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Density of paths of iterated Lévy transforms ofBrownian motionMar MalriFebruary 12, 2009Abstrat : The Lévy transform of a Brownian motion B is the Brownianmotion B′
t =

∫ t

0

sgn (Bs) dBs. Call T the orresponding transformation onthe Wiener spae W . We establish that a. s. the orbit of w(∈ W ) under Tis dense in W for the ompat uniform onvergene topology.IntrodutionLet (Bt)t≥0 be a one-dimensional, issued from 0 Brownian motion, and (Lt)t≥0its loal time at 0. The Lévy transform of B is the Brownian motion
B1
t =

∫ t

0

sgn (Bs) dBs = |Bt| − Lt.Let T be the orresponding transformation in Ω, whih maps B on B1 : i.e.
ω on Tω. w on Tw. At the end of hapter XII of [R,Y℄, Revuz and Yor askedfor the ergodiity of T . From up to now, in [D,S℄, Dubins and Smorodinskyestablished the ergodiity of the disrete Lévy transform, an analog of T forrandom walks.Our goal is to establish that the orbit under T of almost every path is densein W equipped with the topology of uniform onvergene on ompat sets.This is a neessary but not su�ient ondition for the possible ergodiity ofLévy transform, as it is the ase for the density in R

+ of the zeroes of theiterated Lévy transforms of Brownian motion established in [M℄.Otherwise, the present paper is the natural onsequene of [M℄. As in[M℄, the strategy lies on the utilization of the "Lévy's raises" : after being1



su�iently down in the iterations, i.e. going from T nB, for a big enoughinteger n, for at least one of T pB, p ≤ n, vanishes on given interval, weproeed for eah raise from level n to level 0, by hoosing a �nite numberof signs of seleted exursions in suh a way that the raised path takes thedesired shape.If the idea at the basis is simple, numerous di�ulties arise when it is applied.So we present at paragraph 1, the tools we need, in a partiularly simplesituation : the one time approximation. Here, we introdue the tehnisof raisings whih we illustrate with diagrams. Thus, we de�ne the proesseswhih we all B-raised Brownian motions. These proesses enable us to easilymanipulate the raisings, in partiular on invariant events.At paragraph 2, we ome to a more elaborated situation, namely the d-time approximation. Here we need indution on the number of times. Andwe must at onditionnely on the hypothesis that none of the raised pathsvanishes on (td, td+1).Finally, at paragraph 3, we treat the ontinuous time approximation, whenwe read all the previous tehnis and a more aute analysis of the exursionstraddling t.In the end, I want to thank Mar Yor and Jean-Pierre Thouvenot for thegood advies.
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1 One-time approximation theorem.Let (Ω,F ,P) be the probability spae where all random elements are de�ned,and (W,W, π) the Wiener spae. Any measurable map from Ω to any mea-sure spae, de�ned P−a.e., will be alled a random variable. If X is a r.v.with values in some measurable spae A, the probability measure P◦X−1 on
A is alled the law of X, and denoted by L(X). For instane, a W−valuedr.v. with law π is a Brownian motion.The Lévy transform T : W −→ W is de�ned π−a.e. and preserves π. Givena Brownian motionB, we denote by Bn its n−Lévy iterate, that is, the Brow-nian motion Bn = T

n ◦B. The one-time approximation theorem asserts that
for fixed t > 0 and for almost all ω, the sequence Bn

t (ω) is dense in R.From now on, t > 0, b ∈ R and ε > 0 are �xed, and a Brownian motion B isgiven. The goal is to prove that the event E = Eε = {∀n ≥ 0|Bn
t − b| > ε}is negligible. It su�es in fat to show P(E) < ε, beause Eε1 ⊂ Eε2 when

ε2 < ε1.The idea is to onstrut from B another stohasti proess Γ : Ω −→ W,whih depends on t, b and ε, and has the following three properties :(i) The law of the proess Γ, i.e., the probability F −→ P(Γ−1F ) on
(W,W), is absolutely ontinuous w.r.t. the law π of B.(ii) For some deterministi r ≤ 0, one has Γr = Br, that is, Tr◦Γ = T

r◦B.(iii) P (∀n ≥ 0|Γnt − b| > ε) < ε.Property (i) implies that T ◦ Γ an be (almost everywhere) de�ned, in spiteof T not being everywhere de�ned. Indeed, if T
′ : W −→ W is anotherversion of T, that is if T′ = T a.e., the set {T′ 6= W} is π−negligible; hene,by (i), Γ−1{T′ 6= W} is P−negligible, and T

′ ◦ Γ = T ◦ ΓP−a.s.. Similarly,one an de�ne the stohasti proesses Γn = T
n ◦Γ, whih verify Γ0 = Γ and

T ◦ Γn = Γn+1.Proposition 1. For �xed G ∈ W and ε > 0, let us suppose that there existsa stohasti proess Γ : Ω −→ W satisfying properties (i), (ii) and(1) P (∀n ≥ 0,Γn ∈ G) < ε.Then :(2) P (∀n ≥ 0, Bn ∈ G) < ε.3



Proof Take G ∈ W and put F =
⋂
n≥0 T

−nG. Then, for r ≥ 0,(3) T
−rF =

⋂

n≥r

T
−nG ⊃

⋂

n≥0

T
−nG = F.But these two sets, F and T

−rF , inluded in one another, have the same
π−probability by T−invariane; so equality F = T

−rF holds up to π−negligibility.As the laws of Γ and B are absolutely ontinuous w.r.t. π (this is where (i)is used), we have Γ−1(F ) = Γ−1(T−rF ) and B−1F = B−1(T−rF ) up to
P−negligible events. In other words, almost surely, we have {Γ ∈ F} =
{Γr ∈ F} and {B ∈ F} = {Br ∈ F}. Consequently, hoosing r given by (ii)and using Γr = Br, we have {Γ ∈ F} = {B ∈ F} a.s.. That is to say :(4) P (∀n ≥ 0,Γn ∈ G) = P (∀n ≤ 0, Bn ∈ G)

�Speializing G = {w ∈ W ; |w(t) − b| > ε}, we obtain :
P(E) < εProposition 1 redues the proof of the one-time approximation theorem tothe onstrution of a proess Γ verifying (i), (ii), and (iii). We shall �rsthoose r in a suitable way, then work bakwards, in r steps, from Γr = Brto Γ = Γ0; eah step (alled a Lévy raise) will onstrut Γn−1 from its Lévytransform Γn = T ◦ Γn−1. The sequene (Γr,Γr−1, ...,Γ0) is given a name :De�nition 1. Given r ∈ N, a sequene (Γr,Γr−1, ...,Γ0) is alled a sequeneof B−raised Brownian motions of index r if eah Γn is a σ(Bn)−measurable,

W−valued r.v. with law absolutely ontinuous w.r.t. π, if Γr = Br, and ifwe have Γn = T ◦ Γn−1 for 0 < n ≤ r.In fat, for onveniene of exposition, let us enlarge the �ltered probabilityspae Ω, we suppose it ontains the whole sequene (Bn)n∈Z of the Brownianiterates.So the Lévy transform T is de�ned at eah level n ∈ Z and satis�es TBn =
Bn+1, for all n in Z. And we an generalize the preeding de�nition :De�nition 2. Given r ∈ N, a sequene (Γn)n≥r is alled a sequene of
B−raised Brownian motions of index r if eah Γn is a σ(Bn)−measurable,
W−valued r.v. with law absolutely ontinuous w.r.t. π, if Γr = Br, and ifwe have Γn = T ◦ Γn−1 for all n ≤ r .4



With this de�nition, we an rephrase Proposition 1 :Corollary 1. To prove the one-time approximation theorem, it su�es toexhibit a sequene (Γr,Γr−1, ...,Γ0) of B−raised Brownian motions of index
r suh that(5) P (|Γnt − b| < ε for some n ∈ {0, ..., r}) > 1 − ε.Proof Properties (i) and (ii) of Proposition 1 are granted by the de�nitionof a sequene of B−raised Brownian motions, and (iii) is implied by (1).

�A Lévy raise starts with a given W−valued r.v. Γn, and yields some r.v.
Γn−1 with Lévy transform Γn. Given a W−valued r.v. V , how an one �nda r.v. U suh that V = T ◦ U? Knowing V is equivalent to knowing |U |, soto de�ne U one only needs to deide whih sign is assigned to eah exursionof |U | away from zero. To make this rigorous, we need a formal de�nition ofthe exursions of a path and of their signs.Notation 1. For w ∈ W and q > 0, denote by Z(w) = {s ≥ 0/w(s) = 0}the set of zeros of w, and de�ne gq(w) = sup ([0, q] ∩ Z(w)) ≥ 0 (last zerobefore q) and dq(w) = inf ([q,∞] ∩ Z(w)) 6= ∞ (�rst zero after q).Fix a dense sequene (qn) in [0,∞]. To eah w ∈ W, we an attah thesequene (ep) of disjoint, open intervals obtained from the sequene(6) ((gq1, dq1), (gq2, dq2), ..., (gqn, dqn), . . . )by deleting an interval whenever it already ours earlier in the sequene.The ep are the exursion intervals of w.π−almost surely, there are in�nitelymany of them, and they are the onneted omponents of the open set
[0,∞]\Z(w). The interval ep(w) will be alled the p-th exursion intervalof w; ep is an interval-valued measurable map, de�ned on (W,W) up to
π−negligibility.Sine w does not vanish on ep(w), its sign is onstant on this interval; thissign will be denoted by Sp(w), and the sequene (Sp) will be alled S. If Bis a Brownian motion, the sequene of r.v. S◦B = (Sp ◦B) is a oin-tossing ;this means, it is an i.i.d. sequene, with eah r.v. Sp◦B uniformly distributedon the set {−1,+1}. Moreover, Sp ◦B and |B| are independent. (See Chap.XII of [R,Y℄). 5



Lemma 1. De�ne I : W −→ W by I(w)(s) = inf [0,s]w ; that is, |w| =
Tw − ITw for π−a.a. w.Proof Fix s ≥ 0. On [0, s], B1 = |B| − L ≥ −Ls = Lgs

= B1
gs
. So

B1
gs

= inf [0,s]B
1, and |Bs| = B1

s + Ls = B1
s − inf [0,s]B

1.
�Lemma 2. Let A, A′ and A′′ be three measure spaes; let µ1 and µ2 be twomeasures on A, f a measurable map from A to A′, and ν a measure on A′′.If µ1 ≪ µ2, then(i) µ1 ◦ f−1 ≪ µ2 ◦ f−1;(ii) µ1 ⊗ ν ≪ µ2 ⊗ ν.Proof (i) If F ⊂ A′ is measurable and if (µ2◦f−1)(F ) = 0, then µ2(f

−1F ) =
0, so µ1 ◦ f−1(F ) = µ1(f

−1F ) = 0.(ii) If a measurable subset F of A×A′′ is negligible for µ2⊗ν, then ν−almostall its setions Fy verify µ2(Fy) = 0. Hene they also verify µ1(Fy) = 0, andonsequently (µ1 ⊗ ν)(F ) =
∫
µ1(Fy)ν(dy) = 0.

�Lemma 3. Let τ = (τp) be oin-tossing, τ ′ = (τ ′p) a r.v. with values in
{−1, 1}N suh that τ ′p = τp for all but a.s. �nitely many p, and X a r.v.independent of τ .Then L(X, τ ′) ≪ L(X, τ).This lemma says that hanging �nitely many values of τ does not perturbtoo muh the joint law of X and τ . For instane, it implies that a proessobtained from a Brownian motion by hanging the signs of �nitely manyexursions has a law absolutely ontinuous w.r.t. π. This is alled 'prinipede retournement des exursions' in [M℄.Proof If u = (u1, u2, ...) is an in�nite sequene, denote by up] the �nitesequene (u1, ..., up) and by u[p+1 the in�nite sequene (up+1, up+2, ...). Wehave (x, u) = fp(x, up], u[p+1) for some funtion fp.6



We have to show that if F is measurable set suh that P[(X, τ) ∈ F ] = 0,then P[(X, τ ′) ∈ F ] = 0. So assume P[(X, τ) ∈ F ] = 0. For p ∈ N, sine τp]takes values in {−1, 1}p, we an write(7) ∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τp] = σ

]
= P [(X, τ) ∈ F ] = 0.Using the independene of τp] and (X, τ[p+1), this beomes :(8) ∑

σ∈{−1,1}p

2−pP
[
fp(X, σ, τ[p+1) ∈ F

]
= 0;So for eah p ∈ N and eah σ ∈ {−1, 1}p, the event {fp(X, σ, τ[p+1 ∈ F}is negligible. Sine τ ′p(ω) = τp(ω) for all p larger than some N(ω), one has

P [(X, τ ′) ∈ F ] = lim
p→∞

P
[
(X, τ ′) ∈ F and τ ′[p+1 = τ[p+1

]

= lim
p→∞

∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τ ′p] = σ and τ ′[p+1 = τ[p+1

]
.This is null beause the event fp(X, σ, τ[p+1) ∈ F is negligible, as shownabove.

�

Proposition 2. (mehanism of a Lévy raise)Suppose given the following three r.v. :(i) V , a W−valued r.v., suh that L(V ) ≪ π ;(ii) τ = (τp)p∈N, a oin-tossing independent of V ;(iii) τ ′ = (τ ′p)p∈N, a r.v. valued in {−1, 1}N, suh that the random set
p ∈ N τ ′p(ω) 6= τp(ω) is a.s. �nite.Then there exists a unique w−valued r.v. U suh that(9) |U | = V − I ◦ V and Sp ◦ U = τ ′p for each p.It is measurable w.r.t. the σ−�eld σ(V, τ ′) and we have L(U) ≪ π and

T◦U = V . For any n ≥ 0, we have U = Bn on the event {V = Bn+1 and τ ′ =
S ◦Bn}. 7



Proof We start from L(V ) ≪ π = L(B) = L(B1). Using Lemma 2 (i) wewrite L(V, V −I◦V ) ≪ L(B1, B1−I◦B1). By Lemma 2 (ii), the oin-tossing
τ (resp. S◦B) whih is independent of V (resp. B1) an be added on the left(resp. right), and we obtain L(V, V − I ◦ V, τ) ≪ L(B1, B1 − I ◦ B1,S ◦B);by Lemma 1, the right-hand side is L(B1, |B|,S ◦B). Lemma 3 allows us toreplae τ by τ ′ in the left-hand side, so we �nally have(10) L(V, V − I ◦ V, τ) ≪ L(B1, |B|,S ◦B)Now, we allW+ the set of non-negative paths and f : W

+×{−1, 1}N −→
W the measurable funtion suh that w = f (|w|,S(w)). We remark that
B = f (|B|,S ◦B) and we de�ne U = f(V − I ◦ V, τ ′); this is the unique r.v.
U suh that |U | = V − I ◦ V and S ◦ U = τ ′. To verify that L(U) ≪ π and
T◦U = V , we apply Lemma 2 (i) to (2) with the funtions g(x, y, σ) = f(y, σ)and h(x, yσ) = (f(y, σ), x). With g we obtain L(U) ≪ L(B), the �rst laim.With h we obtain L(U, V ) ≪ L(B,B1); this implies T ◦ U = V sine thejoint law L(B)(B1) is arried by the graph of T.Last, on the event {V = Bn+1andτ ′ = s ◦Bn}, using the de�nition of U andLemma 1 we have(11) U = f(V −I◦V, τ ′) = f(Bn+1−I◦Bn+1,S◦Bn) = f(|Bn|,S◦Bn) = Bn.

�In view of Corollary 1, we will now desribe the onstrution of a sequeneof B−raised Brownian motions of index r, for some r ∈ N to be hosen later.The sequene of σ−�elds (σ(Bn))n≤r is dereasing; we may onsider it asa reverse �ltration, and de�ne a r.v. J with values in Z∩] − ∞, r] to be astopping time if {J = n} belongs to σ(Bn) for eah n ∈ Z∩] − ∞, r] (orequivalently, {J ≥ n} ∈ σ(Bn), beause the �ltration is reverse). Naturally,
BJ is de�ned by BJ = Bn on {J = n}. If J is a stopping time and J ≤ n,then J − n is a stopping time too.(Introduing suh stopping times reates no ambiguity : we will never dealwith the �ltration generated by B, or Bn, or Γm, nor with stopping times forsuh �ltrations.)Lemma 4. Let J be a stopping time suh that J ≤ r. The r.v. S ◦ BJ−1 isa oin-tossing independent of BJ .Proof Call ν the law of a oin-tossing (i.e., the law on {−1, 1}N making the8



oordinates independent and uniform on {−1, 1}), and write, for arbitrarybounded funtionals ϕ and ψ
E
[
ϕ(BJ)ψ(S ◦BJ−1)

]
=

r∑

n=1

E
[
1{J=n}ϕ(Bn)ψ(S ◦Bn−1)

]

=
r∑

n=1

E
[
1{J=n}ϕ(Bn)

]
E
[
ψ(S ◦Bn−1)

]

=
r∑

n=1

E
[
1{J=n}ϕ(Bn)

]
ν(ψ) = E

[
ϕ(BJ)

]
.

�

Proposition 3. Denote by Pf (N) the set of all �nite subsets of N. Fix r in
N, and let J be a stopping time with values ≤ r. For eah n ≥ 0, let be given
N n, a r.v. with values in Pf (N), and Σn = (Σn

p , p ∈ N n), a r.v. taking itsvalues in ⋃M∈Pf (N){−1, 1}M, suh that Σn(ω) ∈ {−1, 1}N
n(ω).Suppose N nand Σn are σ(BJ−n)−measurable.Starting with C0 = BJ , we an de�ne a sequene (Cn)n∈N suh that Cn+1 isthe W−valued r.v. U obtained in Proposition 2 from

V = Cn, τ = S ◦BJ−n−1, τ ′p =

{
Σp(ω) if p ∈ N p(ω)
τp(ω) else

Cn is σ(BJ−n)−measurable, and there exists a sequene (Γn)n≥r of B-raisedBrownian motions of index r suh that ΓJ−n = Cn for all n ∈ N.Proof First, we verify that the Cn an be onstruted stepwise. Assuming
Cn has already been onstruted, has a law absolutely ontinuous w.r.t. π,and is σ(BJ−n)−measurable, Proposition 2 applies to V = Cn and τ =
S ◦BJ−n−1 (they are independent by Lemma 4 applied to the stopping time
J−n). The r.v. Cn+1 = U yielded by Proposition 2 also satis�es L(Cn+1) ≪
π, and is measurable in σ(Cn, τ ′). But this σ−�eld is inluded in σ(BJ−n, S◦
BJ−n−1), and in σ(BJ−n−1) beause BJ−n = T ◦BJ−n−1; so the onstrutionis possible.The rest of the proof will exhibit a sequene (Γn)n≥r of B-raised motions suhthat ΓJ−n = Cn. Starting with Γr = Br, the other Γm will be indutively9



de�ned : if m < r, suppose Γm+1 has been de�ned, is σ(Bm+1)−measurable,and veri�es L(Γm+1 ≪ π; de�ne Γm as the r.v. U obtained in Proposition 2from(12)
V = Γm+1, τ = S ◦Bm, τ ′p =

{
ΣJ−m−1(ω) if p ∈ N J−m−1(ω)
τp(ω) elseThis is possible sine V and τ are independent and N J−m−1 is a.s. �nte;the result Γm veri�es L(Γn) ≪ π and T ◦ Γm = Γm+1. To show that Γmis σ(Bm)−measurable, it su�es to show that so is τ ′; this may be doneseparately on eah of the events {J ≤ m}, {J = m+1}, ..., {J = r}, beausethey form a σ(Bm)−partition of Ω. On {J ≤ m}, we have τ ′ = S ◦Bm; thisis σ(Bm)−measurable. To see what happens for other values of j, introdue

ϕn and ψn suh that N n = ϕn(BJ−n) and Σn = ψn(BJ−n) for 0 ≤ n < k.For j ∈ {m+ 1, ..., m+ k}, we have on {J = j}(13) τ ′ = ψn(BJ−n)1ϕn(BJ−n) + τ
(
1Ω − 1ψn(BJ−n)

)This is σ(Bm)−measurable too. We have established that Γr, ...,Γ0 existand form a sequene of B−raised motions; it remains to see that ΓJ−n = Cn.This is done in two steps. Firstly, by indution on m, we have Γm = Bmon {J ≤ m} : this holds for m = r, and if it holds for m + 1, it holds form too, owing to the last statement in Proposition 2. Consequently, Γm =
Bmon{J = m}, that is ΓJ = BJ = C0. Seondly, to proeed by indution on
n, we will assume that ΓJ−n = Cn for some n ≥ 0, and show ΓJ−n−1 = Cn+1.It su�es to show this equality on the event {J = j}; on this event, using thede�nition of Γm with m = j−n−1 and the inequality m = j−n−1 < j, ther.v. ΓJ−n−1 satis�es both T(ΓJ−n−1) = T(Γj−n−1) = Γj−n = Cn = T(Cn+1)and(14) S ◦ Γj−n−1 =

{
Σn+1 on N n

S ◦Bj−n−1 else = S ◦ Cn+1.These two equalities entail ΓJ−n−1 = Cn+1 a.s. on {J = j}.
�Corollary 2. To prove the theorem, it su�es to �nd r, J,N n, and Σn as inProposition 3, suh that(15) P

(
|CJ

t − b| < ε
)
> 1 − ε.10



Proof In that ase, the sequene (Γr, ...,Γ0) of B−raised motions given byProposition 3 veri�es P (|Γ0
t − b| < ε) > 1 − ε, so Corollary 1 applies.

�Remark. Corollary 2 improves on Corollary 1 by enabling us to work withLévy raises from BJ up, with J random, instead of Br in Corollary 1. Theprie to pay is that J must be a stopping time.Pratially, the N n and Σn
p used when performing the Lévy raise from Cnto Cn+1 will be funtionals of Cn; this automatially makes them σ(BJ−n)-measurable, sine so is Cn. so the step Cn −→ Cn+1 will onsist in hoosing�nitely many exursions if Cn above its urrent minimum, and assigningthem a sign; these hoies depend only on the behavior of the path of Cn. Theother exursions of Cn above its minimum are given random signs, using thesigns of the exursions of BJ−n−1 as a soure of randomness. The path of

Cn+1 is obtained by putting all these signed exursions together.
Lemma 5. Let (j, k) ∈ N

2 and Q and R be two r.v. suh that k ≤ j− 1 and
0 ≤ Q ≤ R. On the event {∀n ∈ {k, ..., j − 1}Z ◦Bn ∩ (Q,R) = ∅} that the�rst iterates of B do not vanish between Q and R, there exists a (random)isometry i : R −→ R suh that Bj = i ◦Bk on the interval (Q,R).Proof By indution, it su�es to show that if Bj−1 does not vanish on theinterval (Q,R), then Bj = i ◦ Bj−1 on (Q,R), for some random isometry i.This is just Lemma 5 with j = k + 1 and Bj−1 instead of Bk, so we maysuppose that j = 1.On the event {Q = R}, the result is trivial. On {Q < R}∩{Z ◦B∩ (Q,R) =
∅}, the loal time L is onstant on [Q,R] beause its support is Z ◦ B, andthe sign of B is onstant on (Q,R); so B1 = |B|−L = i(B) on (Q,R), where
i is the random isometry x 7→ xsgn

(
B(Q+R)/2

)
− L(Q+R)/2.

�It will be onvenient to work with ε
3
instead of ε; for notational simpliity,we put ε′ = ε

3
. 11



Lemma 6. There exists a number j = j(t, ε) > 1 (�xed in the sequel) suhthat the r.v. J+ and J− = sup {n ∈ {1, ..., j − 1}; |Bn
t | < ε′} (with sup ∅ = 0)and J+ = J− + 1, have the following four properties :(i) 1 ≤ J+ ≤ j ; 0 ≤ J− ≤ j − 1;(ii) J+ and J− are stopping times for the �ltration (σ(Bj), σ(Bj−1), ..., σ(B0));(iii) P(J+ = 1) < ε′;(iv) on the event {J+ > 1} = {J− > 0}, we have |BJ−
t | < ε′.Moreover, the law of the proess BJ− depends only upon j, t and ε, and isabsolutely ontinuous w.r.t. the Wiener measure π.Proof We shall �rst exhibit j and a r.v. K, with values in {1, ..., j − 1},suh that

• P(K = 1) < ε′

• on the event {K > 1}, we have |BK
t | < ε′.Set P = sup{s ∈ [0, t]; |B2

s − B2
t | > ε′}, with sup ∅ = 0. We have |B2 −

B2
t | ≤ ε′ on the (random) non-empty interval (P, t). Put gnt = gt ◦ Bn =

sup (Z ◦Bn ∩ [0, t]), and all H the �rst n ≥ 2 suh that gnt > P . This His a.s. �nite beause supm≥2 g
m
t = t a.s. (see [M℄). On the event {H = n},there are no zeroes of B2, ..., Bn−1 in the interval (gnt , t). On this event, wehave gnt ∈ (P, t) and

|Bn
t | = |Bn

t −Bn
gn

t
| by definition of gnt

= |B2
t − B2

gn
t
| by Lemma 5 applied to B1 and the interval (gnt , t)

= ≤ ε′ because |B2 − B2
t | ≤ ε′ on (P, t).As H is a.s. �nite, there exists j > 1, depending only upon t and ε, suhthat P(H ≥ j) < ε′; so the r.v. K = H ver�es

1 ≤ K ≤ j, P(K = 1) < ε′, and |BK
t | < ε′ on {K > 1};in other words, (iii') and (iv') hold for j and K.The mere existene of suh aK immediately implies that the random variable

J+ = 1 + sup{n ∈ {1, ..., j − 1}; |bnt | < ε′} veri�es (iii) and |BJ+−1
t | < ε′ on

{J+ > 1}, whene (iv). Moreover, J+ is a stopping time beause, for n ≥ 1,one has J+ ≥ n if and only if |Bm−1
t | < ε′ for somem ∈ {n, ..., j}, and beause12



σ(|Bm−1|) = σ(Bm). And J− is a stopping time too sine J− = J+ − 1.The law of BJ− depends only on j, t, and ε beause BJ− is onstrutedusing nothing but B, j, t, and ε. This law is absolutely ontinuous w.r.t. π,beause BJ− =
j−1∑
n=0

Bn
1[J−=n] implies L(BJ−) ≤

j−1∑
n=0

L(Bn) = jπ.
�Notation 2. For w ∈ W, the p-th exursion interval ep(w) was de�nedearlier; the number hp(w) = max

s∈ep(w)
|w(s)| will be alled the height of theorresponding exursion.Lemma 7. Let X be a proess whose law is absolutely ontinuous w.r.t.Wiener measure. Almost surely,

• lim
p→∞

hp(X)1{ep(X)⊂[0,t]} = 0;
•
∑
p∈N

hp(X)1{ep(X)⊂[0,t]} = ∞;
• the set { ∑

p∈M

hp(X)1{ep(X)⊂[0,t]},M ∈ Pf (N)

}
is dense in [0,∞);

• between any two di�erent exursions of X, there exists a third one, withheight smaller than any given random variable η > 0.Proof By a hange of probability, we may suppose that X is a Brownianmotion. It is known (see Exerise (VI.1.19) of [RY℄) that when η → 0+,the number ∑
p

1{ep(X)⊂[0,t]}1{hp(X)>η} of downrossings of the interval [0, η]by |X| before t is a.s. equivalent to η−1Lt, where Lt is the loal time of Xat 0. This easily implies (i) and (ii), wherefrom (iii) follows.Last, between any two exursions of X there are in�nitely many other ones(beauseX has no isolated zeroes) and, by (i), only �nitely many with heightsabove η, whene (iv).
�Notation 3. An exursion whose interval is inluded in [0, t] will be alleda t−exursion. 13



Lemma 8. There exists a σ(BJ+)−measurable, N
∗−valued r.v. K suhthat for eah r.v. K ′ σ(BJ+)−measurable and N

∗−valued r.v., there ex-ists, on the event [K ′ ≥ K], K ′ − 1 r.v. P1, ..., PK ′−1 with values in Nand σ(BJ+)−measurable, suh that :(i) the K ′ − 1 exursion intervals eP1(B
J−), . . . , ePK′

−1
(BJ−) are disjointand inluded in [0, t];(ii) the heights hP1(B

J−), . . . ,hPK′
−1

(BJ−) of the K ′ − 1 exursions of BJ−verify(16) |b| − ε′ < hP1(B
J−) + · · ·+ hPK′

−1
(BJ−) < |b| + ε′ a.s.Proof Lemma 7 (iii) applies to BJ− (whose law is absolutely ontinuous byLemma 6) implies that we an �nd random �nite sets of t−exursions of BJ−the sum of whose heights is ε′

2
lose to |b|. Among them there is a set ofminimal ardinality :denote by K the (random) number of its elements. And the same Lemma 7(iii) implies that, for every σ(BJ−)−measurable, N

∗ r.v. verifying K ′ ≥ Ka.s., we an �nd a random �nite set of t−exursions of BJ− of ardinality K ′satisfying (1).All these hoies an be made σ(BJ+)−measurably, beause they dependonly on |BJ−|, whih is σ(BJ+)−measurable sine it equals BJ+ − I ◦BJ+ byLemma 1.
�These K − 1 exursions with heights adding up to |b| ± ε′ are alled thebuilding exursions; we will see in the proof of Proposition 5 how a Lévy raisean be performed so as to add height of a building exursion to the value at

t. So, starting with an almost zero value at t (this is granted by Lemma 6(iv)) and using Lemma 8, we an end up lose to b after K ′ − 1 raises, inview of Corollary 2. In fat, for a tehnial reason (Lemma 10), we will needan extra raise; all in all, there will be K ′ of them, as in Proposition 3 andits orollary. In virtue of the enlargement of the probability spae, it is nowpossible that K ′(ω) > J(ω) with stritly positive probability. But our goalis to obtain the �nal result for B itself. So a simple way to ahieve that is toapply Lemma 6, not to the initial Brownian motion B, but to its k-th Lévyiterate Bk for k to be spei�ed later. The �ltration in Lemma 6 (ii) beomes(
σ(Bk+j), . . . , σ(Bk)

) and the time-sale is shifted by k, yielding stopping14



times with values in {k, ,̇k + j}. Observe that there is no viious irle here: Lemma 6 gives a j whih depends upon the onstants t and ε only, thenLemma 8 refers to the stopping times from Lemma 6 but the onstant k theredepends only upon the other �xed onstants, so we may liitly �rst �x all theonstants εn, j, k, and only then apply Lemma 6 to the Brownian motion
Bk whih depends on k.Corollary 3. Put r = k+ j. The r.v. J = 1 + sup{n; k < n < r and |Bn

t | <
ε′} (with sup ∅ = k) has the following properties :(i) k + 1 ≤ J ≤ r;(ii) J is a stopping time for the �ltration (σ(Br), . . . , σ(B0));(iii) the event Ω2 = {|BJ−1| < ε′} belongs to σ(BJ) and veri�es P(Ω2) >

1 − ε′;(iv) there exists an integer r large enough and depending only on π, b, t, ε,suh that on some event Ω1 ∈ σ(BJ) having probability P(Ω1) > 1− ε′,
BJ−1 has J − 1 di�erent t−exursions whih are measurable in σ(BJ),and whose heights H1, . . . , HJ−1 (numbered in hronologial order of theexursions) verify(17) |H1 + · · · +HJ−1 − |b|| < ε′.Proof (i), (ii) and (iii) are immediate by alling J the stopping time J+ fromLemma 6 applied to Bk instead of B, rephrasing aordingly Lemma 6.For (iv), with the preeding hoie of J , there exists an integer k suh that

P ([K ≤ k]) > 1−ε′. Call Ω1 the event [K ≤ k] for suh a k. There we hoose
K ′ = J , we rephrase aordingly Lemma 6 and 8, and order J −1 exursionsin hronologial order (H1 is the height of the �rst of these exursions, H2the height of the seond one and so on).

�Corollary 2 will be applied to these k, r and J . It remains to desribe the
N n and Σn, i.e., to hoose the signs of �nitely many exursions when Lévy-raising from Cn to Cn+1. This will be done soon; we �rst need some notationand a lemma.Notation 4. If e′ and e′′ are two exursions of a path (or of a proess),
e′ ≺ e′′ means that e′ is anterior to e′′ : s′ < s′′ for all s′ ∈ e′ and s′′ ∈ e′′.For an exursion e of w, we denote by iwe := inf{ws; s ∈ [0, de]}.15



De�nition 3. An exursion e of a path w ∈ W is said to be tall if it ispositive (this implies that the proess Iw remains onstant during e); and iffor any exursion e′ of w suh that iwe′ = iwe and higher than e, then e′ = e.Formally, e is tall if it is positive and if(18) max (w(s); s ≥ 0, (Iw)(s) = iwe) = max (w(s); s ∈ e) .

Lemma 9. Let η be a positive number, m ≥ 1 be an integer and w ∈ Wa path. Let e1, . . . , em+1 be m + 1 di�erent t−exursions of w, numberedin hronologial order : e1 ≺ · · · ≺ em+1; all h1, . . . , hm+1 their respetiveheights. Let f1, . . . , fp denote all exursions of w whih are anterior to em+1and whose heights are ≥ min(η, h1, . . . , hm+1), numbered in reverse hrono-logial order : let g1, . . . , gp be p exursions of w verifying fp ≺ gp ≺ · · · ≺
f1 ≺ g1 ≺ em+1.Suppose that

• the exursion em+1 is negative, and all t−exursions higher than em+1are positive;
• the exursions f1, . . . , fp are positive;
• the exursions g1, . . . , gp are negative; and every negative exursion an-terior to gq is smaller than gq.Then e1, . . . , em are tall, and |iwe1| < |iwe2| < · · · < |iwem| < η.Proof Firstly, |iwf1| < η beause f1 ≺ em+1 and any exursion anterior to

em+1 and having height ≥ η is one of the fq, hene positive.Seondly, for 1 ≤ q ≤ p, the exursion gq is negative and higher than anynegative exursion, anterior to it; so Iw is not onstant during gq, and on-sequently we have(19) |iwfp| < |iwfp−1| < · · · < |iwf1| < height of g1,where eah < sign is due to Iw varying on the orresponding gq.thirdly, ombining (20) with |iwf1| < η (�rst step), and notiing that, byde�nition of the fq, (e1, . . . , em) is a sub-sequene of (fp, . . . , d1), we obtain(20) |iwe1| < · · · < |iwem| < η.16



Last, it remains to establish that el is tall for 1 ≤ l ≤ m. Let e′ denote apositive exursion of w with height h′ ≥ hl and suh that iwe′ = iwel. From(20), we have |iwe
′| = |iwel| < height of g1; so e′ is anterior to g1 and afortiori anterior to em+1. As h′ ≥ hl, e′ must be one of the fq (see theirde�nition). But el is also one of the fq and, due to (20), all iwfq are di�erent;so e′ = el. This means that el is tall.

�In the proof of Lemma 9, the negative exursions gq are used to separate the
fq from eah other. Yet, in the end, we are not interested in the behavior ofall fq but only in the el. It is possible to replae this lemma with a variant,where 2m exursions (instead of p ones, the gq) are made negative, eah elbeing �anked by two of them.We will now perform the k Lévy raises C0 → C1 → · · · → Ck desribedin Corollary 2. The �rst one is the onstrution of C1 from C0 = BJ .Notation 5. We put ε′′ = ε′

r2
= ε

3k2 .
Proposition 4. With the notation of Corollary 3, N 0 and Σ0 an be hosenso that, on the event Ω1,(i) 0 ≤ C1

t < ε′;(ii) −(I ◦ C1)(y) = HJ−1;(iii) C1 has J − 2 tall t−exursions E1 ≺ E2 ≺ · · · ≺ EJ−2, with respetiveheights H1, . . . , HJ−2, and verifying(21) |iC1E1| < · · · < |iC1EJ−2| < ε′′Proof Sine T ◦ C1 = C0 = BJ = T ◦ BJ−1, we have |C1| = |BJ−1| regard-lessly of how N 0 and Σ0 are hosen. This hoie will be desribed now; it willbe σ(BJ)−measurable beause it depends only on |BJ−1|. (In the rest of theproof, "we hoose" is to be understood as "we hoose σ(BJ)−measurably").By Proposition 3, hoosing N 0 and Σ0 means hoosing the signs of �nitelymany exursions of C1, whose absolute value is observed.Outside the event Ω1 we take N 0 = ∅, that is, we do not �x the sign of any17



partiular exursion. The proof will desribe the hoies to be made on the
σ(BJ)−event Ω1, in order to ensure (i), (ii) and (iii); so we heneforth fouson this event only.By Corollary 3 (iv), BJ−1 has J − 1 di�erent t−exursion E1 ≺ · · · ≺ EJ−1with respetive heights H1, . . . , HJ−1. We hoose to make exursion EJ−1negative in C1, and to make positive all t−exursions higher than HJ−1; thisensures (ii).We also hoose to make positive the exursion whih straddles t; owing toCorollary 3 (iii), this yields (i).Now, onsider all exursions whih hronologially our before EJ−1, andwhose heights are ≥ min(ε′′, H1, H2, . . . , HJ−1); all F1, . . . , Fp these exur-sions, in reverse hronologial order : Fp ≺ · · · ≺ F1 ≺ EJ−1 (p is ran-dom and σ(BJ)−measurable). We hoose to make F1, . . . Fp positive. UsingLemma 7 (iv), we hoose between F1 and EJ−1 an exursion G1 smaller than
min(ε′′, H1, H2, . . . , HJ−1), its sign has not yet been assigned, so we hooseto make it negative, and to make positive all exursions higher than G1 andanterior to it. Then, we make negative an exursion G2 hosen between F2and F1 and smaller than G1 (suh an exursion exists by Lemma 7 (iv) andis too small to have previously been hosen). We also make positive all ex-ursions ourring before G2 and higher than G2. And so on : we keep doingthis up to Gp.Finally, we apply Lemma 9 with η = ε′′ and m = J − 2 to the E1, Fq and
Gq. The hypotheses of this lemma are satis�ed due to the properties of
(E1, . . . , EJ−1), to the de�nition of the Fq and Gq, and to the signs we havehosen. We obtain that, with these hoies of signs, (iii) is satis�ed for C1whatever the signs of the other exursions of C1.

�We have gone �rst step, from C0 to C1. We will soon perform the next J −2steps, from C1 to CJ−1; we �rst prove a lemma.Lemma 10. Let X be a proess with law absolutely ontinuous w.r.t. π, and
E a tall exursion of T ◦X with height H. There exists an exursion of X,with interval {s; (I ◦ T ◦X)(s) = iT◦XE}, and with height H + |iT◦XE|.Proof First, reall a.s., Brownian motion B does not reah its urrent min-imum I ◦ B in the interior of a time-interval where I ◦ B is onstant. (This18



is a onsequene of (I ◦ B)(s) < 0 for s > 0 and of the Markov property atthe �rst time that B = I ◦B after some rational).Put Y = T ◦X and all F the interval {s ≥ 0; (I ◦ Y )(s) = iXE}; Y reahesits urrent minimum I ◦ Y at both endpoints of F but not in the interior of
F (see above). Sine |X| = Y − I ◦ Y by Lemma 1, we have that F is thesupport of some exursion of X. The height of that exursion is

max(|Xs|; s ≥ 0, and (I ◦ Y )(s) = iYE)

= max (Ys − (I ◦ Y )(s); s ≥ 0, (I ◦ Y )(s) = iYE)

= max (Ys; s ≥ 0, (I ◦ Y )(s) = iYE) − iYE

= max (Ys; s ∈ E) − iYE because E is tall

= H + |iYE|.

�Proposition 5. It is possible to de�ne (partially) the sequenes (N n) and
(Σn) on the event [n < J ] in suh a manner that, on the event Ω1∩Ω2∩ [J >
n], the proess Cn satis�es :(i) HJ−n ≤ −(I ◦ Cn)t < Hj−n + nε

′′;(ii) On [J > n + 1], Cn has J − n − 1 tall t-exursions En
1 ≺ En

2 ≺ · · · ≺
En
J−n−1 suh that

|iCnEn
1 | < · · · < |iCnEJ−n−1| < ε

′′

,and whose heights Hn
1 , . . . , H

n
J−n−1 satisfy

Hl ≤ Hn
l < Hl + nε

′′

;(iii) HJ−n + · · ·+HJ−1 < Cn
t < HJ−n + · · · +HJ−1 + ε′ + n2ε

′′

.Proof Aordingly to Corollary 3, we onsider the family of tall t-exursionsof BJ satisfying relation (18), the building exursions. It is this family wehave already hosen in Proposition 4 to de�ne N 0, Σ0 and C1.Then Lemma 10 ensures the "heredity" of this family during the raisings.Hene we obtain the �rst part of (ii). It remains to notie that, while thebuilding exursions are proteted, eah of them reeives a "small" exursion.So its height add to the height of the building exursion, whih entails (i)19



and (ii).For (iii), it su�es to remark that, eah building exursion, before ontribut-ing to the height of the exursion of Cn straddling t, had reeived a numberof "small" exursions lower than n.
�Then we have to proeed to the last raising and verify the sequenes (N n),

(Σn) have the good mesurability properties. It is the aim of :Proposition 6. We an de�ne (entirely) the sequenes (N n), (Σn), n ≤ r,with the adequate mesurability properties in suh a way that :
P
(
|CJ

t − b| < ε
)
> 1 − εProof Firstly, we put N n = ∅ on [J < n], and Σn is the set redued to theindex of the exursion straddling t on [J = n].We begin by notiing that N n ∈ σ(BJ−n). The events [J > n], [J =

n] and [J < n] belong to σ(Bj−n).Then, by de�ning ΣJ−1 suh that the exursion of CJ straddling t has thesign of b, we obtain, applying Proposition 5, that in Ω1 ∩ Ω2,
∣∣CJ

t − b
∣∣ < ε,with the preeding hoies of ε′ and ε′′.Finally,

P(Ω1 ∩ Ω2) > 1 − 2ε′ = 1 − ε.

�Thus we dedue that
P
(
|Γ0
t − b| < ε

)
> ε.And, from Corollary 2, the theorem on one-time approximation is obtained.

20



2 d-times approximationThe raises we have realized on the Brownian path, in paragraph 1, an bealled "elementary" raises : we prepare, at level r, the exursions whihenable the path to approah ϕ(t) at time t, then we put them in ation su-essively while holding up the remaining exursions among the seleted ones.Now we must proeed by indution. But a new di�ulty appears : the nees-sity of proteting, whih has been obtained at the �rst d-times. This time,we an't anymore be satis�ed with elementary raises. First, only exursionswith support in [td, td+1] an be used, so it is neessary to rely on the densityof zeroes [M℄. Then, going from an iteration whih vanishes somewhere be-tween td and td+1, we ahieve "horizontal" raises to orretly on�gure thepath at time td+1, at the onsidered level, in the manner of lemmas 4 and5 : during these raises, we maintain the main exursions in [0, td] hold upto preserve the path up to time td, while we orretly on�gure the path attime td+1, obtaining thus a path of "essential" level, this of the beginning ofthe on�guration proess. Then we ome bak to usual raises whih we all"vertial" raises. We give to the main exursions the sign they had before thehorizontal raises (this ompels us to replae the B−raised Brownian motion.by a disjoint sum of suh proesses to keep these signs in memory). Butthe estimated value of the path at time td+1 is based upon the hypothesisthat no later vertial raise will vanish on [td, td+1]. In the opposite ase, theon�guration proess must return to its beginning.It's that we are doing in this paragraph :De�nition 4. We all the sequene (Γn)n≤r a disjointed sum of B-raisedBrownian motions of index r if there exists
• a denumerable measurable partition of Ω, (Hλ)λ∈Λ,
• for eah λ ∈ Λ, a sequene (Γnλ)n≤r of B−raised Brownian motions ofindex rsuh that(22) ∀n ≤ r,Γn =

∑

λ∈Λ

Γnλ1HλWe notie that : L(Γn) ≪ π. For, for all F ∈ W suh that π(F ) = 0, wehave :
P(Γn ∈ F ) =

∑

λ∈Λ

P (Hλ ∩ [Γnλ ∈ F ])

≤
∑

λ∈Λ

P (Γnλ ∈ F ) = 021



Now the paragraph is devoted to proving the following :Let Pd be the property :" Let be given : ε > 0, (t1, ..., td) ∈ R
d suh that 0 < t1 < ... < td and ϕa map from R

+ → R. Then there exists an integer r and a disjointed sum
(Γi)0≤i≤r of B−raised Brownian motions of index rd suh that

P
(
||Γ0(t1, ..., td) − ϕ(t1, ..., td)||∞ > ε

)
< ε(with the onvention that f(t1, ..., td) designates the vetor of oordinates

(f(t1), ..., f(td)), for all map f from R → R.) "We proeed by indution on d.At the �rst rank, the result yields from inequality in Corollary 4. In this ase,the disjointed sum is nothing but a single sequene of B−raised Brownianmotions.Suppose Pd true.We will apply this hypothesis to the B.M. Bs0 for an integer s0 to be deter-mined later. We will denote w̃ the generi path of Bs0 : w̃ := ws0.Thus there exists a disjointed sum of Bs0−raised Brownian motions of index
rd, Γ̃, suh that :

P(Aε0) > 1 −
ε

4
,where

Aε0 := [‖Γ̃(t1, ..., td) − ϕ(t1, ..., td)‖∞ < ε]As usual, we will denote : ∀i ∈ N, Γ̃i = w̃i.By de�nition, ∀i > rd, w̃
i = ws0+i.From the theorem on density of zeroes, ([M ]), there exists a.s. an integer

ℓ suh that Γ̃ℓ(ω) vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.So there exists an integer ℓ0 whih we will hoose > rd suh that :
P(Aε1) > 1 − 2

ε

4
,where

Aε1 := Aε0 ∩ [L ≤ ℓ0].Our aim is to raise the path w̃ℓ0, whih is nothing but ws0+ℓ0 , from level s0+ℓ0to level 0, in suh a way that the raised path approahes ϕ on [td, td+1], while22



remaining at the proximity of ϕ on [0, td] aquired at level s0, with the usualmeasurability onditions.For this to be realized without damage, we will introdue the family of pro-teting exursions of w̃k : (ẽp
(k)
j )1≤j≤pk

. This family is onstituted by theexursions of w̃k with beginning before td and height greater than ε
′′, andarranged in the reverse hronologial order, for all k from 0 to ℓ0.The pk, 0 ≤ k ≤ ℓ0, are �nite r.v. Let (p0

k)0≤k≤ℓ0 be a sequene of determin-isti integers verifying :
P(Aε2) > 1 − 3

ε

4
,where

Aε2 := Aε1 ∩

(
ℓ0
∩
k=0

[pk ≤ p0
k]

)
.Now, we an modify the proteting exursions : (ẽp

(k)
j )0≤j≤p0

k
is onstitutedof the exursion straddling td and of the p0

k highest exursions before td, ar-ranged in the reverse hronologial order. We denote by tP,so+k
j the beginningof ẽp(k)

j , for all j from 0 to pk0We set :
Λ := {(λk)0≤k≤ℓ0} , λk ∈ {−1,+1}{0,...,p

0
k
} =

ℓ0
Π
k=0

{−1,+1}{0,...,p
0
k
}

∆ := {[nβ, (n + 1)β[; n ∈ Z}{0,...,ℓ0}The partition (Hd+1
ν ) from whih we are going to onstrut Γ is so de�ned :

Nd+1 := Λ × ∆ is denumerable ;
∀(λ, δ) ∈ Λ × ∆ ,

Hd+1
λ, δ :=

⋂ℓ0
k=0

(
[(sgn(ẽpkj ))0≤j≤p0

k
= λk] ∩[w̃ktd ∈ δ(k)]

)To simplify the notations, we will omit the indies λ, δ when there is noambiguity, or else replae them by ν.Set : bδ(k), the beginning of the interval δ(k) and ε(λ, k) :=
k−1

Π
i=0
λi(0).First let us begin by an improvement of Lemma 5 :Lemma 11. Let (0,

−→
i ,

−→
j ) be an orthonormal basis of the plan in whih werepresent paths. Let τa+b be the vertial translation of vetor (b − a)

−→
j and

τa−b the re�etion along the horizontal axis of equation : y =
a+ b

2
.Consider (t, k, p) ∈ Z×N

2 suh that wkt = a and wk+pt = b and denote γt the�rst time posterior to t when at least one of the iterated Lévy transforms ws,23



k ≤ s ≤ k + p− 1, vanishes. Then we have :
wk+p|[t,γt]

=





τa+b owk|[t,γt]
if k+p−1

Π
i=k

wit > 0

τa−b ow−k|[t,γt]
elseWe will denote τkk+p(w) the plan transformation, whih transforms wk|[t,γt]

in
wk+p|[t,γt]

.Proof It is an immediate onsequene of Tanaka's Lemma, when p = 1.In general ase, we break up the displaement τ whih transforms wk|[t,γt]in wk+p|[t,γt]
under the form τ = τp ◦ τp−1 ◦ ... ◦ τ1 where τi transforms wk+i−1|[t,γt]in wk+i|[t,γt]
. From the preeding remark, eah τi is a vertial translation or are�etion along an horizontal axis, aording to the sign of wk+i−1

t . Then wededue the laim.
�Lemma 12. On Hd+1

λ,δ the displaements τ 0
k (w̃) and τ bδ(0) ε(λ,k)bδ(k) di�er from atmost 2β.Proof From lemma 11, these displaements are of the same nature , vertialtranslations or re�etions along the horizontal axis.

• In the ase of a translation, ε(λ, k) = +1, we have :
∀y ∈ R , |τ 0

k (w̃)(y) − τ
bδ(0) ε(λ,k)
bδ(k) (y)| = |w̃ktd − w̃0

td
− (bδ(k) − bδ(0))|

= |w̃ktd − bδ(k) − (w̃td − bδ(0))|

≤ β

• In the ase of a re�etion, ε(λ, k) = −1, we have :
∀y ∈ R , |τ 0

k (w̃)(y) − τ
bδ(0)−
bδ(k) (y)| = |(w̃ktd + w̃0

td
− y) − (bδ(k) + bδ(0) − y)|

= |(w̃ktd − bδ(k)) + (w̃td − bδ(0))|

≤ 2β24



�Lemma 13. Let be given a stopping time J of the reverse �ltration (σ(Bn))n≤r(while values in Z ∩ (−∞; r]), and K a σ(BJ)−measurable N−valued r.v. .Then the r.v. J −K is a stopping time of (σ(Bn))n≤r.Proof For every p ∈ Z ∩ (−∞; r], we have :
[J −K = p] =

⋃

j∈Z, j≥p

[J = j] ∩ [K = j − p].As [K = j − p] ∈ σ(BJ), [J = j] ∩ [K = j − p] ∈ σ(Bj) ⊂ σ(Bp).Hene [J −K = p] ∈ σ(Bp).
�Lemma 14. PlaningLet w belong to W, and t, ε′ ∈ R

+
∗ . We suppose there is no interval on whih

w is onstant.Denote : it0(w) = sup {|ws|; s ∈ [gt(w), t]}, t0(w) = sup {s ∈ [gt, t], |ws| = it0(w)}.
∀n ∈ N, itn+1(w) = sup

{
itn(w) − |ws|; s ∈ [tn(w), t]

}

tn+1(w) = sup
{
s ∈ [tn(w), t]; itn(w) − |ws| = itn+1(w)

}Then (itn(w)) stritly dereases towards 0 or stritly dereases before reahing
0, and (tn(w)) stritly inreases towards t or stritly inreases before reahing
t.Furthermore K(w) = inf {n ∈ N; itn(w) < ε′} is a W−measurable N−valuedr.v. .Proof By onstrution, the sequenes (itn) and (tn) are respetively pos-itive dereasing and inreasing bounded from above by t. So they onverge.Set it the limit of (itn) and τ that of (tn).Suppose it > 0. Then the osillation of w is in�nite at the neighbor of τ ,whih is in ontradition with the ontinuity of w. So it = 0.25



Suppose τ < t. Then w is onstant in [τ, t], whih ontradits our hypothesis.So τ = t.Now, if itn+1 = itn for some n in N, then, by onstrution, for all p ≥ n,
itp = itn, and it is the same thing for (tn).Finally the measurability of K is immediate.

�Now, the following proposition plays the part of Lemma 6 and proposition4 (i) :Proposition 7. (i) The r.v. J0 = 1+sup{n ≤ s0+l0, B
n vanishes on (td, td+1)}with sup ∅ = −∞, and J0−1 are stopping times of (σ(Bn))n≤s0+l0 suhthat J0 > s0 + rd on Aε1.For all (ω, n) ∈ Ω× Z ∩ (−∞, s0 + l0] verifying : J0(ω) ≤ n, we de�ne: Γn(ω) = Bn(ω). So, ΓJ0 = BJ0 = C0.The r.v. K(BJ0−1) (notation of Lemma 14) is σ(BJ0)−measurable. So: J ′

0 = J0 − 1 −K(BJ0−1) is a stopping time.(ii) We an de�ne N n(ω), Σn(ω), Cn(ω) and |Cn+1(ω)|, for all n < J0−J ′
0on the event Dε

1 = [BJ0−1 vanishes on (td, td+1)], in suh a manner that∣∣∣ΓJ
′

0
td+1

∣∣∣ =
∣∣∣CJ0−J ′

0
td+1

∣∣∣ < ε′ on this event whih is of probability 1.
∥∥∥ΓJ

′

0

|[0,td] − ΓJ0

|[0,td]

∥∥∥
∞
< Kε

′′On the omplementary event of Dε
1, we naturally set N n = ∅.Proof The �rst assertions are nothing but immediate onsequenes of de�-nitions and Lemmas 13 and 14. Now we are going to show that a.s. J0 hasvalues in Z ∩ (−∞, r].For all integer n ≥ r and all a, b reals suh that a < b, letAn = [∃i ∈ [r, n], Bi vanishes in (a, b)].Then the sequene (An)n≤r is dereasing (for the inlusion).Let A′

r−n = [∃i ∈ [0, r − n], Bi vanishes in (a, b)]. The sequene (A′
r−n)n≤ris itself dereasing.Sine (Bi)r≥i≥n and (Bj)0≤j≤r−n have the same law,

∀n ≤ r, P(A′
r−n) = P(An)So,

P
(
∃i ∈ (−∞, r], Bi vanishes in (a, b)

)
= lim

n→−∞
P(An) = lim

n→∞
P(A′

r−n)

= P
(
∃i ∈ [0,+∞), Bi vanishes in (a, b)

)

= 1 from [M℄26



In order to de�ne properly N 0 and Σ0 on Dε
1, we apply Lemma 9, with

e1, . . . , em denoting the td−exursions of BJ0−1 of height greater than ε′′, theexursion straddling td+1, and t = td+1, η = ε′. This step de�nes N 0, Σ0, C1and |C2|.Then it remains to apply this method K(BJ0−1)−times more in exatly thesame way, to de�ne N n, Σn and Cn+1 for all n, on the event [n ≤ J0 − J ′
0].Then it is easily veri�ed that, on Dε

1, we have :
∣∣∣ΓJ

′

0
tf+1

∣∣∣ < ε′.

�Then we are oming to the analog of Lemma 8 and Proposition 4 (ii) :Proposition 8. There exists a σ(BJ ′

0+1)−measurable, N−valued r.v. K ′suh that there exists K ′ − 1 r.v. P1, . . . , PK ′−1 themselves with values in Nand σ(BJ ′

0+1)−measurable suh that :(i) the K ′−1 exursion intervals eP1(Γ
J ′

0), . . . , ePK′
−1

(ΓJ
′

0) are disjoint andinluded in (td, td+1).(ii) the heights H1, . . . , HK ′−1 of these K ′ − 1 exursions of ΓJ
′

0 verify on
Dε

1 :
∣∣∣τ bδ(0) ε(λ,k)bδ(J0−s0−1)(ϕ(td+1))

∣∣∣−ε′ < H1+· · ·+HK ′−1 <
∣∣∣τ bδ(0) ε(λ,k)bδ(J0−1−s0)

(ϕ(td+1))
∣∣∣+ε′.Proof The transposition of Lemma 8 and Proposition 4 (ii) to this newontext is immediate beause J ′

0 is a stopping time.
�So we have prepared the following raises. The following proposition indiates,as Proposition 4 and 5, the mean by whih the raised paths are realized,namely the orresponding values of N n and Σn.Proposition 9. For all (n, ω) suh that J0(ω)−J ′

0(ω) ≤ n < J0(ω)−J ′
0(ω)+

K ′(ω), N n(ω) and Σn(ω) an be hosen so that :(i) 0 ≤ C
J0−J ′

0
td+1

< ε′ and ‖Γ̃J0−1−s0
|[0,td] − C

J ′

0−J0

|[0,td] ‖∞ < (J0 − J ′
0)ε

′′.(ii) −(I ◦ CJ0−J ′

0)(td+1) = HK ′−1 27



(iii) CJ0−J ′

0 has K ′ − 2 tall exursions inluded in (td, td+1) : E1 < E2 <
· · · < EK ′−2 with respetive heights H1, . . . , HK ′−2 verifying

∣∣∣i
CJ0−J′

0
E1

∣∣∣ <
∣∣∣i
CJ0−J′

0
E2

∣∣∣ < · · · <
∣∣∣i
CJ0−J′

0
EK ′−2

∣∣∣ .(iv) HK ′−n+1 + · · ·+HK ′−1 ≤ Cn
td+1

< HK ′−n+1 + · · ·+HK ′−1 + ε′ + nK ′ε′′.(v) HK ′−n < −(I ◦ Cn)(td+1) < HK ′−n +K ′ε′′.(vi) Cn has K ′ − n − 2 tall exursions inluded in (td, td+1)E
n
1 < · · · <

En
K ′−n−2 suh that : |iCnEn

1 | < · · · < |iCnEK ′−n−2| < ε′′, and whoseheights Hn
1 , . . . , H

n
K ′−n−1 satisfy :

Hl ≤ Hn
l < Hl + nε′′ for n + 1 ≤ l < K ′ − 1.Proof Here again, the proof is idential with that of Propositions 4 and 5.

�Otherwise, at eah of the J0 − J ′
0 raises, eah proteted td−exursion of theraised path (i.e. the fi's) reeives a small exursion (one of the gi's) of heightlower than ε′′ and during this proedure its support inreases. So we an saythat the ẽpJ0−s0

k of Γ̃J0−s0−1 are "onserved" with the meaning that for eah ofthem we an �nd an exursion of ΓJ
′

0 whih ontains its support and whoseheight is that of the exursion of Γ̃J0−s0−1 inreased of at most K(B1+J0)times ε′′.For the non proteted td−exursions of Γ̃J0−s0 = BJ0, they are not onservedin general, but it is easily seen that, on the union of their supports, the heightof Γj
′

0 never goes beyond K(B1+J0) times ε′′, in the same manner.At this point, it remains to give to the proteted td−exursions of thenext raise the sign, whih is in memory, they had at level J0, and to theexursion straddling td+1 the sign of τ bδ(0) ε(λ,k)bδ(J0−s0−1)(ϕ(td+1)). It is the role of theProposition 10. (analog of Proposition 6)It is possible to hoose N n(ω) and Σn(ω), for all (n, ω) suh that n = J0(ω)−
J ′

0(ω) +K ′(ω), in order to have(23) ∣∣∣CJ0−J ′

0+K
′

td+1
− τ

bδ(0) ε(λ,k)
bδ(J0−s0−1)(ϕ(td+1))

∣∣∣ < ε′ +
1

2
(K ′ − 1)(K ′ − 2)ε′′(24) ∥∥∥CJ0−J ′

0+K
′

|[0,td] − Γ̃
J ′

0−K
′−s0

|[0,td]

∥∥∥
∞
< (J0 − J ′

0 +K ′)ε′′28



Proof In this last raise, the proedure di�ers only by the fat that we give tothe proteted exursions the sign they had at level J0 − 1, and the exursionstraddling td+1 the onvenient sign. so we dedue the laimed results in thesame manner.
�Following Lemma 13, we remark one again that the r.v. J ′

0 −K ′ is a stop-ping time. We all it J ′′

0 .So we have ahieved the last "horizontal" raise, whose aim was only to or-retly on�gure the path at time td+1 (without damage in [0, td]). Let usonsider that ΓJ
′′

0 (ω) (or CJ0−J
′′

0 (ω)) as being really at level J0 − 1.To formalize this idea, we introdue the partially (for the time...) de�nedr.v. RLn :
RLn(ω) = J0(ω) − 1 iff J0(ω) − 1 ≥ n ≥ J

′′

0 (ω)

and RLn(ω) = n iff n ≥ J0(ω).The following raises will be "vertial", i.e. will verify : RLn−1(ω) = RLn(ω)−
1 while the path Γn(ω) will not vanish in (td, td+1) and RLn(ω) < s0. Theorresponding proedure is expressed in the :Proposition 11. It is possible to de�ne N n(ω), Σn(ω) and RLJ0−n−1 in-dutively on the event [n ≥ J0 − J

′′

0 ] if Cn(ω) doesn't vanish in (td, td+1) and
RLJ0−n(ω) > s0, in suh a way that :(i) ∥∥∥Cn

|[0,td] − Γ̃
RLJ0−n−s0
|[0,td]

∥∥∥
∞
< 2n−J0+J

′′

0 ε′′(J0 − J
′′

0 ).(ii) ∣∣∣Cn
td+1

(ω) − τ
bδ(0) ε(λ,k)
bδ(RLJ0−n−s0)

(ϕ(td+1))
∣∣∣ < ε′′ + 2n−J0+J

′′

0 ε′′.Proof We �rst reall that when we know Cn−1(ω), we know also wether Cnvanishes in (td, td+1). If it isn't the ase, we put :
RLJ0−n−1(ω) = RLJ0−n(ω) − 1,and de�ne N n(ω) and Σn(ω) as we do in Proposition 9; but this time theounting of "errors" is radially di�erent. It an happen between 0 and tdthat an exursion whih was proteted before beome negative and, in thefollowing raise, is going to add to another proteted exursion. So, at eahvertial raise, the "errors" are double of those of the preeding raise. Hene29



the result in (ii).In the same manner the exursion straddling td+1 reeives an exursion withbeginning in [0, td]. So, to the errors soon aquainted at level J ′′

0 , we mustadd the error between 0 and td of the preeding level whih entails (i).
�So we have de�ned RLn on the event

[J
′′

0 ≥ n] ∩




n⋂

i=J
′′

0 −1

[Γn doesn′t vanish in (td, td+1)]


 ∩

[
J

′′

0 − n ≤ l0

]
,partiularly on the event :

[J
′′

0 − 1 ≥ n] ∩




n⋂

i=J
′′

0 −1

[Γn doesn′t vanish in (td, td+1)]


 ∩

[
J

′′

0 − n = l0

]
,

RLn reahes s0. We set :
J1 = 1 + sup

{
k < J

′′

0 , Γk vanishes in (td, td+1) or RLk = s0

}
.Let us notie that the proedure used for the raises from level J0 to J1 anbe repeated as many times as RLn(ω) > s0. So, we set indutively : on[

RLJn−1 = s0

]
, J

′′

n−1 = Jn−1else J ′′

n−1 is onstruted from Jn−1, as J ′′

0 was from J0 in Propositions 6 and7, and :
Jn = 1 + sup

{
k < J

′′

n−1, Γk vanishes in (td, td+1) or RLk = s0

}Let us denote hzn(ω) (resp. vtn(ω)) the number of horizontal (resp. vertial)raises from level J0 to level J0 − n having a�eted the path Cn(ω).So hzn(ω) + vtn(ω) = n.Then we an state :Proposition 12. (i) The r.v. RLn are σ(Bn)−measurable, while the hznand vtn one's are σ(BJ0−n)−measurable, and the Jn, n ∈ N, are stop-ping times.(ii) It is possible to de�ne N n and Σn on the event [J ′′

k−1 ≥ n ≥ Jk
] in suha manner that :(a) ∥∥∥Cn

|[0,td] − Γ̃
RLJ0−n−s0
|[0,td]

∥∥∥
∞
< hznε

′′2vtn30



(b) ∣∣∣Cn
td+1

− τ
bδ(0) ε(λ,k)
bδ(RLJ0−n)(ϕ(td+1))

∣∣∣ < ε′ + hznε
′′2vtnProof(i) From their very de�nition, the r.v. RLn, hzn and vtn are respetively

σ(Bn) and σ(BJ0−n)−measurable. For the nature of the Jn, we proeedby indution. The result is known for n = 0 ; suppose it is true for
n− 1. Then, for all p ∈ N, we have :
[Jn = p] =

[
J

′′

n−1 > p− 1
]
∩
[
Γp−1 vanishes in (td, td+1)

]
∪[RLp−1 ≥ s0]From the hypothesis and Lemma 13, J ′′

n−1 is a stopping time, whihentails : [
J

′′

n−1 > p− 1
]
∈ σ(Bp)and from the fat that RLp−1 is σ(Bp)−measurable,

[RLp−1 ≥ s0] ∈ σ(Bp) too.Finally we know that :
[
Γp−1 vanishes in (td, td+1)

]
∈ σ(Bp).Hene [Jn = p] ∈ σ(Bp), and Jn is a stopping time.(ii) We have already seen that, when a raise is horizontal, the error on theinterval [0, td] inreases of at most ε′′, but when a raise is vertial, wemust multiply it by two.As there are hzn horizontal raises, and vtn vertial one's, we majorizethe total error on [0, td] between levels J0 and J0 − n by :

hznε
′′ +

J0−n+1∑

i=J
′′

k

2vtJ0−i (hzJ0−iε
′′) .For the error at time td+1, it is lower than ε′ at level J ′′

k , if [J ′′

k ≥ J0 − n ≥ Jk+1

].Then, at eah of the n− (J0 −J
′′

k ) following raises, the exursion strad-dling td+1 reeives an exursion from [0, td], hene the total error attime td+1 is majored by :
ε′ +

J0+(n−1)∑

i=J
′′

k

2vtJ0−i (hzJ0−iε
′′) =

J0+(n−1)−J
′′

k∑

k=0

2
vt

J0−J
′′

k

+k
(
hzJ0−J

′′

k
ε′′
)

+ ε′

= 2
vt

J0−J
′′

k

(
2J0+n−J

′′

k − 1
) (

hzJ0−J
′′

k
ε′′
)

+ ε′

≤ 2vtn (hznε
′′) + ε′.31



�Proposition 13. The r.v. S = sup{n ∈ Z;RLn = s0}, sup ∅ = −∞, is astopping time.Furthermore, the law of S − s0 doesn't depend upon s0 and ε′′.Proof For all p ∈ Z, [S = p] = [RLp = s0] ∩ [RLp+1 > s0]. As RLp is
σ(Bp+1)−measurable, we onlude [S = p] ∈ σ(Bp), hene S is a stoppingtime.Furthermore the r.v. S−s0 is one whih ounts the number of raises neessaryto obtain exatly l0 vertial raises. Clearly its law doesn't depend upon s0and ε′′ (but it depends upon ε′).Otherwise at eah level Jn (of return to its beginning of the raising proess)we notie that the r.v. vtk inreases at least one unity between levels Jn and
Jn−1. So S is �nite. From this point, the last part of the statement is easilydedued.

�From Propositions 11 and 12, we an laim that there exists a sequene
(Cn)n≤J0−S assoiated withN n, Σn as in Proposition 3, at whih we assoiatethe sequene (Γn)n≤S, satisfying on Aε1 :

∥∥∥ΓS|[0,td] − Γ̃0
|[0,td]

∥∥∥
∞

< hzJ0−Sε
′′ + 2l0hzJ0−Sε

′′ =
(
1 + 2l0

)
ε′′hzJ0−S(25)

∣∣∣ΓStd+1
− ϕ(td+1)

∣∣∣ < ε′ + 2l0 (ε′′hzJ0−S) .(26)Before ompleting the onstrution of the disjointed sum of Brownianmotions it is now neessary to restrain ourselves at a �nite number of Γ
′

ν , inorder to de�ne a s0 large enough (but not in�nite...) to put the Sν ≥ 0 witha big probability.As the (Hν)ν∈Nd+1
onstitute a denumerable partition of Ω, it su�es tohoose a �nite part Π of Nd+1 suh that :

P(Aε4) > 1 − 4
ε

4
, where Aε4 =

(
⋃

ν∈Π

Hν

)
∩Aε2.Proposition 14. There exists an integer s0, suh that :

∀ν ∈ Π, Sν ≥ 0 on the event Aε432



Proof It is immediate sine the law of eah Sν − s0, ν ∈ Π �nite, doesn'tdepend upon s0.
�From now on, we hoose suh a s0 (the smallest...).At this point, we pursue the onstrution of the (Γnν) for all n ≥ 0 and ν ∈ Πas in Proposition 6.Proposition 15. On the event [S ≥ n ≥ 0], it is possible to de�ne N J0−n,

ΣJ0−n, CJ0−n
ν and Γnν in suh a way that : on the event Hν∩ [S ≥ n ≥ 0], ν ∈

Π

‖Γ0
ν,|[0,td] − Γ̃0

|[0,td]‖∞ < 2
(
Sν − 1 + hzJ0−Sν

(2l0 + 1)
)
ε
′′(27)

|Γ0
ν,td+1

− ϕ(td+1)| < 2
(
β + ε′ + ε

′′

(S + 2l0hzJ0−Sν
)
)(28)Proof At eah raise from level S to level 1, it su�es to protet all theexursions of CJ0−n−1 of height greater than ε′′. This ondition, sine S isa stopping time, de�nes entirely N J0−n−1 and ΣJ0−n−1, so CJ0−n and Γn onthe event [S ≥ n− 1 ≥ 0].At eah of these S raises, eah proteted exursion reeives a small exursionof height lower than ε′′ . And this situation is the worse for a non protetedexursion. So :

‖Γn|[0,td+1]
− Γn−1

|[0,td+1]
‖∞ < ε

′′Hene
‖|Γ1

|[0,td]| − |Γ̃0
|[0,td]|‖∞ <

(
S − 1 + hzJ0−S(2

l0 + 1)
)
ε
′′

|Γ1
td+1

− |Γ̃0
td+1

|| < ε′ + ε
′′
(
S + 2l0hzJ0−S

)
+ β.Finally, for the last raise, we give to the proteted exursions of Γ1 the signof the orresponding exursions of Γ̃0, whih determines N J0, ΣJ0, CJ0 and

Γ0 in suh a manner that :
‖Γ0

ν,|[0,td] − Γ̃0
|[0,td]‖∞ < 2

(
S − 1 + hzJ0−S(2

l0 + 1)
)
ε
′′

|Γ0
td+1

− ϕ(td+1)| < 2
(
β + ε′ + ε

′′
(
S + 2l0hzJ0−S

))
.beause eah positive exursion reeives a negative one, so the errors add oneby one, hene they multiply by two. 33



Now we introdue the disjointed sum Γ =
∑
ν

1Hν
Γν . Then we an rephrasethe preeding assertions :on the event Aε4

‖Γ0
|[0,td] − Γ̃0

|[0,td]‖∞ < 2s0

(
1 + 2l0 + 1

)
ε
′′(29)

|Γ0
td+1

− ϕ(td+1)| < 2
(
β + ε′ + s0(1 + 2l0)

)
ε
′′

.(30)beause on this event, l0 ≤ S ≤ s0.
�Proposition 16. The proess Γ we have thus de�ned is a disjointed sum of

B−raised Brownian motions of index r = s0 + l0.Proof It su�es to notie that the r.v. Jn and S are stopping times ofthe reverse �ltration (σ(Bn))n≤r. Consequently the r.v. N n and Σn are
σ(BJ0−n)−measurable, as required by Proposition 3.

�Finally we hoose ε′ = β = ε
6
and ε′′ = ε

6s0(2+2l0 )
.The last hoie is permitted beause the law of S doesn't depend upon ε′′.So we have proved theProposition 17. For every ε > 0, there exists a disjointed sum of B−raisedBrownian motions verifying :

P (|Γ(t1, . . . , td+1) − ϕ(t1, . . . , td+1)| < 2ε) > 1 − ε.Proof It is immediate from the hypothesis of indution, inequalities (1) and(2) and Proposition 14.
�We dedue immediately that Pd+1 is true. Hene Pd is true for every d ∈ N.Now we an state :Theorem 1. (d−density of paths)

∀ε > 0∀(t1, . . . , td+1) ∈ (R+
∗ )d

P
(
∀n ≥ 0, ∃i from 1 to d, |Bn

ti
− ϕ(ti)| > ε

)
< ε.34



Proof At this point, it is an immediate onsequene of Proposition 1 : itsu�es to hoose for G the omplementary event of {w ∈W ; ‖w(t1, . . . , td)−
ϕ(t1, . . . , td)‖∞ ≤ ε} and apply Proposition 15.

�

35



3 Density of orbitsIn this paragraph, we want the raised path to approah the map ϕ uniformlyon [0, 1]. The additional di�ulty is twofold : �rst, to protet what has al-ready been obtained on the whole segment [0, td] (whih has already begun inthe preeding paragraph, with the introdution of ‖ ‖∞); seondly, to or-retly on�gure the path on the whole segment [td, td+1]. Only a more preiseanalysis of the Lévy Transform, obtained at lemma 15, enables a fruitful uti-lization of the methods settled in the preeding paragraphs. Through a bestknowledge of raises, we an show that the disjointed sum of B−Brownianmotions furnished by the algorithm ome up to the requirements of the fol-lowing property we propose to show in this paragraph :Whatever ε stritly positive, and ϕ ∈W|[0,1]
, there exists a disjointed sum

Γ of B−raised Brownian motions suh that :
P

(
‖Γ|[0,1]

− ϕ|[0,1]
‖∞ < ε

)
> 1 − εWe onsider a modulus of uniform ontinuity α0 assoiated to (ε

4
, ϕ, [0, 1]

)and a real number α1 suh that P (A0 ε) > 1 −
ε

2
where

A0 ε =
[
sup{|Bt − Bu|, (t, u) ∈ [0, 1]2 and |t− u| < α1} <

ε

2

]
,then we set α := min(α0, α1), d0 :=

[
1
α

]
+ 1, and for all d ∈ N, td = (dα)∧ 1.We set again, for all integer d ∈ [1, ..., d0],

Adε :=
[
sup{|Bt − Bu|, (t, u) ∈ [td, 1]2, |t− u| < α} <

ε

2

]
.Our aim is to show, by indution on d, the following property Pd : " Forall ε > 0, there exists an integer rd and a disjointed sum Γ of B−raisedBrownian motions of index rd suh that :

P

([
‖Γ|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩ [|Γtd − ϕ(td)| < ε1] ∩ A

d
ε

)
> 1−ε

(
1 +

d

d0

)
”Notie that P0 immediately yields from the hoie of α1. We suppose now

Pd true. We are going to apply this hypothesis to the Brownian motion Bs0,for an integer s0 whih, as the real number ε1, will be later spei�ed.As Adε ⊂ [sup{|Bt − Bu|, (t, u) ∈ [td, td+1]
2} < ε

2

]
∩Ad+1

ε , and from the inde-pendene of the inrements of Brownian motion, we an dedue the existene36



of a disjointed sum Γ̃ of Bs0−raised Brownian motions of index rd suh that:
P(Aε0) > 1 − ε

(
1 +

d

d0

)
,where

Aε0 :=
[
‖Γ̃|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩
[
|Γ̃td − ϕ(td)| < ε1

]
...

... ∩
[
sup{|Bs0+rd

t −Bs0+rd
u |, (t, u) ∈ [td, td+1]

2} <
ε

2

]
∩Ad+1

εWe will denote : ∀i ∈ N, Γ̃i = w̃i. By de�nition, ∀i > rd, w̃
i = ws0+i.From the theorem of density of zeroes ([M℄), there exists a.s. an integer ℓsuh that w̃ℓ vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.Then there exists an integer ℓ0 whih we will hoose > rd suh that :

P(Aε1) > 1 − ε

(
1 +

d

d0

)
−

ε

3d0

où Aε1 := Aε0 ∩ [L ≤ ℓ0] .Our aim is to raise the path w̃ℓ0, whih is nothing but ws0+ℓ0 from level s0+ℓ0to level 0, in suh a way that the raised path approahes ϕ on [td, td+1] whileremaining at the proximity of ϕ on [0, td] aquired at level s0, with usualmeasurability ondition. For this to be realized, without damage, we will in-trodue the family of proteting exursions of w̃k, (ẽp
(k)
j )1≤j≤pk

, onstitutedby the exursions of w̃k with beginning before td and height greater than ε′′and arranged in the reverse hronologial order, for all k from 0 to ℓ0.The pk, 0 ≤ k ≤ ℓ0, are �nite r.v . Let (p0
k)0≤k≤ℓ0 be a sequene of determin-isti integers verifying :

P(Aε2) > 1 − ε

(
1 +

d

d0

)
−

2ε

3d0where
Aε2 := Aε1 ∩

(
ℓ0
∩
k=0

[pk ≤ p0
k]

)
.The notions to follow are just neessary for �ne analysis of the Lévy rais-ing.For our needs, we will allm−exursion eah map e : R

+ → R whose supportis a not empty segment and whih doesn't vanish at any point of the interiorof the support. In partiular, for w ∈W and t > 0, we will all m−exursionstraddling t, and denote it by : et(w), the map so de�ned :37



et(w) : R
+ → R, ∀u ∈ R

+, et(w)(u) =

{
0 if u ∈ [0, gt(w)] ∪ [dt(w),+∞[
wu elseWe will introdue the map det(w) : R

+ → R de�ned by
∀u ∈ R

+, det(w)(u) =





0 if u ∈ [0, t] ∪ [Rt(w),+∞[where Rt(w) = sup{u > t, ∀s ∈]t, u], ws 6= wt}
wu − wt elseand we all it a di�erential m− exursion of w.We denote them et and det when there is no ambiguity, and est and dest inthe ase of exursions of ws.Lemma 15. Let w ∈ W and e a negative m−exursion of Tw, lower thanall preeding it. Let γ be its beginning and δ its end. We set :

γ1 = arg min Tw
[0,γ]

, γ2 = inf{t ∈ supp(e); e(t) = Twγ1}, γ3 = arg min e
[γ,δ]Then :





deγ1 oinides with an exursion of |w|, and its support is [γ1, γ2]
deγ3 oinides with an exursion of |w|, whih begins at γ3 and whosesupport ontains [γ3, δ]Furthermore, ∀u ∈ [γ2, γ3], deu oinides with an exursion of |w|, if, andonly if : {

deu is a positive exursion
e(u) = inf{e(t), t ∈ [γ, u]}It is the ase in partiular when deu is the �rst positive exursion of the form

dev, v ∈ [γ2, γ3] to over�ow a given value.ProofFrom Tanaka's formula :
|wt| = Twt + sup{−Twu, u ∈ [0, t]}Therefore,

|wγ1 | = Twγ1 −Twγ1 = 0,while, for all t > γ1, su�iently small :
Twt > Twγ1.38



So, deγ1 is a positive exursion of |w| whih ends at γ2.In the same way, Twt > Twγ3, for all t ∈ [γ3, δ], therefore deγ3 is an exursionof |w| beginning at γ3 whose support ontains [γ3, δ].Let e′ be an exursion of w with support inluded in [γ2, γ3]. Its beginning
u, and its end v verify :

u = arg
[0,v[

min Tw and v = arg
[0,v]

min Tw.So we dedue : deu = |e′|.Reiproally, let u ∈ [γ2, γ3] suh that deu is a positive exursion and
u = arg

[0,u]

min Tw.Then, u = arg
[0,v[

min Tw, where w is the end of deu, beause deu is positive.Thus, wu = wv = 0, and for all t ∈]u, v[, wt 6= 0.Consequently, deu is an exursion of |w|.Let h > 0 be suh that there exists u ∈ [γ2, γ3] verifying deu is the �rstpositive exursion of the form dev, v ∈ [γ2, γ3], whose height over�ows h.Then, for all v < u, the support of dev an't ontain this of deu withoutdenying the minimality of u.
�We set :

Λ := {(λk)0≤k≤ℓ0} , λk ∈ {−1,+1}{0,...,p
0
k
} =

ℓ0
Π
k=0

{−1,+1}{0,...,p
0
k
}

∆ := {[nβ, (n + 1)β[; n ∈ Z}{0,...,ℓ0} .The partition (Hd+1
ν ) from whih we are going to onstrut Γ is so de�ned :

ν ∈ Nd+1

Nd+1 := Λ × ∆ is denumerable;
∀(λ, δ) ∈ Λ × ∆ ,

Hd+1
λ, δ :=

⋂ℓ0
k=0

(
[(sgn(ẽpkj ))0≤j≤p0

k
= λk] ∩ [w̃ktd ∈ δ(k)]

)Set : bδ(k), the beginning of the interval δ(k) and ε(λ, k) :=
k−1

Π
i=0
λi(0).Lemma 16. (analog of lemma 12)On Hd+1

λ,δ the displaements τ 0
k (w̃) and τ bδ(0) ε(λ,k)bδ(k) di�er from at most 2β.Proof See the proof of lemma 10.39



�This lemma allows us to replae the value to be antiipated τ 0
k (w̃)(ϕ(td+1)),whih doesn't have the good measurability by τ bδ(0) ε(λ,k)bδ(k) (ϕ(td+1)) on Hλ,δ.The purpose of the following lemma is to prepare, at level s, when the iter-ated Brownian motion vanishes on ]td, td+1[, the exursions whih will allowthe orretly raised path to approah ϕ at level 0 on ]td, td+1[. It is the anal-ogous of lemma 14.Lemma 17. Full planing.Let w belong to W , and t, t′, ε′ ∈ R

+
∗ be suh that t < t′. We suppose thereis no interval in whih w is onstant, and w vanishes in (t, t′).The following r.v. are funtionals of |w| :

• t0(w) = ginf{s>dt;|ws|≥ε′}.
• ∀n ∈ N, while tn < t′, we set :
tn+1 :=





inf{u ∈ [tn; arg max |detn|[, h(deu) > ε′ and sgn(deu) = −sgn(detn)}if this set is not empty,else :
arg max |detn| ∧ tThe sequene (tn)n∈N is stritly inreasing and �nite. Let 1 + K(w) be itsardinality.Proof By onstrution, the sequene (tn) is stritly inreasing and lowerthan t′. Suppose the number of its terms is in�nite. In this ase, it wouldadmit a limit t∗ ≤ t′, and the osillation of w at t∗ would be in�nite, soontraditing the ontinuity of w. Then (tn)n is �nite.The measurability and the �niteness of Ks are immediate.The remaining of the proof follows the same way as in the proof of Lemma14.

�Let us remark that this Lemma gives us the possibility of planing the pathafter dt in K raises.For, during the �rst raise, we put negative the exursion straddling t andpositive all the other exursions in (0, t′) of height greater than ε′. Thenduring the seond raise, we put negative the exursion whose support ontains40



this of det1 , and so on. At the end of suh K raises, the path on [t0, t
′] hasan absolute value whih doesn't exeed ε′ + Kε

′′, and ε′ on the exursionstraddling t′.Now Proposition 7 applies with very few hanges :Proposition 18. (i) The r.v. J0 = 1+sup{n ≤ s0+l0;B
n vanishes on (td, td+1)}with sup ∅ = −∞, and J0−1 are stopping times of (σ(Bn))n≤s0+l0 suhthat J0 > s0 + rd on Aε1, and P(J0 = −∞) = 0.For all (ω, n) ∈ Ω× (Z ∩ (−∞, s0 + l0]) verifying J0(ω) ≤ n, we de�ne

Γn(ω) = Bn(ω). So, ΓJ0 = BJ0 = C0.The r.v. K(BJ0−1) (notation of Lemma 17) is σ(BJ0)−measurable. So
J

′

0 = J0 − 1 −K(BJ0−1) is a stopping time.(ii) We an de�ne N n(ω), Σn(ω), Cn(ω) and |Cn+1(ω)| for all n < J0 − J
′

0on the event Dε
1 = [BJ0−1 vanishes on (td, td+1)], whih is of probability

1, in suh a manner that : ∣∣∣∣ΓJ ′

0
td+1

∣∣∣∣ =

∣∣∣∣C
J0−J

′

0
td+1

∣∣∣∣ < ε′ on this event, andwe have
∥∥∥∥Γ

J
′

0

|[0,td] − ΓJ0

|[0,td]

∥∥∥∥
∞

< K(BJ0−1)ε
′′

and

∥∥∥∥Γ
J
′

0

|[t0(BJ0−1),td+1]

∥∥∥∥
∞

=

∥∥∥∥C
J0−J

′

0

|[t0(BJ0−1),td+1

∥∥∥∥
∞

< ε′

∣∣∣∣Γ
J
′

0
td+1

∣∣∣∣ < ε′.Proof It is exatly the same as in Proposition 7, exept the last point whihis an immediate onsequene of Lemma 17.
�Then we are oming to the analog of Proposition 8 :Proposition 19. There exists a σ(BJ

′

0+1)−measurable, N−valued r.v., K ′

J0suh that there exists K ′

J0
− 1 r.v. P1, . . . , PK ′

J0
−1 themselves with values in

N and σ(BJ
′

0+1)−measurable, suh that :(i) the K ′

J0
− 1 exursion intervals eP1(Γ

J
′

0), . . . , eP
K

′

J0
−1

(ΓJ
′

0) are disjointand inluded in (td, td+1) 41



(ii) the heights H1, . . . , HK ′−1 of these K ′ − 1 exursions of ΓJ
′

0 satisfy on
D1
ε :

∣∣∣τ bδ(0) ε(λ,k)
bδ(J

−s0−1
0 )

(ϕ(td+1))
∣∣∣−ε′ < H1+· · ·+HK

′

J0
−1 <

∣∣∣τ bδ(0) ε(λ,k)
bδ(J

−1−s0
0 )

(ϕ(td+1))
∣∣∣+ε′.Proof (See Proposition 8)

�Often in the sequel, we will denote K ′
J0
simply by K', if there is no ambiguity.And likely we repeat word by word Proposition 9 :Proposition 20. For all (n, ω) suh that J0(ω) − J ′

0(ω) ≤ n < J0(ω) −
J ′

0(ω) +K ′(ω), N n(ω) and Σn(ω) an be hosen so that :(i) 0 ≤ C
J0−J ′

0
td+1

< ε′ and ‖Γ̃J0−1−s0
|[0,td] − C

J ′

0−J0

|[0,td] ‖∞ < (J0 − J ′
0)ε

′′.(ii) −(I ◦ CJ0−J ′

0)(td+1) = HK ′

J0
−1(iii) CJ0−J ′

0 has K ′ − 2 tall exursions inluded in (td, td+1) : E1 < E2 <

· · · < EK ′−2 with respetive heights H1, . . . , HK ′−2 verifying ∣∣∣iCJ0−J′

0
E1

∣∣∣ <∣∣∣i
CJ0−J′

0
E2

∣∣∣ < · · · <
∣∣∣i
CJ0−J′

0
EK ′−2

∣∣∣.(iv) HK ′

J0
−n+1 + · · ·+HK ′

J0
−1 ≤ C

n+J0−J ′

0
td+1

< HK ′

J0
−n+1 + · · ·+HK ′

J0
−1 + ε′ +

nK ′ε′′.(v) HK ′

J0
−n < −(I ◦ Cn+J0−J ′

0)(td+1) < HK ′

J0
−n +K ′

J0
ε′′.(vi) Cn has K ′

J0
− n − 2 tall exursions inluded in (td, td+1)E

n
1 < · · · <

En
K ′

J0
−n−2 suh that : |iCnE1| < · · · <

∣∣∣∣iCnEK′

J0
−n−2

∣∣∣∣ < ε′′, and whoseheights Hn
1 , . . . , H

n
K ′

J0
−n−2 satisfy :

Hl ≤ Hn
l < Hl + nε′′ for n+ 1 ≤ l < K ′

J0
− 1.Proof The same Proposition, the same proof.

�In our pursuit of the proedure in paragraph 2, we are now rephrasing Propo-sition 10 : 42



Proposition 21. It is possible to hoose N n(ω) and Σn(ω), for all (n, ω)suh that n = J0(ω) − J ′
0(ω) +K ′

J0
(ω), in order to have :(i) ∥∥∥C

J0−J ′

0+K
′

J0

|[0,td] − Γ̃
J ′

0−K
′

J0
−s0

|[0,td]

∥∥∥
∞
<
(
J0 − J ′

0 +K ′
J0

)
ε′′(ii)

∣∣∣C
J0−J ′

0+K
′

J0
td+1

− τ
bδ(0) ε(λ,k)
bδ(J0−s0−1)(ϕ(td+1))

∣∣∣ < ε′ +
1

2
(K ′

J0
− 1)(K ′

J0
− 2)ε′′and

∥∥∥C
J0−J ′

0+K
′

J0

(td+1) − Γ̃
J0−J ′

0+K
′

J0

|[t0(BJ0−1),td+1]

∥∥∥
∞
< ε′ +

1

2
(K ′

J0
− 1)(K ′

J0
− 2)ε′′Proof For the additional part in (ii), we notie that the building exursionswhih appear in Proposition 18, the eP0(Γ

J ′

0)'s, are suessively proteted.One proteted, eah of them reeives a small exursion of height lower than
ε′′ at eah raise. So we dedue (ii).

�Let us denote J ′′

0 := J ′
0 −K ′

J0
(w).Similarly Proposition 11 beomes :Proposition 22. It is possible to de�ne N n(ω), Σn(ω) and RLJ0−n(ω) in-dutively on the event [n ≥ J0 − J

′′

0 ] if Cn(ω) doesn't vanish in (td, td+1) and
RLJ0−n(ω) > s0, in suh a way that :(i) ∥∥∥Cn

|[0,td] − Γ̃
RLJ0−n−s0
|[0,td]

∥∥∥
∞
< 2n−J0+J

′′

0 ε′′(J0 − J
′′

0 ).(ii) ∥∥∥Cn
|[t0(BJ0−1),td+1]

− Cn
td+1

∥∥∥
∞
< ε′ +K(BJ0−1)ε′′.(iii) ∣∣∣Cn

td+1
− τ

bδ(0) ε(λ,k)
bδ(RLJ0−n−s0)

(ϕ(td+1))
∣∣∣ < ε′+1

2
(K ′

J0
−1)(K ′

J0
−2)ε

′′

+2n−J0+J
′′

0 ε′′.Proof We �rst reall that when we know Cn−1(ω), we know also wether Cnvanishes in (td, td+1). If it isn't the ase, we put :
RLJ0−n−1(ω) = RLJ0−n(ω) − 1,43



and de�ne N n(ω) and Σn(ω) as we do in Proposition 9; but this time theounting of "errors" is radially di�erent. It an happen between 0 and tdthat an exursion whih was proteted before beome negative and, in thefollowing raise, is going to add to another proteted exursion. So, at eahvertial raise, the "errors" are double of those of the preeding raise. Henethe result in (ii).In the same manner the exursion straddling td+1 reeives an exursion withbeginning in [0, td]. So, to the errors soon aquainted at level J ′′

0 we mustadd the error between 0 and td of the preeding level whih entails (i).For (iii) : here the raises whih are involved, are the planing one's, i.e. the
K(BJ0−1) �rst raises. At most, at eah instant of the interval [t0(BJ0−1), td+1],the path Cn has reeived K(BJ0−1) small exursions. Then, this part of thepath is just suessively translated, whih entails (iii)

�Then, without any hange, we de�ne Jn, n ≥ 0, hzn and vtn, and Proposition12 takes plae.Proposition 23. (i) For all n ∈ N, the r.v. Jn are stopping times, whilethe RLn are σ(Bn+1)−measurable, the hzn and vtn, σ(BJ0−n)−measurable.(ii) It is possible to de�ne N n and Σn on the event [J ′′

k−1 ≥ n ≥ Jk
] in suha manner that :(a) ∥∥∥Cn

|[0,td] − Γ̃
RLJ0−n−s0
|[0,td]

∥∥∥
∞
< hznε

′′2vtn(b) ∥∥∥Cn
|[t0(B

Jk−1 ),td+1]
− Cn

td+1

∥∥∥
∞
< ε′ +K(ΓJk−1)ε′′() ∣∣∣Cn

td+1
− τ

bδ(0) ε(λ,k)
bδ(RLJ0−n−s0

)(ϕ(td+1))
∣∣∣ < ε′ + 1

2
(K ′

J0
− 1)(K ′

J0
− 2)ε

′′

+

hznε
′′2vtnProof It is the same as in Proposition 12.For (b) we notie that, after the intervention of the planing exursions, thispart of the path is merely translated, without being a�eted by any othermodi�ation.

�As before, S = sup{n ≤ r;RLn = s0}.Proposition 24. (i) S is a stopping time suh that S− s0 doesn't dependupon s0 and ε′′. 44



(ii) Let (Γn) be the sequene assoiated to the Cn of Proposition 22. Itsatis�es on Aε1 :
∥∥∥ΓS|[0,td] − Γ̃0

|[0,td]

∥∥∥
∞

< hzJ0−Sε
′′ + 2l0hzJ0−Sε

′′ =
(
1 + 2l0

)
ε′′hzJ0−S

∥∥∥ΓS|[t0(BJS−1),td+1]
− ΓStd+1

∥∥∥
∞

< ε′ +K(BJS−1)ε′′

∣∣∣ΓStd+1
− ϕ(td+1)

∣∣∣ < 2β + ε′ +
1

2
(hzn − 1)(hzn − 2)ε

′′

2l0
(
ε′′hzJ0−Sε

′′

)
.Proof For (i), see Proposition 12.Then (ii) follows immediately from preeding Propositions.

�We notie that, up to now, we have orretly de�ned the sequenes (Cn)n≤J0−Sand (Γn)n≥S. Now we restrain the partition (Hν)ν∈Nd+1
: there exists a �nitepart Π of Nd+1 suh that :(31)

P(Aε3) > 1− ε(1 +
d

d0
)−

3ε

3d0
= 1− ε(1 +

d+ 1

d0
)where Aε3 = Aε2 ∩

(
⋃

ν∈Π

Hν

)And we set, as usual, S =
∑

ν∈Nd+1
Sν1Hν

.Then Proposition 13 remains unhanged : we hoose suh an integer s0.Now Proposition 14 beomes :Proposition 25. On the event [S ≥ n ≥ 0], it is possible to de�ne N J0−n,
ΣJ0−n, CJ0−n

ν and Γnν in suh a way that : on the event (⋃ν∈ΠHν

)
∩ [S ≥

n ≥ 0], we have :
‖Γ0

|[0,td] − Γ̃0
|[0,td]‖∞ < 2

(
S − 1 + hzJ0−S(2

l0 + 1)
)
ε
′′(32)

‖Γ0
|[t0(ΓJ0 ),td+1

− Γ0
td+1

‖∞ < ε′ +K(ΓJS)ε
′′(33)

|ΓStd+1
− ϕ(td+1)| < ε′ +

1

2
(hzn − 1)(hzn − 2)ε

′′

+ 2β + 2l0ε
′′

hzJ0−S.(34)Proof The same as in Proposition 14.For (38) and (39), we use the arguments of Propositions 21 and 22.45



�Then Proposition 15 remains unhanged :
Γ so de�ned is a disjointed sum of B−raised Brownian motions.So, let us hoose : ε′ = ε

16
, β = ε

32
, and ε′′ = ε

16( 1
2
(s0−1)(s0−2)+2l0s0

.From the independene of the stopping times Sν − s0, and onsequently tothe r.v. S, upon s0 and ε′′, these hoies don't reate any viious irle, andwe an laim :Proposition 26. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions verifying on the event Aε3 :
∥∥Γ0

|[0,td] − ϕ|[0,td]

∥∥
∞

<
3

2
ε(35)

∥∥∥Γ0
|[t0(BJ0 ),td+1] − ϕ|[t0(BJ0 ),td+1]

∥∥∥
∞

<
ε

8
(36)

∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(37)Proof We dedue immediately these inreases from Proposition 24 sine

S ≤ s0, hzJ0−S ≤ s0, K(ΓJS) ≤ s0.
�At this point, the last task to ahieve is to ontrol Γ0 between times t0(BJ0)and td+1.So we are going now to analyze more in details its behavior on (td, td+1).Let us denote γtd the �rst time after td at whih one of the wσ, 0 ≤ σ ≤ s0+l0,vanishes on (td, td+1), and σ0 the orresponding level.Notie that there exists an integer k suh that σ0 = Jk. Set :

σ1 = σ0 −
∑

k∈N

(
K(ΓJk

) +K ′
Jk

)
1σ0=Jk

.Let us introdue the retangle Rectσ1 de�ned by the four straight lines withequations :
x = td , x = td+1 , y = inf τ

bδ(0) ε(λ,RLσ0 )

bδ(RLσ0 ) (ϕ)|[td,td+1] and

y = sup τ
bδ(0) ε(λ,RLσ0)

bδ(RLσ0 ) (ϕ)|[td,td+1]

Rectσ1 ontains by de�nition the path of τ bδ(0) ε(λ,RLσ0 )

bδ(RLσ0 ) (ϕ)|[td,td+1] and, fromthe hoie of α0, its height is lower than ε

4
.46



Now onsider the path of wσ1|[td,td+1], it takes one of the two forms given inthe appendix.In the two ases by hypothesis, the total variation of ws0+l0 on [td, td+1] islower than ε

2
. So, by lemma 5, and the de�nition of γtd, it is equal to thatof wσ0 , on [td, γtd ]. Consequently the path wσ1 an move again from Rectσ1but at most from ε

4
+ ε

2
on the same interval.And rapidly, it is bound to join ϕ in Rectσ1 by the building exursions, the�at part remaining �at.Therefore, the retangle RRσ1 with the same enter and vertial straight linesbordering it, and height that of Rectσ1 + 3ε

2
, ontains the path wσ1 |[td,td+1].During the following raises, the retangle Rectσ1 , aording to lemma 5,moves by isometry. We all Rσ its new positions, and likewise RRσ that of

RRσ1 .We an easily hek that, for all σ > σ1 orresponding to a vertial raise, thepath wσ|[td,td+1] is ontained in RRσ.Finally, for w ∈ Aε3 ∩H
ν, ν ∈ Π, at level 0 we have the desired property :
∥∥Γ0

ν |[td,td+1] − ϕ|[td,td+1]

∥∥
∞
< εSo we have proved the following :Proposition 27. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions suh that : on Aε3,

∥∥∥Γ0
[td,td+1] − ϕ|[td,td+1]

∥∥∥ < 3
ε

2
(38)

∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(39)By replaing ε by 2

3
ε, we have establish that Pd+1 is true. So, by indution,

Pd is true for all d ≤ d0, and we an laim :Proposition 28. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions suh that :
P

([
‖Γ0

|[0,1] − ϕ|[0,1]‖∞ < ε
]
∩
[
|Γ1 − ϕ(1)| <

ε

4

])
> 1 − 2ε.Then we an apply Proposition 1 to G =

[
‖w|[0,1] − ϕ|[0,1]‖∞ > ε

].So,
P

(
∀n ≥ 0,

∥∥Bn
|[0,1] − ϕ|[0,1]

∥∥
∞
> ε
)
< 2ε47



We dedue immediately :
P

(
∀n ≥ 0,

∥∥Bn
|[0,1] − ϕ|[0,1]

∥∥
∞
> ε
)

= 0.But this property is true again when we replae 1 by a, for all a > 0 : Thismeans :Theorem 2.For almost every ω ∈ Ω, the orbit of B(ω) :
orb(B(ω)) = {Bn(ω); , n ∈ N}is dense in W , equipped with the topology of uniform onvergene on ompatsets.Let us notie that if, in plae of restrain ourselves with the open sets B,we have shown :

∀B losed set in W ,
P(B) > 0 ⇒ P(orb(w) ∩ B 6= ∅) = 1Then every set A T-invariant, measurable and not negligible, would ontainthe event [orb(w)∩B 6= ∅] and so, would be almost sure. Therefore, T wouldbe ergodi.To end, we are going to laim in an equivalent way, following thus an inter-esting suggestion of J.P Thouvenot :

∀(ϕ, ε) ∈W |[0,1] × R
+
∗ ,the reverse martingale P(w ∈ B(ϕ, ε)|Wn

∞) admits a regular onditional ver-sion P(w ∈ B(ϕ, ε)|wn), and we have :Theorem 3.
P a.s. , lim

n→∞
P(w ∈ B(ϕ, ε)|wn) > 0Proof of theorem 3.Suppose the ontrary, and let :

A :=
[
w ∈W, lim

n→∞
P(w ∈ B(ϕ, ε)|wn) = 0

]48



As P(w ∈ B(ϕ, ε)|wn) = P(w ∈ B(ϕ, ε)|wn+1), beause T is measure-preserving. So we have :
w ∈ A⇔ Tw ∈ ASo A is T-invariant. Consequently :

E (1AP(w ∈ B(ϕ, ε)|wn)) = P (A ∩ [w ∈ B(ϕ, ε)]) = P (A ∩ [wn ∈ B(ϕ, ε)])But by hypothesis :
lim
n→∞

E (1AP(w ∈ B(ϕ, ε)|wn)) = 0Therefore,
P (A ∩ [orb(w) ∩ B(ϕ, ε) 6= ∅]) = 0whih, from theorem 1, entails that P(A) = 0

�Finally, let us remark that, if we ould show :
lim
n→∞

P
([
w ∈ B(ϕ, ε)

]
|wn
)

= P
([
w ∈ B(ϕ, ε)

])
,Than, not only T would be ergodi but exat whih means :

W∞
∞ := ∩

n∈N

Wn
∞ would be trivial.
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