θ and Θψ coincide.

Recall that µn denotes the offspring distribution of the Galton-Watson process X ηn .
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Lemma 3.13 For every a > 0, the law of the R-tree ηnT θ under Πµn(· | H(θ) ≥ [amn])
converges as n −→ ∞ to the probability measure Θψ(· | H(T ) > a) in the sense of weak
convergence of measures in the space T.

Proof : We first check that, for every δ > 0,

lim inf
n→∞

P(Yn
δ = 0) > 0. (19)

Indeed, we have

P(Yn
δ = 0) = P(N (H(T ) > ([mnδ] + 1)ηn) = 0) = exp(−v(([mnδ] + 1)ηn)).

As v is continuous, it follows that P(Yn
δ = 0) −→ exp(−v(δ)) as n −→ ∞ implying (19).

We recall that the law of Yn under the probability measure P(· | X ηn

0 = n) converges
to the law of (Lt, t ≥ 0). Then, thanks to (19), we can apply Theorem 2.3 to get that,
for every a > 0, the law of the R-tree m−1

n T θ under Πµn(· | H(θ) ≥ [amn]) converges to
the probability measure Θψ(· | H(T ) > a) in the sense of weak convergence of measures
in the space T. As m−1

n ηn −→ 1 as n −→ ∞, we get the desired result. �

We can now complete the proof of Theorem 1.1. Indeed, thanks to Lemmas 2.2 and 3.3,
we can construct on the same probability space (Ω,P), a sequence of T-valued random
variables (T n)n≥1 distributed according to Θ(· | H(T ) > ([amn]+1)ηn) and a sequence of
A-valued random variables (θn)n≥1 distributed according to Πµn(· | H(θ) ≥ [amn]) such
that for every n ≥ 1, P a.s.,

dGH(T n, ηnT
θn) ≤ 4ηn.

Then, using Lemma 3.13, we have Θ(· | H(T ) > ([amn] + 1)ηn) −→ Θψ(· | H(T ) > a) as
n −→ ∞ in the sense of weak convergence of measures on the space T. So we get

Θ(· |H(T ) > a) = Θψ(· |H(T ) > a)

for every a > 0, and thus Θ = Θψ.

4 Proof of Theorem 1.2

Let Θ be a probability measure on (T, dGH) satisfying the assumptions of Theorem 1.2.

In this case, we define v : [0,∞) −→ (0,∞) by v(t) = Θ(H(T ) > t) for every t ≥ 0.
Note that v(0) = 1 is well defined here. For every t > 0, we denote by Θt the probability
measure Θ(· | H(T ) > t). The following two results are proved in a similar way to
Lemmas 3.1 and 3.2.

Lemma 4.1 The function v is nonincreasing, continuous and goes to 0 as t −→ ∞.

Lemma 4.2 For every t > 0 and 0 < a < b, the conditional law of the random variable
Z(t, t+b), under the probability measure Θt and given Z(t, t+a), is a binomial distribution
with parameters Z(t, t+ a) and v(b)/v(a).
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4.1 The DSBP derived from Θ

We will follow the same strategy as in section 3 but instead of a CSBP we will now
construct an integer-valued branching process.

4.1.1 A family of Galton-Watson trees

We recall that µε denotes the law of Z(ε, 2ε) under the probability measure Θε, and
that (θξ, ξ ∈ A) is a sequence of independent A-valued random variables defined on a
probability space (Ω′,P′) such that for every ξ ∈ A, θξ is distributed uniformly over
p−1(ξ). The following lemma is proved in the same way as Lemma 3.3.

Lemma 4.3 Let us define for every ε > 0, a mapping θ(ε) from T(ε) × Ω′ into A by

θ(ε)(T , ω) = θξε(T )(ω).

Then for every positive integer p, the law of the random variable θ(ε) under the probability
measure Θpε ⊗ P′ is Πµε(· | H(θ) ≥ p− 1).

For every ε > 0, we define a process Xε = (Xε
k , k ≥ 0) on T by the formula

Xε
k = Z(kε, (k + 1)ε), k ≥ 0.

We show in the same way as Proposition 3.4 and Proposition 3.5 the following two results.

Proposition 4.4 For every ε > 0, the process Xε is under Θ a Galton-Watson process
whose initial distribution is the Bernoulli distribution with parameter v(ε) and whose
offspring distribution is µε.

Proposition 4.5 For every t > 0 and h > 0, we have Θ(Z(t, t+ h)) ≤ v(h) ≤ 1.

The next proposition however is particular to the finite case and will be useful in the
rest of this section.

Proposition 4.6 The family of probability measures (µε)ε>0 converges to the Dirac mea-
sure δ1 as ε→ 0. In other words,

Θε(Z(ε, 2ε) = 1) −→
ε→0

1.

Proof : We first note that

2Θε(Z(ε, 2ε) ≥ 1) − Θε(Z(ε, 2ε)) ≤ Θε(Z(ε, 2ε) = 1) ≤ Θε(Z(ε, 2ε) ≥ 1).

Moreover, Θε(Z(ε, 2ε) ≥ 1) = Θε(H(T ) > 2ε) = v(2ε)/v(ε) and Θε(Z(ε, 2ε)) ≤ 1. So,

2v(2ε)

v(ε)
− 1 ≤ Θε(Z(ε, 2ε) = 1) ≤

v(2ε)

v(ε)
. (20)

We let ε −→ 0 in (20) and we use Lemma 4.1 to obtain the desired result. �
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4.1.2 Construction of the DSBP

Proposition 4.7 For every t ≥ 0, there exists an integer-valued random variable Lt on
the space T such that Θ(Lt) ≤ 1 and Θ a.s.,

Z(t, t+ h) ↑
h↓0

Lt.

Proof : Let t ≥ 0. The function h ∈ (0,∞) 7−→ Z(t, t+h) ∈ Z+ is nonincreasing so that
there exists a random variable Lt with values in Z+ ∪ {∞} such that, Θ a.s.,

Z(t, t+ h) ↑
h↓0

Lt.

Thanks to the monotone convergence theorem, we have

Θ(Z(t, t+ h)) −→
h→0

Θ(Lt).

Now, by Proposition 4.5, Θ(Z(t, t + h)) ≤ 1 for every h > 0. Then, Θ(Lt) ≤ 1 which
implies in particular that Lt <∞ Θ a.s. �

Proposition 4.8 For every t > 0, the following two convergences hold Θ a.s.,

Z(t− h, t) ↑
h↓0

Lt, (21)

Z(t− h, t+ h) ↑
h↓0

Lt. (22)

Proof : Let t > 0 be fixed throughout this proof. By the same arguments as in the proof
of Proposition 4.7, we can find a Z+-valued random variable Lt such that Θ(Lt) ≤ 1 and
Z(t− h, t) ↑ Lt as h ↓ 0, Θ a.s. If h ∈ (0, t), we write T 1, . . . , T Z(t−h,t) for the subtrees of
T above level t− h with height greater than h. Then, from the regenerative property,

Θ (|Z(t, t+ h) − Z(t− h, t)| ≥ 1)

= Θ
(
Θ
(∣∣∣

Z(t−h,t)∑

i=1

(Z(h, 2h)(T i) − 1)
∣∣∣ ≥ 1

∣∣∣ Z(t− h, t)
))

≤ Θ
(
Θ
(
|Z(h, 2h)(T i) − 1| ≥ 1 for some i ∈ {1, . . . , Z(t− h, t)} | Z(t− h, t)

))

≤ Θ
(
Z(t− h, t)Θh (|Z(h, 2h) − 1| ≥ 1)

)
. (23)

Since Z(t − h, t)Θh (|Z(h, 2h) − 1| ≥ 1) ≤ Lt Θ a.s., Proposition 4.6 and the dominated
convergence theorem imply that the right-hand side of (23) goes to 0 as h −→ 0. Thus
Lt = Lt Θ a.s.
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Likewise, there exists a random variable L̂t with values in Z+ such that, Θ a.s.,
Z(t − h, t + h) ↑ L̂t as h ↓ 0. Let us now notice that, for every h > 0, Θ a.s.,
Z(t− h, t+ h) ≤ Z(t− h, t). Moreover, thanks to Lemma 4.2, we have

Θ(Z(t− h, t) ≥ Z(t− h, t+ h) + 1) = 1−Θ

((
v(2h)

v(h)

)Z(t−h,t)
)

≥ 1−Θ

((
v(2h)

v(h)

)Lt
)
.

(24)

The right-hand side of (24) tends to 0 as h −→ 0. So Lt = L̂t Θ a.s. �

We will now establish a regularity property of the process (Lt, t ≥ 0).

Proposition 4.9 The process (Lt, t ≥ 0) admits a modification which is right-continuous
with left limits, and which has no fixed discontinuities.

Proof : We start the proof with three lemmas. The first one in proved in a similar but
easier way as Lemma 3.9.

Lemma 4.10 There exists λ ≥ 0 such that Θ(Lt) = e−λt for every t ≥ 0.

For every n ≥ 1 and every t ≥ 0 we set Y n
t = X

1/n
[nt] .

Lemma 4.11 For every t ≥ 0, Y n
t −→ Lt as n −→ ∞, Θ a.s.

This lemma is an immediate consequence of Proposition 4.8.

Lemma 4.12 Let us define Gt = σ(Ls, s ≤ t) for every t ≥ 0. Then (Lt, t ≥ 0) is a
nonnegative supermartingale with respect to the filtration (Gt, t ≥ 0).

Proof : Let s, t, s1, . . . , sp ≥ 0 such that 0 ≤ s1 ≤ . . . ≤ sp ≤ s < t and let f : R
p → R+

be a bounded measurable function. For every n ≥ 1, the offspring distribution µ1/n is

critical or subcritical so that (X
1/n
k , k ≥ 0) is a supermartingale. Thus we have

Θ
(
X

1/n
[nt] f

(
X

1/n
[ns1]

, . . . , X
1/n
[nsp]

))
≤ Θ

(
X

1/n
[ns]f

(
X

1/n
[ns1]

, . . . , X
1/n
[nsp]

))
.

Lemma 4.11 yields Θ
(
Ltf

(
Ls1 , . . . , Lsp

))
≤ Θ

(
Lsf

(
Ls1 , . . . , Lsp

))
since f is bounded

and X
1/n
u ≤ Lu Θ a.s. for every u ≥ 0. �

Let us set, for every t ≥ 0,

G̃t =
⋂

s>t

Gs.

Recall that D denotes the set of positive dyadic numbers. From Lemma 4.12 and classical
results on supermartingales, we can define a right-continuous supermartingale (L̃t, t ≥ 0)

with respect to the filtration (G̃t, t ≥ 0) by setting, for every t ≥ 0,

L̃t = lim
s↓t,s∈D

Ls (25)
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where the limit holds Θ a.s. and in L1. In a way similar to Section 3 we can prove that
(L̃t, t ≥ 0) is a càdlàg modification of (Lt, t ≥ 0) with no fixed discontinuities.

From now on, to simplify notation we replace (Lt, t ≥ 0) by its càdlàg modification

(L̃t, t ≥ 0).

Proposition 4.13 (Lt, t ≥ 0) is a DSBP which becomes extinct Θ a.s.

Proof : By the same arguments as in the proof of (21), we can prove that, for every
0 < s < t, the following convergence holds in probability under Θ,

Z

(
[nt] − [ns]

n
,
[nt] − [ns] + 1

n

)
−→
n→∞

Lt−s. (26)

Let s, t, s1, . . . , sp ≥ 0 such that 0 ≤ s1 ≤ . . . ≤ sp ≤ s < t, λ > 0 and let f : Rp → R

be a bounded measurable function. For every n ≥ 1, under Θ1/n, (X
1/n
k , k ≥ 0) is a

Galton-Watson process started at one so that

Θ1/n(f(Y n
s1
, . . . , Y n

sp
) exp(−λY n

t )) = Θ1/n
(
f(Y n

s1
, . . . , Y n

sp
)(Θ1/n(exp(−λX1/n

[nt]−[ns])))
Y n

s

)
.

From Lemma 4.11, (26) and dominated convergence, we get

Θ(f(Ls1, . . . , Lsp) exp(−λLt)) = Θ
(
f(Ls1 , . . . , Lsp)(Θ(exp(−λLt−s)))

Ls
)
.

Then, (Lt, t ≥ 0) is a continuous-time Markov chain with values in Z+ satisfying the
branching property. Furthermore, since H(T ) <∞ Θ a.s., it is immediate that (Lt, t ≥ 0)
becomes extinct Θ a.s. �

4.2 Identification of the probability measure Θ

Let us now define, for every T ∈ T and t ≥ 0, Nt(T ) = #{σ ∈ T : d(ρ, σ) = t} where we
recall that ρ denotes the root of T .

Proposition 4.14 For every t ≥ 0, Nt = Lt Θ a.s.

Note that for every t ≥ 0, Lt is the number of subtrees of T above level t.

Proof : Since Θ(H(T ) = 0) = 0, we have L0 = 1 = N0 Θ a.s. Thanks to Propositions
4.7, 4.8 and 4.9, for every t > 0, Θ a.s., there exists h0 > 0 such that for every h ∈ (0, h0],
Lt = Lt−h = Lt+h = Z(t− h, t+ h).

The remaining part of the argument is deterministic. We fix t, h0 > 0 and a (deter-
ministic) tree T ∈ T. We assume that there is a positive integer p such that for every
h ∈ (0, h0],

Lt = Lt−h = Lt+h = Z(t− h, t+ h) = p,
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and we will verify that Nt(T ) = p. We denote by T 1, . . . , T p the p subtrees of T above
level t − h0 and we write ρi for the root of the subtree T i. For every i ∈ {1, . . . , p}, we
have H(T i) > 2h0 so that there exists xi ∈ T i such that d(ρi, xi) = 2h0. Let us prove
that for every i ∈ {1, . . . , p},

T i
≤2h0

= {σ ∈ T i : d(ρi, σ) ≤ 2h0} = [[ρi, xi]]. (27)

To this end, we argue by contradiction and assume that we can find i ∈ {1, . . . , p} and
ti ∈ T i such that d(ρi, ti) ≤ 2h0 and ti /∈ [[ρi, xi]]. Let zi be the unique vertex of T i

satisfying [[ρi, zi]] = [[ρi, xi]]∩ [[ρi, ti]]. We choose c > 0 such that d(ρi, zi) < c < d(ρi, ti).
Then it is not difficult to see that T has at least p + 1 subtrees above level t − h0 + c.
This is a contradiction since Lt−h0+c = p. So Nt(T ) = p, which completes the proof. �

Proposition 4.14 means that (Lt, t ≥ 0) is a modification of the process (Nt, t ≥ 0)
which describes the evolution of the number of individuals in the tree. Let us denote by
Q the generator of (Lt, t ≥ 0) which is of the form

Q =




0 0 0 0 0 . . .
aγ(0) −a aγ(2) aγ(3) aγ(4) . . .

0 2aγ(0) −2a 2aγ(2) aγ(3) . . .
0 0 3aγ(0) −3a 3aγ(2) . . .
...

...
. . .

. . .
. . .

. . .



,

where a > 0 and γ is a critical or subcritical offspring distribution with γ(1) = 0.

For every t ≥ 0 we let Ft be the σ-field on T generated by the mapping T 7−→ T≤t and
completed with respect to Θ. Thus (Ft, t ≥ 0) is a filtration on T.

Lemma 4.15 Let t > 0 and p ∈ N. Under Θ, conditionally on Ft and given {Lt = p},
the p subtrees of T above level t are independent and distributed according to Θ.

Proof : Thanks to Lemma 2.2 and Lemma 4.3, we can construct on the same probability
space (Ω,P), a sequence of T-valued random variables (T n)n≥1 distributed according to
Θ1/n and a sequence of A-valued random variables (θn)n≥1 distributed according to Πµ1/n

such that, for every n ≥ 1,

dGH

(
T n, n

−1T θn

)
≤ 4n−1. (28)

For every n ≥ 1 and k ≥ 0, we define Xn
k = #{u ∈ θn : |u| = k}. Let t ≥ 0 and

p ≥ 1, let g : T → R be a bounded continuous function and let G : Tp → R be a
bounded continuous symmetric function. For n ≥ 1, on the event {Xn

[nt] = p}, we set

{un1 , . . . , u
n
p} = {u ∈ θn : |u| = [nt]} and θ

i
n = τun

i
θn for every i ∈ {1, . . . , p}. Then we

can write, thanks to the branching property of Galton-Watson trees,

E
(1{Xn

[nt]=p}g
(
n−1T θn

≤[nt]

)
G
(
n−1T θ

1

n , . . . , n−1T θ
p

n

))
(29)

= E
(1{Xn

[nt]=p}g
(
n−1T θn

≤[nt]

))
(Πµ1/n

)⊗p
(
G(n−1T θ1, . . . , n−1T θp)

)
,
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where θ1, . . . , θp denote the coordinate variables under the product measure (Πµ1/n
)⊗p. As

a consequence of (28), we see that the law of n−1T θ under Πµ1/n
converges to Θ in the

sense of weak convergence of measures on the space T. Then, thanks to Lemma 4.11, the
right-hand side of (29) converges as n −→ ∞ to

Θ
(1{Lt=p}g(T≤t)

)
Θ⊗p(G(T1, . . . , Tp)).

Similarly, the left-hand side of (29) converges as n −→ ∞ to

Θ
(1{Lt=p}g(T≤t)G(T 1, . . . , T p)

)
,

where T 1, . . . , T p are the p subtrees of T above level t on the event {Lt = p}. This
completes the proof. �

Let us define J = inf{t ≥ 0 : Lt 6= 1}. Then J is an (Ft)t≥0-stopping time.

Lemma 4.16 Let p ∈ N. Under Θ, given {LJ = p}, the p subtrees of T above level J
are independent and distributed according to Θ, and are independent of J .

Proof : Let p ∈ N, let f : R+ → R be a bounded continuous function and let G : Tp → R

be a bounded continuous symmetric function. On the event {LJ = p}, we denote by
T 1, . . . , T p the p subtrees of T above level J . Let n ≥ 1 and k ≥ 0. On the event
{L(k+1)/n = p}, we denote by T 1,(n,k), . . . , T p,(n,k) the p subtrees of T above level (k+1)/n.
On the one hand, the right-continuity of the mapping t 7−→ Lt gives

Θ

(
∞∑

k=1

1{L(k+1)/n=p}G(T 1,(n,k), . . . , T p,(n,k))f ((k + 1)/n)1{k/n<J≤(k+1)/n}

)

−→
n→∞

Θ
(1{LJ =p}G(T 1, . . . , T p)f(J)

)
.

On the other hand, thanks to Lemma 4.15, we can write for every n ≥ 1 and k ≥ 0,

Θ
(1{L(k+1)/n=p}G(T 1,(n,k), . . . , T p,(n,k))f ((k + 1)/n)1{k/n<J≤(k+1)/n}

)

= Θ
(1{L(k+1)/n=p}f ((k + 1)/n)1{k/n<J≤(k+1)/n}

)
Θ⊗p(G(T1, . . . , Tp)).

It follows that Θ
(1{LJ=p}G(T 1, . . . , T p)f(J)

)
= Θ

(1{LJ =p}f(J)
)
Θ⊗p(G(T1, . . . , Tp)). �

We can now complete the proof of Theorem 1.2. The random variable J is the first
jump time of the DSBP (Lt, t ≥ 0) so that J is distributed according to the exponential
distribution with parameter a and is independent of LJ . Thanks to Proposition 4.14,
there exists σJ ∈ T such that T≤J = [[ρ, σJ ]]. Lemma 4.16 gives the last part of the
description of Θ.

Another way to describe Θ is as follows: Assume that we are given on the same
probability space (Ω,P) an A-valued random variable θ distributed according to Πγ and
an independent sequence of independent random variables (hu, u ∈ U) with values in
[0,∞), such that each variable hu is distributed according to the exponential distribution
with parameter a. We set T = (θ, {hu}u∈θ) and T = T T. Then the random variable T

is distributed according to Θ.
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